CAMS Radiation service open-data products for the solar energy community

Jorge Lezaca* and Marion Schroedter-Homscheidt (DLR)
In collaboration with

Armines, FMI, Met Norway, and VAISALA

* Presenting author: Jorge.Lezaca@dlr.de

Copernicus Atmospheric Monitoring Service (CAMS)

provides consistent and quality-controlled information related to air pollution and health, **solar energy**, greenhouse gases and climate forcing, everywhere in the world.

Copernicus service - free and open solar radiation data

CAMS Radiation Forecasts

- Assimilates satellite observations of aerosols
- Provides hourly intra-day and day-ahead radiation forecasts
- Lower spatial resolution than standard weather forecast
- · Better aerosol information

ERA5 as part of C3S climate service

- ECMWF's atmospheric reanalysis of the global climate covering the period from January 1940 to present.
- Consistent solar and wind data
- No detailed clouds & aerosol climatology
- Coarse spatial resolution
- · Distribution of Irradiance not met

CAMS Radiation Service (CRS)

- Uses satellite information on clouds and aerosols
- Time series for your location of interest
- Historical data 2004 to yesterday
- Resource database

Copernicus == free and open data policy for any use

Monitoring

User specific solar radiation information

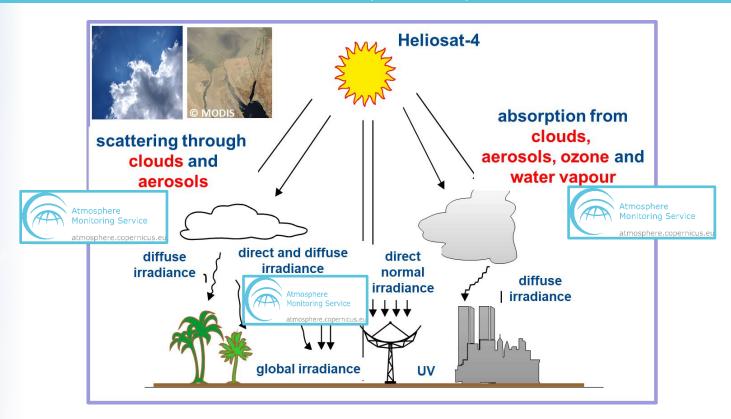
		Skin Type			
		I and II	III and IV	٧	VI
dex		low	low	low	low
UV Index	$\triangle \triangle$	medium	low	low	low
	Δ	high	medium	low	low
		high	medium	medium	low
		veny sings	high	medium	medium
		(中) 中(B)	high	high	medium

UV & health

Materials & life time

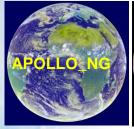
Ecosystems

Solar Technologies



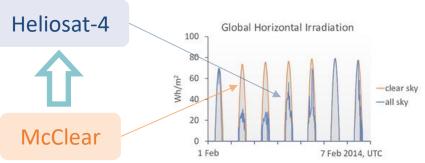
Monitoring

CAMS Radiation Service - principle



CAMS radiation service (CRS)

Atmosphere Monitoring

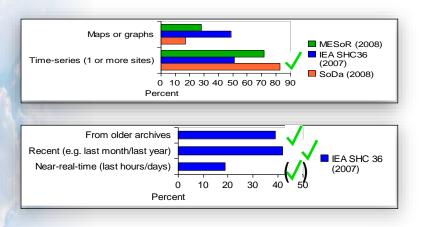


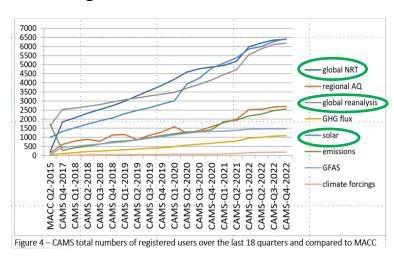
Physical approaches based on fast radiative transfer

Example Surface Solar Irradiation (SSI) -> TS

method papers

Gschwind et al., Contrib. Atm. Phys., 2019 Lefèvre et al., Atm. Meas. Tech., 2013 Qu et al., Contrib. Atm. Phys., 2017 Schroedter-Homscheidt et al., Contrib. Atm. Phys., 2022





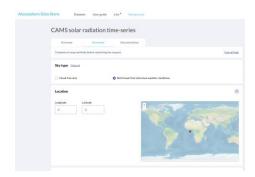
Why time series as main operation mode?

Because users told us their priorities:

Total registered CAMS users:

Users are 1/3 companies, 1/3 academia, 1/3 unknown

Time series on-the-fly and gridded data


[3]

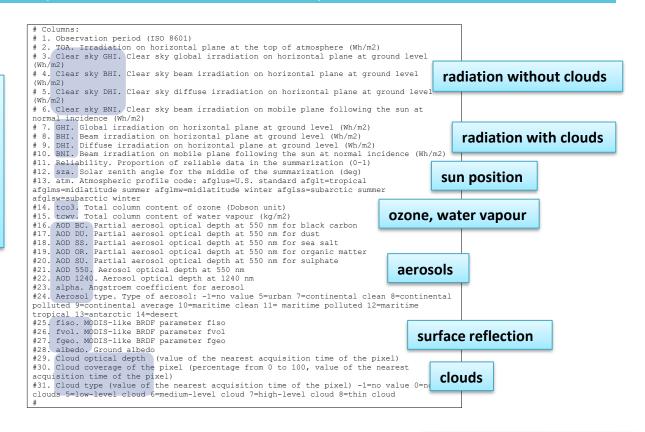
Primary product: on-the-fly processing of time series

- global, diffuse, direct and direct normal irradiation
- Since 2004 (MSG FOV) and 2016 (HIMAWARI FOV)
- 1 min, 15 min, 1 hour, 1 day, 1 month temporal resolution
- interactive access on CAMS ADS [1] and user portal 20 [2]
- OGC script access possible or via open source library pvlib [3]
- transparent access to all input data in expert mode (aerosols, cloud classification, ...)

pvlib.iotools.get_cams pvlib.iotools.get_cams(latitude, longitude, start, end, email, identifier='mcclear', altitude=None, time_step='1h', time_ref='UT', verbose=False, integrated=False, label=None, map_variables=True, server='api.soda-solardata.com', timeout=30) [source]

- [1] https://ads.atmosphere.copernicus.eu/datasets/cams-solar-radiation-timeseries
- [2] https://www.soda-pro.com/web-services/radiation/cams-radiation-service
- [3] https://pvlib-python.readthedocs.io/en/stable/reference/generated/pvlib.iotools.get_cams.html

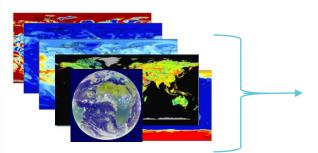
[1]

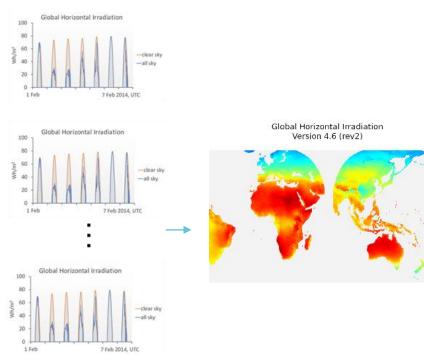


Timeseries output : detailed expert mode

Atmosphere Monitoring

- maximum transparency as all input values are visible
- · allows post processing or further site assessments as e.g. typical cloud duration





Time series on-the-fly and gridded data

Derived product: pre-calculated gridded dataset

- global, diffuse, direct and direct normal irradiation
- 15 min temporal resolution selected
- **0.1°** spatial grid selected
- 2005-2023 in MSG and 2016-2023 Himawari FOV
- interactive access on CAMS ADS [4]

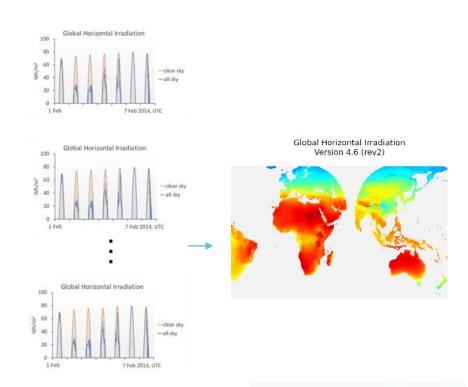
What is your temporal and spatial resolution?

Variable	Data sources	Temporal resolution	Spatial resolution
Solar geometry	SG2 library	1 min	location of interest
Aerosols properties and type	CAMS model & data assimilation	3 h	0.4°
Cloud properties and type	APOLLO_NG from satellites	15 min	3 to 10 km
Total column content ozone CAMS model & data assimilation Total column water vapour content CAMS model & data assimilation		3 h	0.4°
		3 h	0.4°
Ground albedo	MODIS	Monthly climatology	6 km

Not easy to answer as input data has various temporal and spatial resolutions.

Two answers:

- a) Use the on-the-fly time series access at the user's location of interest. The CAMS Radiation Services does all interpolation steps for you.
- b) Agree on a gridded data set with one realisation of many possible temporal and spatial resolutions.



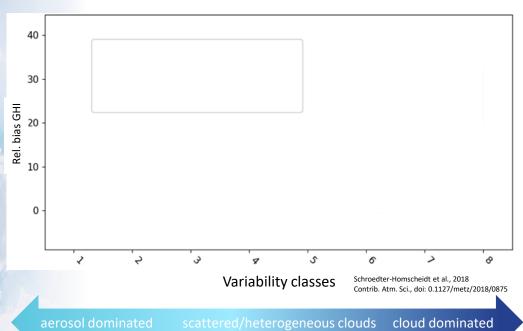
What is your temporal and spatial resolution?

Derived product: pre-calculated gridded dataset

- global, diffuse, direct and direct normal irradiation
- 15 min temporal resolution selected
- 0.1° spatial grid selected
- 2005-2023 in MSG and 2016-2023 Himawari FOV
- interactive access on CAMS ADS [4]

Talk to us if you have any particular need!

Overview on method changes


		CAMS 3.2 (until 05/2021)	CAMS 4.0 (until 09/2022)	CAMS 4.5 (until 06/2023)	CAMS 4.6 (current)
	Calibration	Reflectances provided by EUMETSAT	Time-dependent updated calibration coefficients (Meirink et al. 2013 & updates)	same	same
	Cloud retrieval	APOLLO, binary cloud mask (Kriebel et al. 1988 and 1989)	APOLLO-NG, probabilistic cloud mask (Klüser et al. 2015)	same	same
		Cloud optical thickness (COT) using Stephens et al. 1984 with clipping at COT < 0.5	COT using Stephens et al. 1984 with COT LUTs extended to 0.001	same	same
	Cloudy detection	based on a binary mask	Cloud probability threshold 1%	same	same
	Circumsolar correction	Single COT value	Empirical apparent COT factor for direct normal iradiance (DNI): • 0.41 for thin ice clouds • 0.20 for water/mixed phase clouds	same	same
	Radiative model	Heliosat 4	Heliosat 4	Heliosat 4	Heliosat 4
	Aerosol/ TWC/O3	MACC reanalysis & CAMS NRT, various versions	MACC reanalysis & CAMS NRT, various versions	CAMS reanalysis*	CAMS reanalysis until 2020, followed by CAMS NRT (Cy47r1/2/3; Cy48r1)
	Bias correction	Empirical multiplication factor	Re-trained bias correction	No bias correction	same – no bias correction
	Coverage	MSG FOV	MSG FOV	MSG FOV	MSG/HIMAWARI FOV

^{• *} For CAMS v4.5, CAMS reanalysis is used for times series within 2004 and 2020. After 2020, McClear v3.5 or v3.6 with different IFS inputs are used

Bias correction scheme removed

Example: BSRN Cabauw, 2015

- Clear improvement from V3.2 to V4 in cloudy situations
- Bias correction

V3.2:

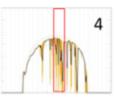
compensating errors in aerosol and cloud dominated situations

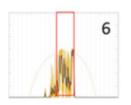
V4.0:

bias correction worse in most situations

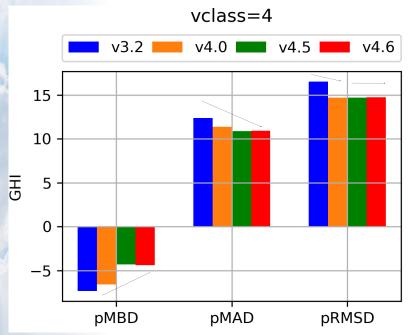
-> switched off in V4.5

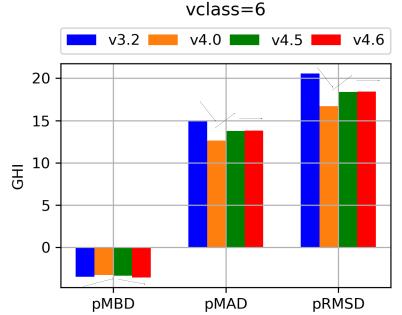
€ FCN





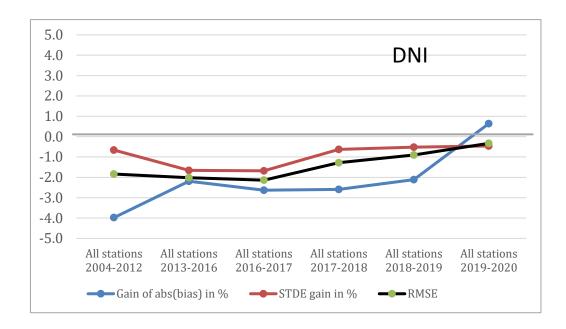
Example - CRS version updates evaluation based on DNI variability





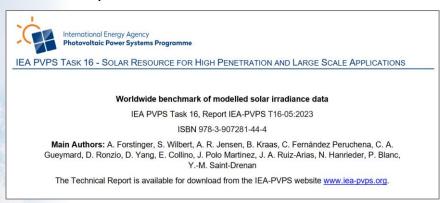
Small cumulus

Cumulus, few cloud free



Other major change for v4.5: CAMS reanalysis

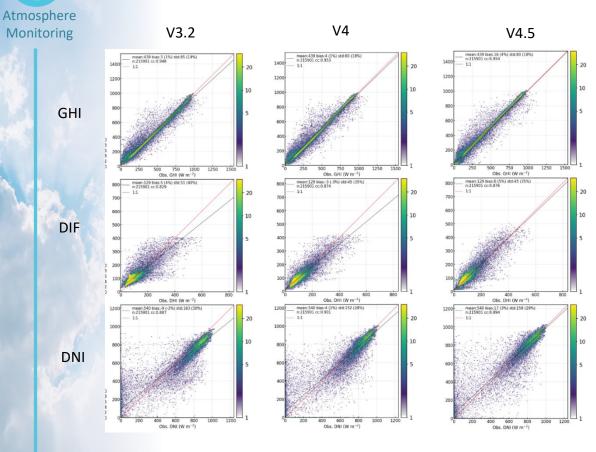
Replacing consecutive CAMS IFS updates with the CAMS reanalysis -> used in v4.5 Minor changes in GHI, but positive impact for DNI and DIF



Further results

v3.2 vs. pre-version 4

operational versions 4 and 4.5 in quarterly validation reports


https://atmosphere.copernicus.eu/supplementary-services

V3.2 -> v4 (new clouds) -> v4.5 (new AER/TWC/O3)

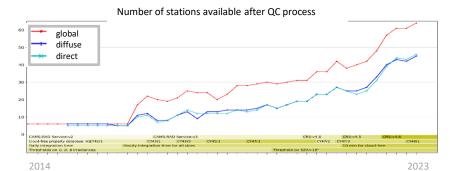
Note:

This is 1 min data == developer view

For users more relevant is hourly validation which overcomes the point/area mismatch.

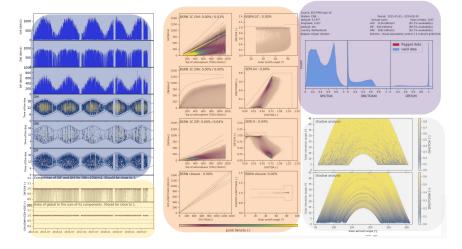
This is done in reqular quarterly validation reports (see CAMS web page)

Example: Carpentras, 2017, 1 min data

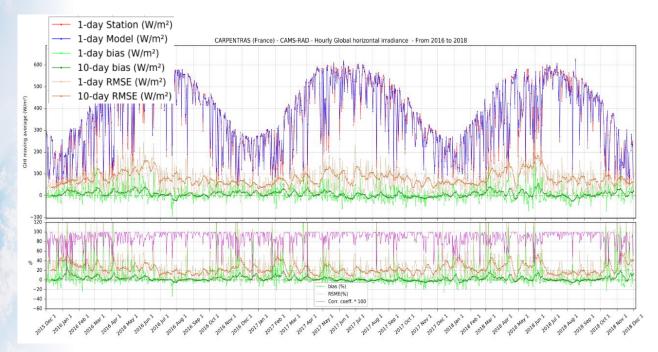

Ground measurement database and Quality Control

Database

- SSI ground observations on a global scale [1]
- 4x/year evaluation reports published to ensure data quality and provide transparency


https://atmosphere.copernicus.eu/supplementary-services

- Automatized visual Quality Control (QC): time series, carpet plots, BSRN 1/2/3 components, flag distribution, shadow detection, ...
- Python library libinsitu for data processing and QC [2]



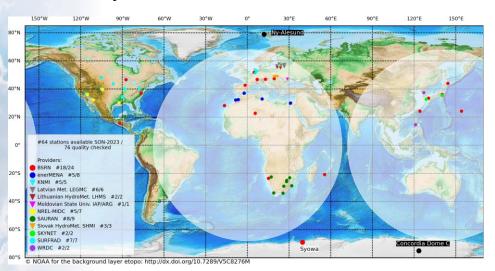
- [1] https://viewer.webservice-energy.org/in-situ/
- [2] https://libinsitu.readthedocs.io/en/latest/

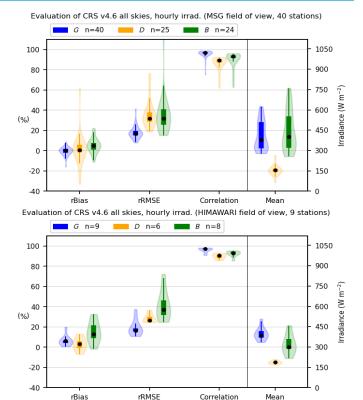
Monitoring

Multi-annual operational validation reports

example: Carpentras 2016 to 2018

CAMS -> QC of station in PV control input data
We know user who do that




Monitoring

CRS recent version 4.6 regular evaluation (MSG & Himawari)

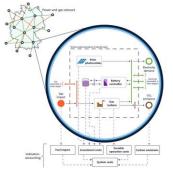
Error metrics for CRS for:

- GHI (**G**), DHI (**D**), BNI (**B**)
- 40 locations in MSG field of view
 9 locations in HIMAWARI field of view
- year 2023

Typical Solar Radiation Service usage

The investor:

- Where to place my solar energy system?
- Is my investment worth doing it?


The engineer:

- Perform power plant model simulation with realistic data
- Choose the optimum engineering solution
- Buy the cost-effective solution and not any solution

© TSK Flagsol

The grid operator:

- Perform a electricity grid simulation with realistic data
- Choose the optimum grid extension approach for the future

DLR (CC BY-NC-ND 3.0)

Why do we need a clear sky service?

- quality control for ground observations
- min/max ranges
- time shifts due to tilted instruments
- time shifts due to true solar time or daylight saving times
- upper envelope in variability classification
- as clear sky model in other services (e.g. HelioClim3 V5)
- calculate effective solar zenith angle e.g. for a 10 min interval
- instead of begin/end of interval = resulting in shift of time
- dealing with sunset/sunrise during interval
- •

Conclusions

The CAMS Radiation Service provides solar irradiation

- at the point of interest
- as a time series in the requested temporal resolution
- easy access as the spatio-temporal interpolation challenge is solved for the user
- traceable data generation, open information on quality control

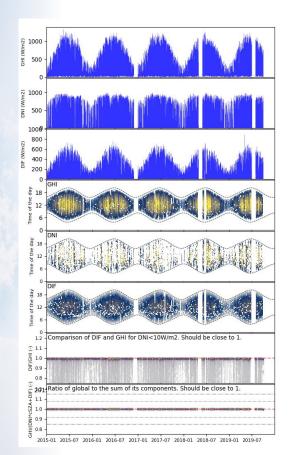
Usage includes

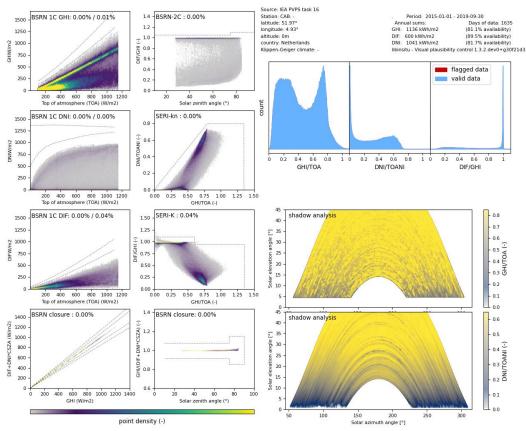
- standard questions like optimum location, costs, and investment security
- standard questions like security of electricity supply in grid operations
- but also detailed questions on storage planning, ground observation selection, engineering details, nowcasting/forecasting decisions in electricity trading,...

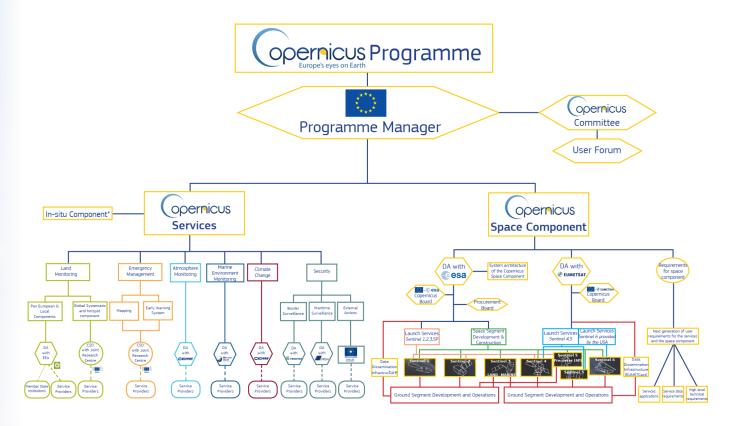
Contact point & references

- general inquiries and user requests: ADS Support page at https://ads.atmosphere.copernicus.eu/cdsapp#!/usersupport specific for the Solar Radiation Service team: <u>marion.schroedter-homscheidt@dlr.de</u>
- User's Guide at http://atmosphere.copernicus.eu/documentation
- Heliosat-4 method
 - Qu et al., Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method, Contrib. Atm. Sci., 2017
 - Schroedter-Homscheidt et al., Surface solar irradiation retrieval from MSG/SEVIRI based on APOLLO Next Generation and HELIOSAT-4 methods, Contrib. Atm. Sci.,/Meteorol. Z. Vol. 31 No. 6 (2022), p. 455 – 476, DOI: 10.1127/metz/2022/1132
- McClear method
 - Lefèvre et al., McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions, AMT, 2013
 - Gschwind et al., Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions – McClear-v3, Contrib. Atm. Sci./Meteorol. Z., 2019
- Broadband irradiation & IFS COMPO forecast evaluation: Quarterly validation reports at https://atmosphere.copernicus.eu/supplementary-services

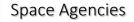
Thank you for your attention

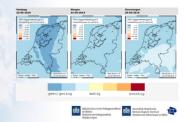

Extra Slides



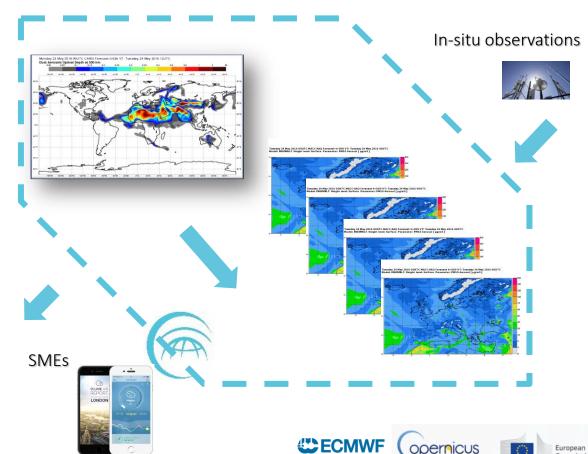

Ground measurement database and Quality Control

Copernicus programme



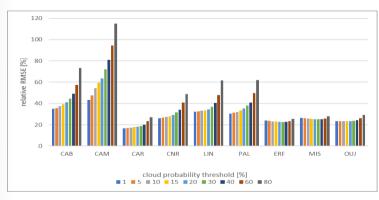

Copernicus as a whole

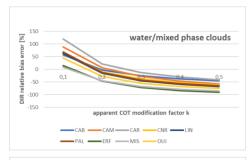
Atmosphere Monitoring

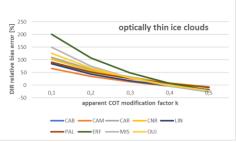

National agencies

Citizens

Scientists

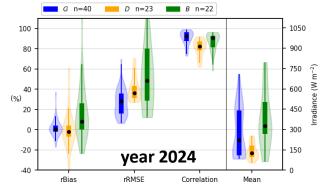




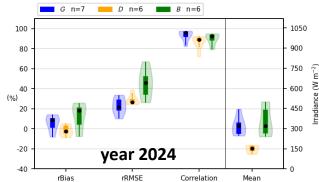

Method changes for CRS v4.0

- Calibration update following Meirink et al. (KNMI)
- Extension of COT LUTs to 0.001 instead of clipping at 0.5
- Probabilistic cloud threshold, very sensitive selection
- Circumsolar correction for DIR

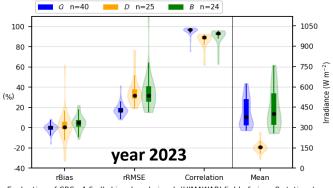
RMSE for hourly DIR as function of cloud probability threshold

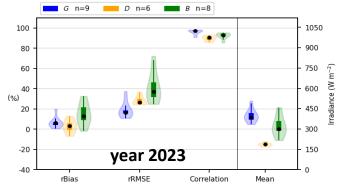


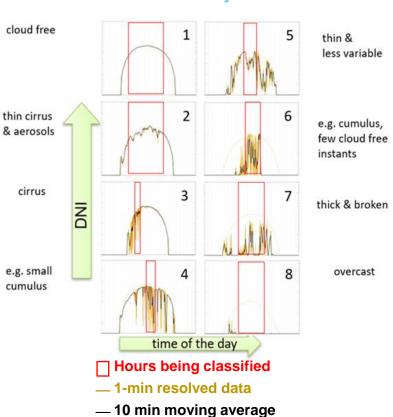
optimum apparent COT modification factor in all cloud conditions (split into optically thin & thick)




CRS recent version 4.6 regular evaluation (MSG & Himawari)




Evaluation of CRS v4.6 all skies. Dec.-Feb. 2024 hourly irrad. (HIMAWARI field of view. 7 stations)


Evaluation of CRS v4.6 all skies, hourly irrad, (HIMAWARI field of view, 9 stations)

Adding user-specific domain knowledge evaluation based on radiation variability classes

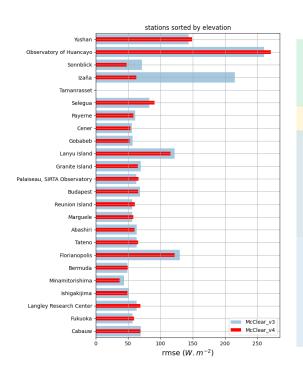
DNI based variability classes

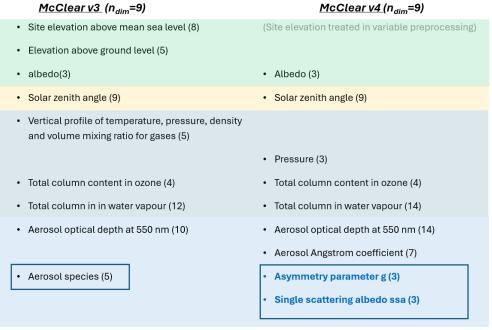
8 classes defined by DNI irradiance patterns

- Classes 1 & 2: clear and nearly clear sky
- Classes 3 5: large number of optically thin clouds
- Classes 6-7: optically thick scattered or broken clouds
- Class 8: overcast

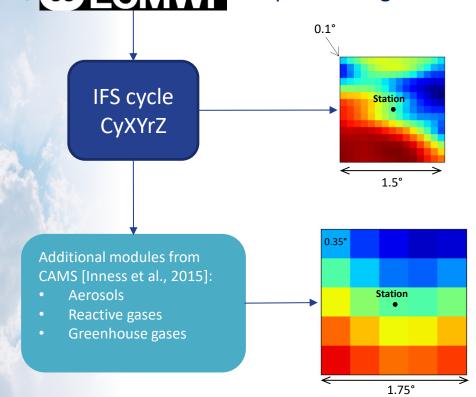
Schroedter-Homscheidt, et al., Meteorol. Z., DOI:10.1127/metz/2018/0875

Evaluation:


year 2015: variability classes benchmark


14 locations in MSG FoV (BSRN, enerMENA)

Preparing for McClear V4 – principle of using aerosols more flexible



SSI on ECMWF Integrated Forecast System (IFS)

Atmosphere Monitoring *: Operational global NWP* forecast : IFS

IFS-HRES

- Operational forecast (4 runs per day)
- native resolution = 0.1° ~ 9km
- Aerosols from climatology
- ← 15 x 15 pixel (1.5°) of SSI around CAB-BSRN

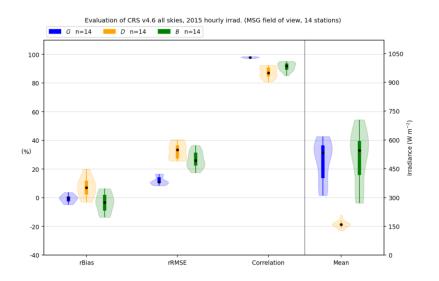
IFS-COMPO

- Operational forecast (4 runs per day)
- native resolution = 0.35° ~ 40km
- Aerosol forecast from CAMS
- <— 5 x 5 pixels (1.75°) of SSI around CAB-BSRN

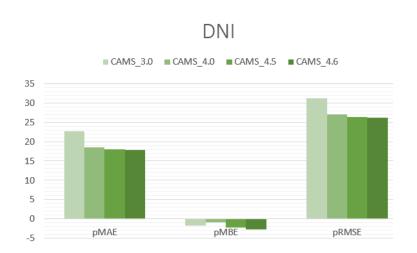
* EMCWF: European Centre for Medium-Range Weather Forecasts

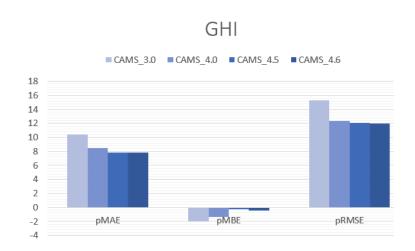
* NWP: Numerical Whether Prediction

Monitoring


IFS Forecast assessment results

- all sky: IFS-HRES performs better than the IFS-COMPO for BNI (also GHI)
- clear sky: IFS-COMPO presents some advantages with
 - → reduced BNI biases
 - → more accurate BNI forecasts in high irradiance (GHI)
 - instances of special interest of solar community
- Users focusing on regions with high irradiance may prefer the IFS-COMPO forecasts
- Solar stakeholders may use IFS-HRES together with the IFS-COMPO forecasts.
 - trust more the IFS-HRES to identify cloud-free conditions
 - take the IFS-COMPO forecasts into account in such situations
- Detailed report (.doc and station-wise plots as annex) available at https://atmosphere.copernicus.eu/supplementary-services




CRS version updates evaluation : Benchmark year 2015

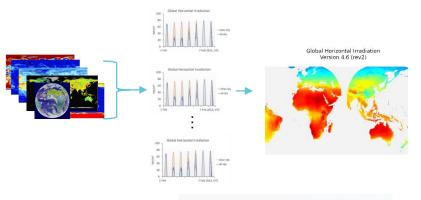
CRS version updates evaluation: Benchmark year 2015

Time series on-the-fly and gridded data

Primary product: on-the-fly processing of time series

- global, diffuse, direct and direct normal irradiation
- Since 2004 (MSG FOV) and 2016 (HIMAWARI FOV)
- 1 min, 15 min, 1 hour, 1 day, 1 month temporal resolution
- interactive access on CAMS ADS [1] and user portal SODE [2]
- OGC script access possible or via open source library pvlib [3]
- transparent access to all input data in expert mode (aerosols. cloud classification, ...)

pvlib.iotools.get cams


[1] https://ads.atmosphere.copernicus.eu/datasets/cams-solar-radiation-timeseries

[2] https://www.soda-pro.com/web-services/radiation/cams-radiation-services

[3] https://pylib-python.readthedocs.io/en/stable/reference/generated/pylib.iotools.get cams.html

Derived product: pre-calculated gridded data

- global, diffuse, direct and direct normal irradiation
- 15 min temporal resolution selected
- 2005-2023 in MSG and Himawari FOV
- interactive access on CAMS ADS [4]
- 0.1° spatial grid selected

