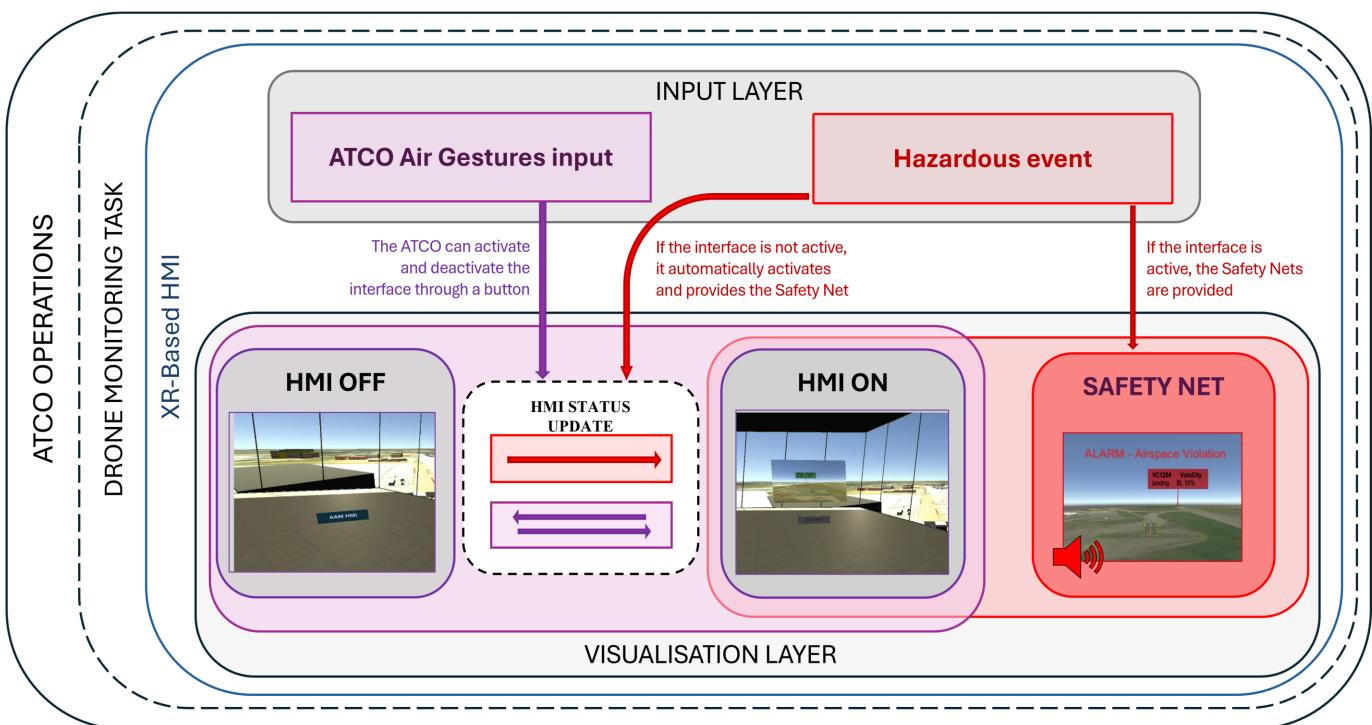
Integrating Extended Reality in Air Traffic Control: Innovative Interfaces for Drone Monitoring at Airports

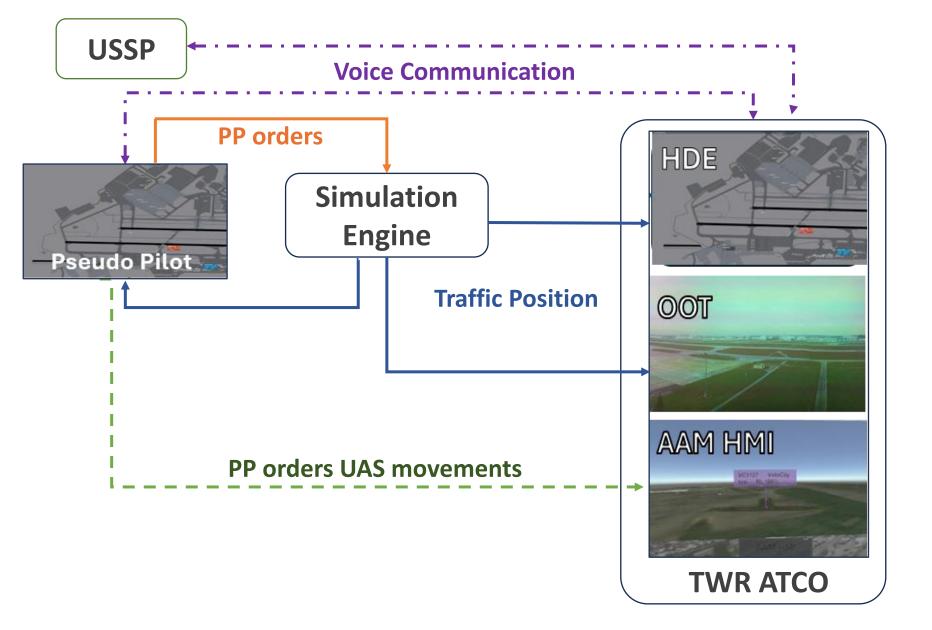
Marzia Corsi*1,2, Sara Bagassi², Christophe Hurter³, Antonio Esposito⁴

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Flugführung ²University of Bologna, ³École nationale de l'aviation civile, ⁴Kore University of Enna *marzia.corsi@dlr.de

IAM operations near airports require close coordination between ATS units and IAM actors. Vertiports should be within tower ATCOs' visual range to enable direct oversight. Integrating manned and unmanned traffic in shared low-level airspace demands real-time coordination, increasing ATCO workload. To support this, a novel XR-based HMI is proposed to seamlessly integrate into control towers and provide intuitive visualization of IAM traffic around airports.


OBJECTIVES

- Design & implement XR-based HMI providing RT data overlays for consistent head-up view.
- Explore the potential of XR for managing the integration of UAS into controlled airspace.
- Conduct a **user evaluation** of the HMI focusing on usability, comfort, and performance.
- Develop recommendations for the deployment of XR in real-world ATC environments.


Concept & Apparatus Design

On-demand, semi-transparent XR interface live-streaming the vertiport area located within the aerodrome, and incorporating dynamic overlays that present relevant UAS traffic and operational information.

METHODOLOGY

Validation technique:

Real-time HITL

Scenario:

LFBO Airport + Vertiport

Traffic:

Conventional + IAM

Device:

ST-HMD – HoloLens2

Users:

6 ATCOs & 5 ENAC Students

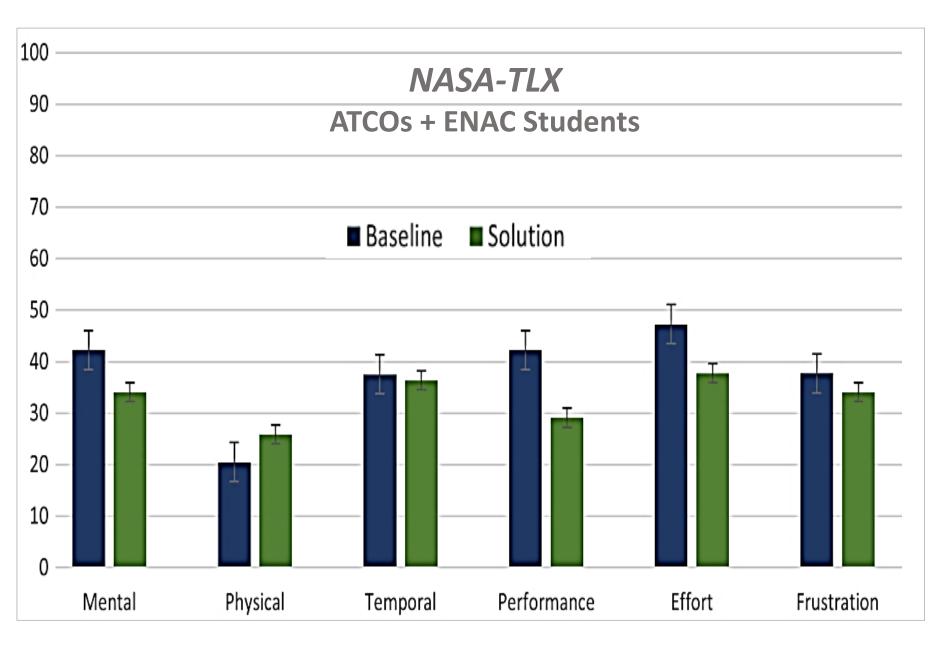
Validation Results

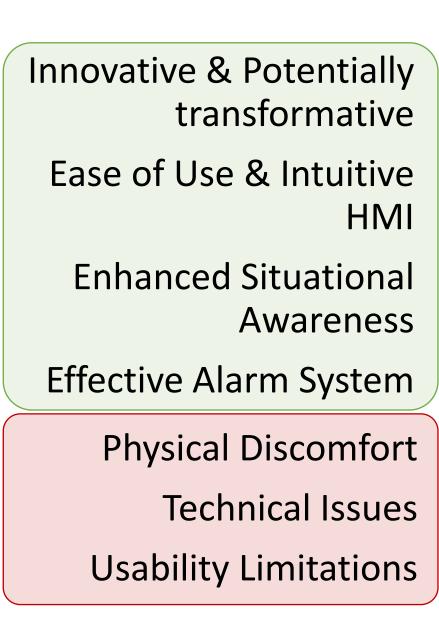
Objective measurements

- Physiological Measurements Heart Rate Variability
- Reaction Time

		Baseline		Solution			
Trend with decreasing workload	Index	Mean	Standard Deviation	Mean	Standard Deviation	t-test	р
Decrease	SI	10.19	4.67	9.59	4.65	0.537	0.593
Increase	SDNN	53.99	21.77	59.79	28.43	-0.972	0.334
Increase	HRV_{ti}	12.2	3.92	12.88	4.28	-0.706	0.482
Increase	LF	1647.1	1010.3	1960.6	1210.1	-1.193	0.237
Increase	HF	868.66	1143.2	1308.1	2057.6	-1.12	0.266
Increase	TOT_{pow}	2698.6	1996.7	3440.5	2794.3	-1.296	0.199
Increase	SD2	94.85	31.71	98.37	38.64	-0.421	0.674
Decrease	Shannon Entropy	3.19	0.31	3.05	0.29	2.007	0.049*

Safety Net: drone incursion


Index	Exe	F	р	Partial η2
CI	В	0.776	0.397	0.066
SI	S	5.853	0.034*	0.347
SDNN	В	0.147	0.708	0.013
3DININ	S	0.026	0.874	0.002
HDV	В	1.299	0.279	0.106
HRV _{ti}	S	5.235	0.043*	0.322
LF	В	0.060	0.811	0.005
LF	S	0.815	0.386	0.069
HF	В	0.318	0.584	0.028
	S	0.734	0.410	0.063
TOT	В	0.104	0.753	0.009
TOT _{pow}	S	0.222	0.647	0.020
SD2	В	2.752	0.125	0.200
	S	1.513	0.244	0.121
Shannon	В	11.100	0.007*	0.502
Entropy	5	20.245	0.001*	0.648


Reaction Time								
	User	Baseline [s]	Solution [s]					
	TWR1	X	10					
	TWR2	1	3					
ATCOs	TWR3	14	0					
AICUS	TWR4	t<0	t<0					
	TWR5	X	10					
	TWR6	24	7					
	TWR7	11	2					
5314.0	TWR8	X	2					
ENAC Students	TWR9	12 (No action)	1 (No action)					
Students	TWR10	1	1					
	TWR11	6	3					

Subjective assessment

- Perceived Workload NASA-TLX Questionnaire
- Usability Feedback

CONCLUSIONS

- RT overlays stimulate ATCOs in a "head-up" position. Seamless multimodal interaction & safety warnings, improved performance, situational awareness, efficiency and decision-making.
 - XR system supports UAS integration in controlled airspace. Overlay IAM traffic data onto ATCO's field of vision allows for simultaneous monitoring of manned/unmanned traffic.
- XR-based HMI's effectiveness, reduced reaction times & improved task-switching. Discomfort with prolonged use of HMD, need for ergonomic improvements despite the performance benefits.
- **Recommendations documented** for improvement, seamless integration with existing ATC systems, real-world trials needed to validate performance, safety, and workload in live environments.

