
Introduction

➢ The solar wind passing the Earth is an important driver of electrodynamic processes in the  Earth’s Magnetosphere-Ionosphere-Thermosphere (MIT) system

➢ Research and operational applications typically rely on measurements of solar wind monitors at the Lagrange point L1 as solar wind observation near Earth

   (at the bow shock) are very sparse

➢ The overarching goal of the project is to deliver machine learning models to specify and forecast near-Earth SW conditions based  on spacecraft measurements 

     around L1 by marrying the long history of multi-point SW measurements with the gradient boosting and random forest prediction models in the form

     of ensemble of decision trees

➢  We train the model to specify and/or predict the propagation time from L1 monitors to a given location upstream or at the bow shock.

Application of  Machine Learning Models in Predicting the Solar Wind Propagation from L1 to NE

➢ We apply two ML models to predict SW propagation delay: i) Random Forest Regression (RF) and ii) Gradient Boosting (GB)

➢  GB and RF algorithms are applied together: a) To enable direct comparison between the RF and GB models and b) To quantify if the use of an ensemble-

based ML model make a significant improvement to the overall performance

➢ The machine learning SW propagation delay can be described as

       

      Here 𝑓𝒟  describes the ML algorithm trained on the data set 𝒟 and  x contains feature vectors

➢ We follow Baumann and McCloskey [2021]’s method, where we use Bayesian optimization 

     based on the Gaussian process                

              

        

Summary and Conclusion
▪ The statistical approach conducts cross-correlation analysis to estimate SW propagation times and provides large sets of input and target variables

▪ We use multiple spacecraft pairs at L1 and near-Earth locations to train, validate, and test machine learning models

▪ The ML algorithm using these data sets helps to specify and predict  (1) the propagation time from L1 monitors to a given location upstream or at the bow shock and (2) to forecast near-Earth SW 

conditions

▪ The obtained propagation times are then compared to OMNI. Factors that limit the OMNI accuracy are also examined

▪ The root mean squared error (RMSE) of RF is 1.3% and of GB is 1.7%, where the RMSE of MLP is 2.2%

▪ The ML model predicted delays are compared with the predictions of flat delays and OMNIWeb-provided delays. In the selected 100 cases, we found that about 10% of ML predictions result in a better 

match between the IMF features at the L1 point and those near-Earth, compared to the delay provided by OMNIWeb

Application of Machine Learning Models in Predicting the Solar Wind 
Propagation from L1 monitors to the Earth’s Bow Shock
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Methodology to Obtain SW Propagation Time
▪ To trace SW propagation, we perform the analysis on IMF clock angle:

 𝜃 = 𝑡𝑎𝑛−1(𝐵𝑦/𝐵𝑧) 

▪ We segment ACE in 20 minutes window and find the MMS data that best 

match the ACE data by sliding along 2 hours of data incrementing 1 

minute at a time

                                                                

                                          

- To correlate IMF clock angle at L1 and near-Earth and obtaining 

propagation times, the algorithm computes

1. Cross-correlation (CC) coefficient

2. Plateau-shaped Magnitude Index (PMI)

3. Dimensionless Measures of Average Error (NDME)

- Our analysis uses, Weighted CC = CC*PMI 

                       when max(CC) > 0.5 and NDME > 0.4

Δ𝑡𝑀𝐿 = 𝑓𝒟(𝑥)

Orbits of ACE, WIND, DSCOVR, MMS, CLUSTER and GEOTAIL

Data sets of input and target variables using multiple spacecraft pairs at L1 and near-

Earth locations 

▪ The automated algorithm allows us to 

provide large sets of input and target 

variable using multiple spacecraft pairs at 

L1 and near-Earth location

▪ The algorithm facilitates easy access to 

data and the data sets can be used by 

anyone

▪ The developed algorithm generates a big 

dataset of 53880 events in the period from 

December 22, 2017, to April 30, 2024

Statistical vs OMNIWeb Delay 

OMNIWeb Delay  →       Propagation delay 

calculated at a NE Monitor’s location using 

OMNIWeb provided method and data

Stat Delay →    Propagation delay 

estimated using our  statistical approach/ 

correlation method

                                                                

                                          

➢ Correlation coefficient values are calculated 

between Bz at L1 and shifted Bz using SW delays 

at the near-Earth Location

➢ Bz is shifted using OMNI delay and statistical 

delay

➢ Delay difference =|Estimated delay - OMNI delay| 

➢ For selected cases, ML predictions shows better 
match than using OMNIWeb predictions

➢ The ML model predicted delay agrees well with the statistically estimated delay with an 

uncertainty of ±5 minutes

➢ To optimize the hyperparameter and to assess the ML model performance, we employ a ten-fold 

cross validation approach

➢ Feature importance of the ML model and Correlations 

between feature vectors and the target SW delay are 

investigated. 𝑣𝑥 has the highest feature ranking

➢ Validation: ML model predicted delays are compared 

with the results of physical models: 1) Flat Delay and 

2) OMNI shifted delay using Phase Front Normal

➢ Evaluation of Deep Neural Network on  test set 

results

➢ Evaluation of Ensemble method on test set results

➢ The ensemble methods outperformed the LSTM  and MLP despite averaging out the time series 

information from the features

➢ The result can be explained by feature space being lower in dimension and training data being 

small as compared to other tasks such as language modeling where feature dimensions and 

amount of training data are very high and the LSTM model outperforms ensemble methods

➢ ML predictions provide similar results for he fast and slow solar wind
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