ABSTRACT SCENE GRAPHS SPECIFYING AND MONITORING SPATIAL PROPERTIES OF AUTOMATED DRIVING FUNCTIONS

Ishan Saxena^a, Bernd Westphal^a, Martin Fränzle^b

a: German Aerospace Center (DLR) e.V., Oldenburg, Germany b: Carl von Ossietzky University of Oldenburg, Germany

Seventh International Workshop on Formal Methods for Autonomous Systems (FMAS 2025)

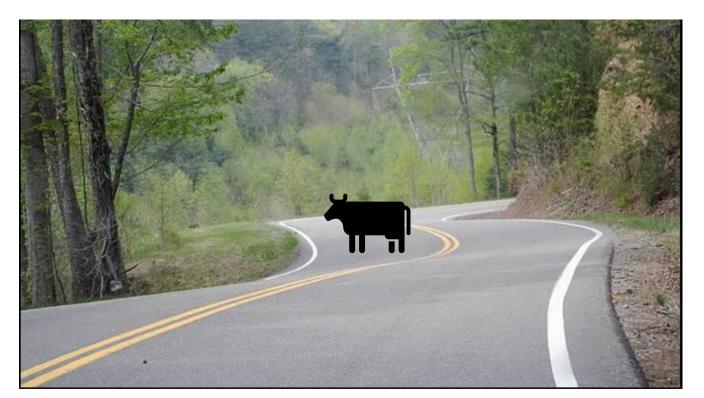
Outline

- Motivation
- Research Questions
- Abstract Scene Graphs (ASGs)
 - Syntax
 - Formalization of spatial properties
- Runtime Monitoring using ASGs
- Future Work

- Automatic validation of Automated Driving
 Functions is desired to ensure safety during their operation
- Requires formalized, machine-readable system properties

Credit: https://www.futureelectronics.com/blog/article/understanding-autonomous-vehicle-safety/

Example spatial property

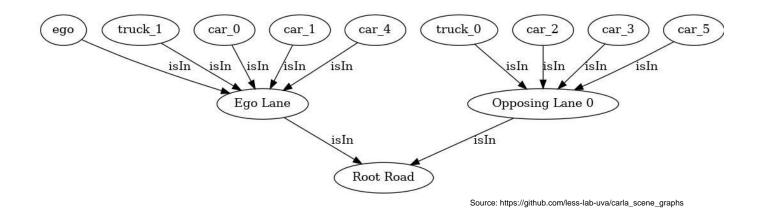

• Automated vehicle should stop at a safe distance if there is an obstacle in front.

Example spatial property

• Automated vehicle should stop at a safe distance if there is an obstacle in front. But here?



- Formalization of spatial properties in the automotive domain is challenging
- Because, such spatial properties are:
 - Textual
 - Traffic Rules and Regulations
 - Complex
 - Legal terminology
 - Multi-stakeholder knowledge
 - Vague
 - Rely on human intuition


- Certain visual formalisms in literature implicitly formalize spatial properties
 - E.g., using comparison of geometric coordinates of the objects
 - "vehicle *ego* is in lane *l*" is represented as: *l.yleft* < *ego.y* < *l.yright*
 - Limits their usage for use cases such as runtime monitoring
 - To check if vehicle is in lane, y-coordinates of lane are required

Scene Graphs

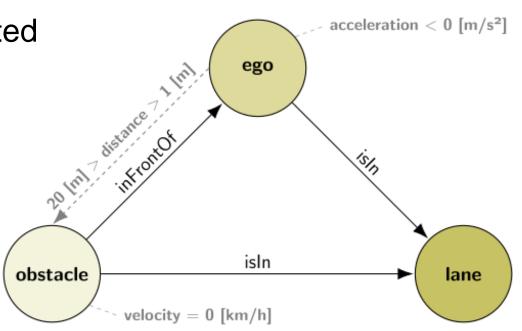
 Scene Graphs: represent entities present in a scene and their spatial relationships explicitly

- In the automotive domain, Scene Graphs have been used for:
 - Monitoring of safety properties [12]
 - Scene Understanding and Risk Assessment [8,9,10]

Research Questions

Q1: Can Scene Graphs be used to formalize spatial system properties occurring in automotive domain?

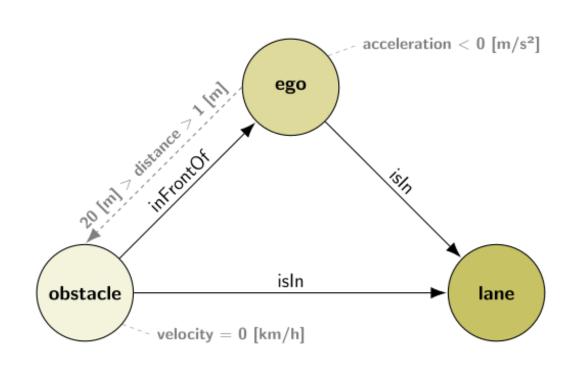
Q2: How can **Runtime Monitoring** be performed for spatial system properties formalized using **Scene Graphs**?


Abstract Scene Graph (ASG) formalism

ASGs build upon Scene Graphs

 Describe desired spatial relations between entities in a traffic scene

 Restrict the set of traffic scenes represented by a Scene Graph



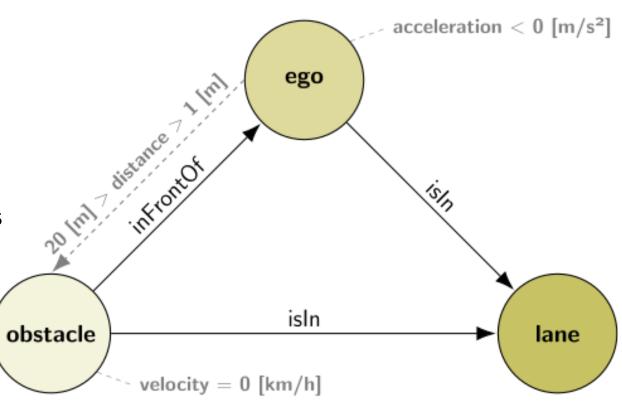
Abstract Scene Graph (ASG)

- ASG is defined over an Object Model
 - Object Model consists of a finite set of
 - Basic types,
 - Object classes, and
 - Relation types
- ASG = (G_A, D)
 - G_A is a directed heterogeneous graph
 - D is a set of predicates

Syntax of ASGs

• ASG =
$$(G_A, D)$$

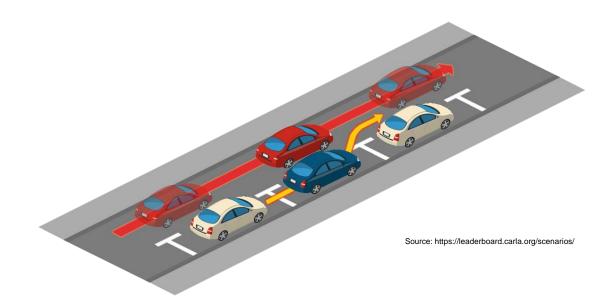
$$\bullet G_A = (V, E)$$


■ *V* : Finite set of typed nodes

Ego node must be present

• *E* : Finite set of typed directed edges

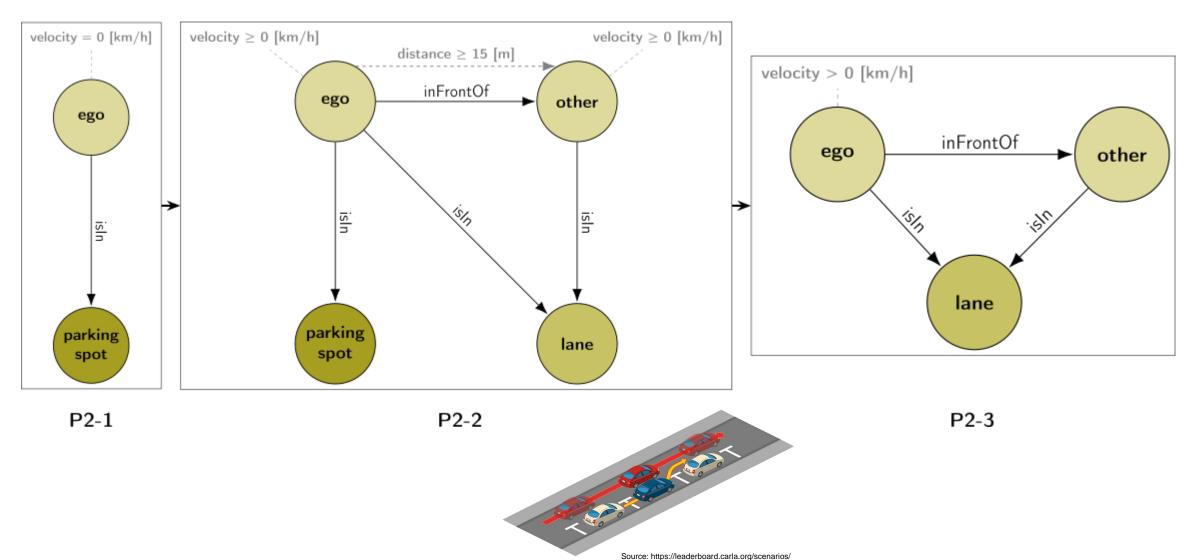
■ *D* : Finite set of predicates


Attribute and distance expressions

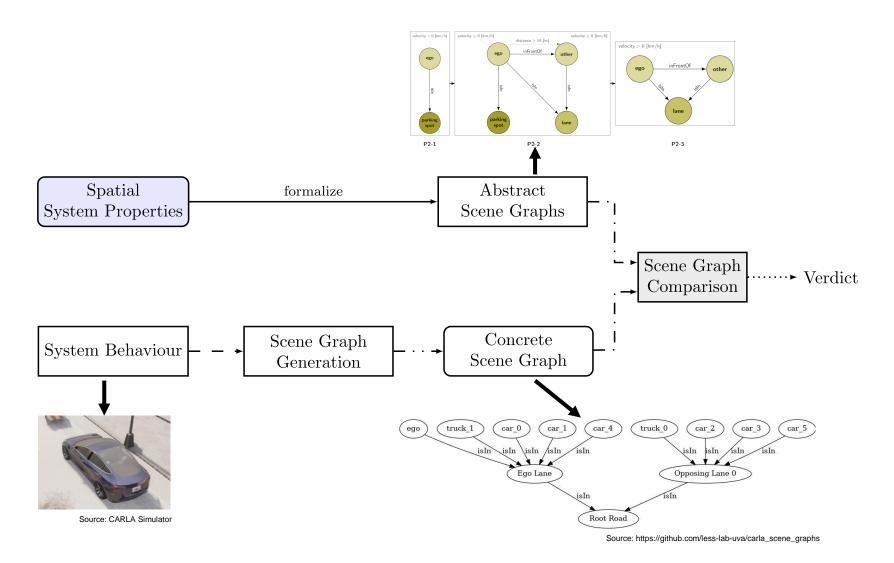
Motivating Example Scenario: Parking Exit

- "The ego-vehicle must exit a parallel parking bay into a flow of traffic safely"
 - Inspired from the NHTSA pre-crash scenario catalogue
 - Scenario = sequence of scenes

Formalization of spatial properties using ASGs



- "The ego-vehicle must exit a parallel parking bay into a flow of traffic"
- To formalize this property, we need to identify
 - Entities: Vehicle, Lane, Parking Spot
 - Scenes present in the above scenario:
 - P1-1 ego is standing still in the parking spot
 - P1-2 ego is turning into the driving lane next to the parking spot while maintaining a safe distance (at least 15 m) to the next vehicle coming from behind
 - P1-3 ego has joined the lane completely and is driving ahead


Formalization of spatial properties using ASGs

Runtime Monitoring using ASGs

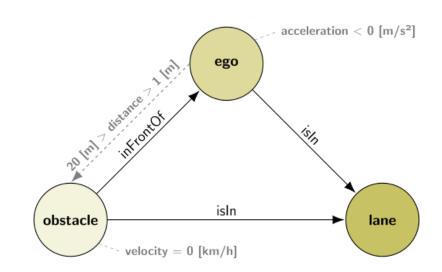
Scene Graph Comparison: Current approach

- Let ASG = (G_A, D) be an Abstract Scene Graph, CSG = G_C be a Concrete Scene Graph and G'_C be its subgraph
- We define CSG \vDash ASG \Leftrightarrow ($\exists G'_C : G'_C \cong G_A$) $\land (\rho_C \vDash D)$, where
 - G'_C is isomorphic to G_A
 - $\rho_{\mathcal{C}}$ contains the attribute values present in $G'_{\mathcal{C}}$
- Use of subgraph isomorphism to extract suitable subgraph of G_C
 - Computationally expensive!
 - But, here could be fine since we know at least one (ego) node

Scene Graph Comparison: Implemented algorithm

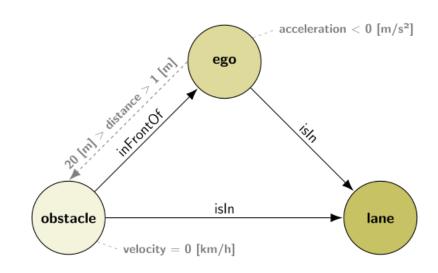

```
1: Input: ASG: (G<sub>A</sub>, D) and CSG: G<sub>C</sub> Output: Boolean verdict
   procedure SG COMPARISON(ASG, CSG)
       (exists, map) \leftarrow CHECK_ISOMORPHISM_VF2(G_C, G_A)
3:
       if exists is True then
 4:
          attr \leftarrow GET\_MAPPED\_ATTRIBUTE\_VALUES(map, ASG, G_C)
 5:
          for all predicate ∈ D do
6:
             pred verdict ← CHECK IF PREDICATE SATISFIED(attr, predicate)
 7:
             if pred verdict is False then
8:
                 verdict ← False ▷ If a predicate is not satisfied, CSG does not sat-
9:
                 isfy ASG
                 end procedure
10:
          verdict ← True
                                 ▷ If all predicates are satisfied, CSG satisfies ASG
11:
       else
12:
          verdict ← False
                                                    > No isomorphic subgraph exists
13:
       return verdict
14:
```

Future Work



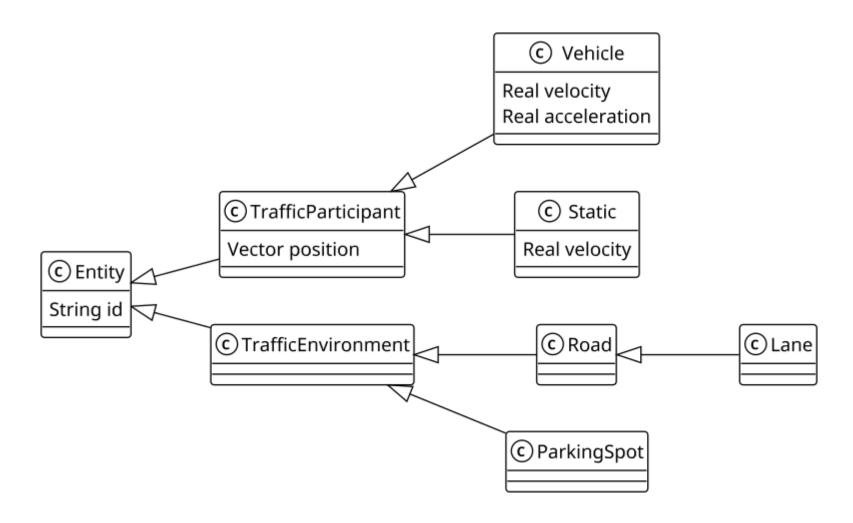
- Extension of ASG syntax to formalize more complex spatial properties
- Mapping of used Object Model to a suitable ontology
- Alternative Scene Graph comparison approach
- Applying ASGs in other transportation domains such as maritime

Thanks for your attention! Questions?



Takeaways

 Abstract Scene Graphs enable formalization of spatial properties of Automated Driving Functions in the automotive domain


References

- [1] Grundt, Dominik, et al. "Towards Runtime Monitoring of Complex System Requirements for Autonomous Driving Functions"
- [2] Neurohr, Christian, et al. "Fundamental Considerations around Scenario-Based Testing for Automated Driving"
- [3] Malawade, Arnav, et al. "roadscene2vec: A Tool for Extracting and Embedding Road Scene-Graphs"
- [4] Neurohr, Christian, et al. "Criticality Analysis for the Verification and Validation of Automated Vehicles"
- [5] Zipfl, Maximilian, et al. "Towards traffic scene description: The semantic scene graph."
- [6] Zipfl, Maximilian, et al. "Relation-based motion prediction using traffic scene graphs."
- [7] Zipfl, Maximilian, et al. "Traffic Scene Similarity: a Graph-based Contrastive Learning Approach."
- [8] Monninger, Thomas, et al. "Scene: Reasoning about traffic scenes using heterogeneous graph neural networks."
- [9] Yu, Shih-Yuan, et al. "Scene-graph augmented data-driven risk assessment of autonomous vehicle decisions."
- [10] Malawade, Arnav Vaibhav, et al. "RS2G: Data-Driven Scene-Graph Extraction and Embedding for Robust Autonomous Perception and Scenario Understanding."
- [11] Knyazev, Boris, et al. "Understanding attention and generalization in graph neural networks."

Object Model Class Diagram

Scenario descriptions in Scenario-based Testing of Automated Vehicles

Neurohr et al, Criticality Analysis for the Verification and Validation of Automated Vehicles, IEEE Access

• non-formal, human readable • behavior-based description of a traffic scenario • possibly containing a visualization **Functional** • formalized, machine readable, and declarative description (i.e. constraints on the happenings) • closely tied to an ontology (or rather family of ontologies) Abstract • efficient description of relations (e.g. cause-effect). • parameterized representation of a set of scenarios, where • influencing factors are described by means of parameter ranges and distributions Logical • enables parameter variation • a single scenario, describing exactly one specific scenery and chain of events with fixed parameters • can, for example, be written as OpenDRIVE + OpenSCENARIO Concrete

Imprint

Topic: Abstract Scene Graphs: Specifying and Monitoring Spatial

Properties of Automated Driving Functions

Date: 2025-11-17 (YYYY-MM-DD)

Author: Ishan Saxena

Institute: Systems Engineering for Future Mobility (SE)

Image sources: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated