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» The solar wind passing the Earth is an important driver of electrodynamic processes in the Earth’s Magnetosphere-lonosphere-Thermosphere (MIT) system
» Research and operational applications typically rely on measurements of solar wind monitors at the Lagrange point L1 as solar wind observation near Earth

(at the bow shock) are very sparse

» The overarching goal of the project is to deliver machine learning models to specify and forecast near-Earth SW conditions based on spacecraft measurements

Introduction

around L1 by marrying the long history of multi-point SW measurements with the gradient boosting and random forest prediction models in the form

of ensemble of decision trees

» We train the model to specify and/or predict the propagation time from L1 monitors to a given location upstream or at the bow shock.

Methodology to Obtain SW Propagation Time

= To trace SW propagation, we perform the analysis on IMF clock angle:

6 = tan™'(B,/B,)

= We segment ACE in 20 minutes window and find the MMS data that best
match the ACE data by sliding along 2 hours of data incrementing 1

minute at a time
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computes

1. Cross-correlation (CC) coefficient
2. Plateau-shaped Magnitude Index (PMI)
3. Dimensionless Measures of Average Error (NDME)

- Our analysis uses, Weighted CC = CC*PMI

when max(CC) > 0.5 and NDME > 0.4

Statistical vs OMNIWeb Delay

OMNIWeb Delay - Propagation delay
calculated at a NE Monitor’s location using
OMNIWeb provided method and data

Stat Delay - Propagation delay
estimated using our statistical approach/
correlation method
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provide large sets of input and target :
variable using multiple spacecraft pairs at
L1 and near-Earth location

The algorithm facilitates easy access to
data and the data sets can be used by

anyone

The developed algorithm generates a big
dataset of 53880 events in the period from
December 22, 2017, to April 30, 2024
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variables using multiple spacecraft pairs at L1 and near-
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Application of Machine Learning Models in Predicting the Solar Wind Propagation from L1 to NE

» We apply two ML models to predict SW propagation delay: i) Random Forest Regression (RF) and ii) Gradient Boosting (GB)
» GB and RF algorithms are applied together: a) To enable direct comparison between the RF and GB models and b) To quantify if the use of an ensemble-

based ML model make a significant improvement to the overall performance

» The machine learning SW propagation delay can be described as

Aty = fp(x)

stat. delay= 61, OMNI delay= 67
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> Correlation coefficient values are calculated

between B, at L1 and shifted Bz using SW delays

at the near-Earth Location
» B, Is shifted using OMNI delay and statistical

delay
» Delay difference =|Estimated delay - OMNI delay|
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» For selected cases, ML predictions shows better

match than using OMNIWeDb predictions
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Here f,, describes the ML algorithm trained on the data set D and X contains feature vectors
» We follow Baumann and McCloskey [2021]'s method, where we use Bayesian optimization

based on the Gaussian process
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» Feature importance of the ML model and Correlations
between feature vectors and the target SW delay are
Investigated. v, has the highest feature ranking

» Validation: ML model predicted delays are compared
with the results of physical models: 1) Flat Delay and
2) OMNI shifted delay using Phase Front Normal

» Evaluation of Deep Neural Network on test set
results
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» The ML model predicted delay agrees well with the statistically estimated delay with an
uncertainty of +5 minutes
» To optimize the hyperparameter and to assess the ML model performance, we employ a ten-fold
cross validation approach

mm Fold 10

0.0 0.1 0.2

0.3 0.4

Feature Importance (MDI)

Xm rZa

Ym

Delay rZm

--0.038 0.2 0.088 1

--0.086 -0.089-0.004 913 1 -0.13

--0.081 0.16 0.11 0.12 -0.13 1 -0.

0.22 -0.18 0.12 -0.16 0.13 -0.27

IR -0.067 -0.038 -0.086 -0.081 0.22 -0.19 -0.021 -0.1 0.011

1.00
- - -0.013
-0.055 0.2 -0.089 0.16 -0.18 0.16 0.093 0.16 -0.012 0.17 0.75

--0.067 -0‘055- 0.088 -0.0049 0.11 0.12 -0.13 -0.052 -0.16 -0.2

SRl 0.12 -0.16 0.15 0.0072 0.1 -0.018

045 -0.052 0.22 -0.28

< RUACkH -0.068 BIKGTER -0.23
--0.19 0.16 -0.13 0.15 -0.17 0.45 EIAK] [I-0.00298UVE N 0.16

0.13 -0.17 0.049 -0.15 -0.022

0.15

[ 0.50 Data Fold 1
0.81 30.0%
B Slow SW
-0.69 /. Bl Fast SW

20.0% A
SEFSW =0.3
SEFSW =0.3
RMSEFSW =3.1
RMSEssw = 3.5

0.16

=
=3
S

0.15
10.0% -

correlation coefficient
Distribution (%)

-0.11

o
N
v

--0.021 0.093 -0.052 0.0072 0.049 -0.052 -0.068 -0.002. 0.042 UL -0.071 0.0% -
e 0 5 10 15 20
- 01 016 -0.16 0.1 -0.15 0.22 ERIEENE] 0.042 0.11 -0.1 |6 Delay| (min)

-0.011 -0.012 -0.2 -0.018 -0.022 -0.28 -0.23 0.16 " Wd= 0.11 .~0.17 I

--0.013 0.17 0.15 BEEIEEEIKGEN 0.16 0.15 -0.11 -0.071 -0.1 -0.17

B, B, Bz

Vi T

rXa rya rza Xm ym Zm

- =0.50
-0.75

Delay

» The ensemble methods outperformed the LSTM and MLP despite averaging out the time series
information from the features
» The result can be explained by feature space being lower in dimension and training data being
small as compared to other tasks such as language modeling where feature dimensions and
amount of training data are very high and the LSTM model outperforms ensemble methods

» ML predictions provide similar results for he fast and slow solar wind

Summary and Conclusion
» The statistical approach conducts cross-correlation analysis to estimate SW propagation times and provides large sets of input and target variables
= \We use multiple spacecraft pairs at L1 and near-Earth locations to train, validate, and test machine learning models
= The ML algorithm using these data sets helps to specify and predict (1) the propagation time from L1 monitors to a given location upstream or at the bow shock and (2) to forecast near-Earth SW

* The obtained propagation times are then compared to OMNI. Factors that limit the OMNI accuracy are also examined
* The root mean squared error (RMSE) of RF is 1.3% and of GB is 1.7%, where the RMSE of MLP is 2.2%
* The ML model predicted delays are compared with the predictions of flat delays and OMNIWeb-provided delays. In the selected 100 cases, we found that about 10% of ML predictions result in a better

match between the IMF features at the L1 point and those near-Earth, compared to the delay provided by OMNIWeb
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