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Abstract—Harmful cyanobacterial blooms (CyanoHABs) pose
a growing threat to human health and aquatic ecosystems,
making early detection and monitoring critical. Current satellite-
based approaches, such as the Cyanobacteria Assessment Net-
work (CyAN) using the Sentinel-3 OLCI sensor, are optimized
for chlorophyll a but are limited by a coarse 300 m pixel size.
While Sentinel-2 lacks the spectral specialization of Sentinel-
3, it provides finer sampling (10-60 m), enabling monitoring
of smaller lakes and rivers if suitable models are applied.
Here, we present a method to generate a large, geographically
diverse CyanoHAB dataset by aligning CyAN data with Sentinel-
2 imagery, resulting in 938,607 images and 1.86 billion labeled
pixels across the continental United States. Using this dataset,
we train a deep learning model that predicts CyanoHAB risk
levels with 86.2% accuracy. Bands 4 (665 nm) and 5 (705 nm)
are most influential, but randomizing any of 11 bands reduces
accuracy by at least 10% in one or more classes, demonstrating
the importance of the full spectral range. Both the dataset and
code are publicly available (https://zenodo.org/records/14230064;
https://github.com/cschloer/hab_detection_s2).

Index Terms—Machine Learning, Cyanobacteria, Harmful
Algae Blooms, Multispectral Imagery, Satellite Imagery.

I. INTRODUCTION

YANOBACTERIA are a group of photosynthetic bacteria

commonly found in aquatic and terrestrial environments.
They are commonly called blue-green algae but are distinct
from true algae, which are eukaryotes [10], [30]. A cyanobac-
terial bloom is a phenomenon in which cyanobacteria multiply
rapidly in response to favorable environmental stimulus, such
as excess nutrients or warmer temperatures [33]. Blooms are
naturally positively buoyant and can grow large enough to be
seen from space, as illustrated in Figure 1.

Cyanobacterial blooms threaten human and ecosystem
health through cyanotoxin production (a class of toxins pro-
duced by 25-75% of cyanobacterial blooms [2]) and by
depleting dissolved oxygen, leading to the formation of dead
zones [7]. The economic cost of harmful algal blooms (HABs)
in the United States is conservatively estimated at an average
of $50 million per year due to impacts on public health,
commercial fisheries, and tourism [32]. The term HAB refers
more broadly to blooms caused by both cyanobacterial and
non-cyanobacterial organisms.

Various methods are employed for detecting and predicting
HABs. In situ approaches include measuring water clarity

Fig. 1. A cyanobacterial bloom seen from space. Natural color image from
Landsat 8 of Lake Erie [23] (Credit: USGS EROS).

with a Secchi disk [1], quantifying chlorophyll a concen-
trations in water samples [1], and genome sequencing [9].
Although accurate, these approaches are labor-intensive and
lack scalability for regional or national monitoring. In contrast,
remote sensing using buoys, aircraft, or satellites to measure
the spectral signature of cyanobacteria provides an efficient
means of obtaining coarse but large-scale estimates of HAB
occurrence [1], [11], [12], [17], [34].

A. Cyanobacteria Assessment Network (CyAN)

In 2015, a collaboration between the U.S. Environmen-
tal Protection Agency (EPA), the National Aeronautics and
Space Administration (NASA), the National Oceanic and
Atmospheric Administration (NOAA), and the U.S. Geo-
logical Survey (USGS) resulted in the development of the
Cyanobacteria Assessment Network (CyAN), a software tool
that uses satellite imagery to detect and monitor cyanobacterial
blooms [28]. The U.S. Army Corps of Engineers (USACE)
joined the collaboration in 2023 [6]. The project includes a
web and mobile application for visualizing data and a data
repository for downloading CyanoHAB observations.

Historical data are derived from the ESA MERIS sensor
(2002-2012). For more recent data, the OLCI sensors onboard
Sentinel-3A (2016-present) and Sentinel-3B (2018-present) are
used to generate a cyanobacteria concentration digital number
estimate (CyanoHAB value) ranging from 0 (no CyanoHAB)

0000-0000/00$00.000c25® (i CyanoHAB) with a daily temporal resolution.
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The algorithm used to generate the CyanoHAB values is
based on the method proposed by Wynne et al. [35], which
utilizes three MERIS bands in the red to near-infrared region
of the electromagnetic spectrum, together with meteorological
variables such as air temperature and wind patterns, to detect
CyanoHABs [25], [29].

The 300 m pixel size of Sentinel-3 limits the effective
resolution of CyAN predictions. Small water bodies are often
represented by mixed pixels containing both water and land,
which reduces accuracy.

Sentinel-2 provides finer spatial sampling (10-60 m de-
pending on band), enabling more detailed mapping of inland
water bodies. However, the spectral configuration of Sentinel-
2 differs from that of Sentinel-3. In particular, Sentinel-2 has
fewer bands in the red and red-edge regions, reducing its
direct suitability for use with the Wynne et al. [35] algorithm
employed in CyAN.

B. Improving the Spatial Resolution of CYAN

This study investigates the use of machine learning, specif-
ically convolutional neural networks (CNNs), to predict
cyanobacterial concentration from Sentinel-2 satellite imagery.
Because Sentinel-2 offers finer sampling than Sentinel-3,
the task can be formulated as super-resolving low-resolution
reference data. Specifically, the reference data (derived from
Sentinel-3) have a pixel size of 300 m, whereas the Sentinel-2
input data range from 10 m to 60 m.

To improve the spatial resolution of CyAN predictions, the
model is trained using Sentinel-2 spectral data. All Sentinel-2
bands are resampled to a common resolution of 20 m. This
resolution is selected because Bands 5 and 6 (705 nm and
740 nm), which have been shown to be particularly relevant for
chlorophyll detection, are natively sampled at 20 m. Further-
more, downsampling reduces noise, whereas upsampling may
amplify noise; therefore, minimizing the number of upsampled
bands is advantageous. Unifying the data at 20 m requires
upsampling only three bands (1, 9, and 10), downsampling
five bands (2, 3, 4, 8), and retaining six bands (5, 6, 7, 8a, 11,
12) at their native resolution.

The CyAN reference data are interpolated to 20 m to match
the Sentinel-2 input resolution. Discrete CyanoHAB values (0-
253) are aggregated into categorical classes for training. The
model is trained using the paired input and reference data.
Incorporating spatial context, which is not considered in the
original CyAN algorithm, should further improve predictive
performance.

This large-scale, automatically generated dataset for
CyanoHAB detection substantially increases both geographic
and temporal diversity relative to existing datasets. By align-
ing CyAN risk assessments with temporally and spatially
corresponding Sentinel-2 imagery, a comprehensive training
resource is created for high-resolution modeling. The dataset
comprises 938,607 images with 1.86 billion labeled pixels
across the continental United States. Both the dataset and
the code used to generate it are publicly available, supporting
reproducibility and enabling further research in this domain.
Together, the automated data generation approach and the

dataset itself represent a second key contribution of this work,
complementing the development of the deep learning model.

II. RELATED WORK

Numerous recent studies have explored the use of satellite
imagery for harmful algal bloom (HAB) detection, with a
growing emphasis on deep learning methods.

Traditional machine learning approaches include Joshi et
al. [15], who applied a Random Forest classifier to predict
four HAB indicators, including chlorophyll a, from Sentinel-
3 imagery and ranked spectral bands by importance. Ca-
ballero et al. [3] developed reflectance algorithms using in
situ measurements from the Iberian Peninsula and compared
the spectral capabilities of Sentinel-2, Sentinel-3, and Landsat-
8, concluding that the finer sampling of Sentinel-2 makes it
more suitable for inland HAB monitoring.

Deep learning methods have been investigated extensively.
Hill et al. [14] combined CNNs and long short-term memory
(LSTM) networks to detect HABs in Florida using ground-
truth data from the Florida Fish and Wildlife Conserva-
tion Commission (2003-2018). The data were binarized into
HAB/no-HAB classes, converted into spatiotemporal “data
cubes,” aligned with MODIS-Aqua and Terra imagery, and
used to train the model, which achieved 91% accuracy. Yan
et al. [36] developed a U-Net model for CyanoHAB detection
in Chaohu Lake, China, using training labels derived from a
floating algae index and expert visual interpretation, outper-
forming three alternative extraction methods. Zhao et al. [38]
introduced a U-Net with improved channel attention and a
modified loss function for detecting HABs in the East China
Sea using HY-1D CZI imagery (50 m resolution), outperform-
ing five other approaches despite the sensor’s limited spectral
coverage. Cui et al. [5] proposed a deep learning-based super-
resolution method for detecting ocean green tides in the Yellow
Sea, using Gaofen-1 (16 m) and MODIS (250 m) imagery
and achieving an average accuracy of 93.13% across 10 test
images.

Alternative labeling and clustering strategies have also been
explored. Medina-Lépez et al. [22] used unsupervised cluster-
ing of satellite imagery combined with human expert labeling
to monitor macroalgal blooms in Spain’s Mar Menor lagoon,
achieving >98% accuracy with a Classification and Regression
Tree (CART) model.

Finally, Niroumand-Jadidi and Bovolo [26] proposed a
neural network to generate a virtual orange band (~620 nm)
for Sentinel-2 and Landsat imagery. Because phycocyanin
exhibits a strong absorption near 620 nm, this virtual band
can improve the differentiation of cyanobacteria from other
phytoplankton.

Building on these efforts, the present study employs
Sentinel-2 imagery and deep learning for CyanoHAB detec-
tion. Unlike prior work that relies on limited in situ measure-
ments or manual labeling, we automatically generate a large
and geographically diverse dataset using the CyAN algorithm,
resulting in 938,607 images with 1.86 billion labeled pixels
across the continental United States. Its size and diversity
enable spatially independent training and test sets, mitigating
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Fig. 2. Workflow for dataset creation and model training. Relevant CyAN
and Sentinel-2 images are downloaded, divided into matching subtiles, filtered
based on HAB occurrence, and masked for clouds and land. The resulting
dataset is used to train and evaluate a semantic segmentation model that
produces high-resolution HAB estimates.

data leakage, and allow all Sentinel-2 bands to be used as
input, facilitating a detailed analysis of spectral contributions
to CyanoHAB detection.

III. METHODS

This section details the methodology employed in this study.
Each component of the workflow, illustrated in Figure 2,
is described in the following subsections, including dataset
construction, model architecture and training configuration,
and the loss function design.

A. Dataset

The dataset is created using Sentinel-2 multispectral images
(12 bands) as features and v4 CyAN images as reference. The
CyAN HAB detector has covered the entire continental USA
and Alaska daily since 2016 [25]. Sentinel-2 revisits every
location on the planet every 3-5 days [8]. Given the vast
temporal and spatial scale of available data, it is necessary
to limit the number of scenes in the dataset. Furthermore,
the majority of lakes forecasted by CyAN are relatively free
of CyanoHAB. A naive dataset would thus have significant
class imbalance, potentially leading to problems during train-
ing. Therefore, the dataset is limited to scenes that contain
interesting features, namely scenes that contain CyanoHAB
above a given threshold.

CyAN divides the USA into tiles, as illustrated in Figure 3.
An automated process queries every CyAN image available
for a given time period and CyAN tile. Each CyAN tile is
downloaded separately and divided into 1600 subtiles, each
50 x 50 pixels large, corresponding to a 15 x 15 km area. Each
subtile is evaluated for inclusion in the dataset separately. First,
it is confirmed that the subtile contains enough water pixels
to be of interest. CyAN images have a built-in land mask,
i.e., land pixels are labeled with 254. If more than 90% of
a subtile’s pixels are land, the subtile is excluded from the
dataset.

Next, the number of CyanoHAB occurrences in the sub-
tile is counted. A CyanoHAB occurrence is defined as any

Envisat and Sentinel-3 (300m) U.S. Satellite Tiles

Columns 1 o

Rows,

1 21 31 4.1 s 61 7.1 8_1 91
12 2 32 42 52 6 2 72 IT 92
1.3 23 33 43 53 6.3 73 83 23
14 24 34 44 54 64 74 84 94
)
3 3

Fig. 3. The CyAN tile designation in the continental USA [24].

CYAN HAB Product, Visualization of Scenes

Fig. 4. Example of subtile selection in CyAN region 6_2. Black areas are
cloud-covered and not visualized. Areas without any squares do not contain
enough water to be considered. Areas with black squares do not contain
enough CyanoHAB to be included. Red squares represent tiles selected for
training, blue squares are tiles selected for testing. The reference image is the
CyAN image from the sampling period with the least cloud cover and does
not necessarily represent the mean CyanoHAB values for each subtile.

CyanoHAB 1level between 1 and 253. Values of 0 (no
CyanoHAB) and 255 (clouds) are both considered as no
CyanoHAB. The percentage of CyanoHAB in all water pixels
(ignoring land pixels) is then calculated across the entire time
period. If more than 10% of the water pixels in a subtile
contain CyanoHAB, the subtile is added to the dataset. The
time period used is from July 1, 2019, to August 29, 2019,
and the chosen CyAN tiles are 6_2, 6_5, 7_2, 7_5, 8_3 (see
Figure 3). The time period is chosen because CyanoHAB
levels are highest in the summer season. The CyAN tiles are
chosen because they contain lakes identified as CyanoHAB
areas of interest by NOAA domain experts during the project
planning phase. See Figure 4 for a visualization of the subtile
selection process.

This method results in 183 subtiles selected from the 8000
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available in the 5 CyAN tiles. These chosen subtiles are
then divided into train and test sets. To prevent data leakage
between sets, where adjacent areas could appear in both train
and test sets, an iterative region-growing algorithm is used.
First, a subtile is randomly assigned to test or train based
on the desired ratio. Then, all adjacent chosen subtiles are
recursively assigned to the same set, ending once there are no
more adjacent subtiles available. This process is repeated until
all selected subtiles are assigned. The ratio used is 70% train
and 30% test, though the stochastic nature of the method leads
to a slightly different final ratio.

The next step finds the corresponding Sentinel-2 products.
Data from January 1, 2019, to December 31, 2020, is used.
Data after 2022 is excluded due to changes in European Space
Agency (ESA) processing. The dataset is limited to two years
because this yields sufficient data for the scope of this paper.
The cloud cover percentage is restricted to 0-10% to minimize
downloading data with too much occlusion. Applying these
filters results in a total of 1,789 Sentinel-2 products across all
subtiles and dates, with some products repeated because they
completely cover multiple subtiles.

The Sentinel-2 Level-2A products are downloaded and
converted into single GeoTIFF files with all bands unified
at 20 m resolution. Bands not already at 20 m resolution
(e.g., Band 9 at 60 m or Band 2 at 10 m) are resampled
to 20 m using simple nearest-neighbor interpolation. Next,
the corresponding CyAN tile is downloaded if not already
available from the previous subtile selection step. Since CyAN
HAB images are 300 m resolution, they are upsampled to
20 m using bilinear interpolation. The bilinear method was
chosen by NOAA domain experts after visually comparing
interpolation results from multiple methods.

Once both files are at 20 m resolution, they are cropped to
fit the bounding box of the relevant subtile. The CyAN image
already contains a mask for cloud and land cover. However, the
Sentinel-2 image is taken at a different time of day, meaning
cloud cover may differ. Furthermore, the land mask is designed
for 300 m resolution. Upsampling to 20 m may cause some
pixels to be misclassified as land or water. The former is not
an issue, as land pixels are ignored. The latter is problematic,
as pixels incorrectly labeled as water may contribute noise
during training and testing.

To address the cloud mask problem, a simple cloud detec-
tion algorithm proposed by Zhai et al. [37] is used. It first
computes two cloud indices CI; and Cls:

Bs +2- B

Cl= ———— 1

' = B, 1 Bt B (L
B + B3 + By + Bg + By + Bia @)

6 b

where B; refers to band index i. C'I; and CI5 are then used
to determine if a pixel is a cloud based on the thresholds T}
and T5:

Cly =

(|CIl — 1| < Tl) or (CIQ > TQ), 3)

where values 77 = 1 and 15 = 0.1 are used as recommended
by Zhai et al. Equation 3 is applied to all pixels in the
Sentinel-2 image, and the resulting cloud-labeled pixels are

Sentinel 2 MSI 2A product CYAN HAB Product
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Fig. 5. Demonstration of the cloud and land filter. Top left: original Sentinel-2
image; top right: corresponding CyAN HAB product. Bottom left: cloud and
land filter, with clouds and land in black. Bottom right: CyAN HAB product
with cloud and land filter overlay, with black pixels corresponding to “no
data” (clouds or land). The clouds are clearly shown as black spots on the
lake, and the land pixels are clear when comparing the shoreline with that of
the original CyAN HAB product.

added to the CyAN mask. Notably, cloud shadows are not
detected and therefore remain unmasked.

More sophisticated cloud detection algorithms exist, such
as Sen2Cor [21], Fmask [27], and MAJA [13], which use
multi-temporal analysis or advanced machine learning meth-
ods to improve cloud and shadow detection. However, these
approaches are significantly more computationally intensive
and can introduce delays when processing large-scale datasets
such as ours. Given that the focus of our work is on spectral
and spatial feature contributions to CyanoHAB detection rather
than optimizing pre-processing pipelines, the method of Zhai
et al. is chosen for its computational efficiency, reproducibility,
and adequate performance for reducing noise in this context.

To mitigate the land mask problem, a simple land detection
algorithm is used:

(Bnir > Bg) and (Bswir > Ba) 4

The spectral signature of water absorbs NIR light and
reflects green light; therefore, Band 8A (Byrr) is compared
with Band 3 (Bg, green). To avoid false positives caused by
dense vegetation in water, Band 11 (Bgwr) is also compared
with Band 3, since middle-infrared light is absorbed strongly
by water but not by vegetation [16]. This equation is applied
to all pixels in the Sentinel-2 image, and the resulting land-
labeled pixels are incorporated into the CyAN mask.

This spectral thresholding method is chosen for its sim-
plicity, efficiency, and robustness across diverse regions. More
advanced approaches (e.g., NDWI-based segmentation or ma-
chine learning classifiers) require regional tuning or extra
training data, reducing scalability.

Since misclassified cloud and land pixels are rare, these
lightweight methods sufficiently minimize noise during train-
ing. See Figure 5 for a demonstration of the cloud and land
filter.
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The last step divides each subtile into 64 x 64 patches. This
is done by iterating through the image from the top left to
the bottom right with a stride of 64 (no overlap), cropping
the Sentinel-2 and CyAN images into geographically identical
64 x 64 images. Patches containing more than 5% “no data”
pixels are discarded.

B. Model and Training Setup

The semantic segmentation model is based on a DeepLabv3
architecture with a ResNet-18 backbone. To accommodate the
multispectral input data, the first convolutional layer of the
encoder is modified to accept 12 input channels instead of
the standard three. Input data are normalized per channel and
model weights are initialized randomly.

Given the highly imbalanced distribution of CyanoHAB
concentration values, the continuous range [0,253] is dis-
cretized into three risk levels:

e Class 1 (low risk): values 0-99,
e Class 2 (moderate risk): values 100-199,
o Class 3 (high risk): values 200-253.

This binning both reflects domain-relevant risk categories and
mitigates the problem of underrepresented high-concentration
values in the dataset. The network’s final classification layer
is therefore configured to output three channels corresponding
to the three classes.

During each training epoch, images are randomly flipped
horizontally and vertically with a probability of 50%. Random
cropping and blurring were omitted, as preliminary experi-
ments indicated that they had minimal impact on overfitting
for this model and dataset.

The model is trained using the Adam optimizer [18] with
cross-entropy loss (see Section III-C). Hyperparameters, in-
cluding the model architecture, learning rate, batch size, and
weight decay, are selected via three-fold cross-validation on
a subset of 10,000 samples. The final selected values are a
learning rate of 0.0001, a batch size of 128, and a weight
decay of 0.01.

C. Loss Function

The loss function used is the Cross Entropy Loss with
additional custom pixel distribution weighting.

Pixel distribution weighting is necessary because of the
CyanoHAB value imbalance. For example, CyanoHAB level
225 is about 100,000 times less likely to occur in the training
set than CyanoHAB level O (see Figure 6). Therefore, the
contribution of each pixel to the loss must be weighted
according to the distribution of its label value. Furthermore,
this weighting cannot be applied only at the class level,
as CyanoHAB values near class boundaries have similar
distributions but might otherwise be assigned very different
weights based on the overall class frequency. This could
bias the model toward misclassifying edge pixels into the
neighboring class with a lower distribution, since the penalty
for misclassifying the rare class would be disproportionately
higher than that for misclassifying the common class, even
though their edge distributions are similar. Pixel distribution
weighting is performed via:

Pixel Count Fraction by HAB Level
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Fig. 6. Pixel count fraction by CyanoHAB level for the full dataset as well as
the train and test subsets. Fractions are relative to the size of each set. Note
that the y-axis uses a logarithmic scale.
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where I; is the loss for a specific pixel ¢, D(:) is a
function that returns the distribution frequency for a spe-
cific CyanoHAB value (see Figure 6), and v; is the actual
CyanoHAB value for pixel ¢. The numerator uses the distri-
bution of CyanoHAB value 0 (the most common value) to
normalize all other weights.

IV. RESULTS
A. Dataset

The dataset generation process yields a total of 938,607
image pairs. Across these images, approximately 1.86 billion
usable pixels (excluding cloud- and land-masked areas) are
available. These pixels are distributed across the three risk
classes at ratios of 89.51%, 10.34%, and 0.15% for low
(0-99), medium (100-199), and high (200-253) risk levels,
respectively. The proposed train-test split procedure, which
enforces geographic disjointness, produces an approximately
80/20 split. The training set contains 776,864 image pairs,
with class distributions of 89.90%, 10.04%, and 0.06% for
the low, medium, and high risk classes, respectively. The
test set contains 161,743 image pairs with corresponding
distributions of 87.34%, 12.00%, and 0.67%. See Figure 6
for a visualization of the pixel count fraction by CyanoHAB
level for each subset and for the entire dataset.

Figure 7 presents the mean spectral signature of each risk
class across all pixels in the test set.

B. Model Performance

Figure 8 shows a visualization of the loss throughout
training.

The model achieved 88.29% accuracy on low-risk, 82.76%
accuracy on moderate-risk, and 87.86% accuracy on high-risk
CyanoHAB. The model very rarely misclassifies by more than
one class: when the true label is low-risk, it predicts high-risk
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Fig. 7. Mean spectral signature of each risk class across all pixels in the
test set. Vertical lines indicate the Sentinel-2 spectral bands. The plotted
reflectance values correspond to the post-processed inputs used for model
training.
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Fig. 8. Training and test loss over 50 epochs. Semi-transparent lines represent
raw loss values, while opaque lines show a smoothed version.

TABLE 1
METRICS FOR EACH CYANOHAB RANGE ON THE TEST DATASET.

[CyanoHAB Range [[  0-99 [ 100-199 | 200-253 [ Average |
Accuracy 0.8829 0.8276 0.8776 0.8627
Precision 0.9811 0.4737 0.4613 0.6387
Recall 0.8829 0.8276 0.8776 0.8627
Specificity 0.8721 0.8830 0.9954 0.9168
F1-Score 0.9294 0.6026 0.6047 0.7122

only 0.02% of the time, and when the true label is high-risk,
it predicts low-risk only 0.09% of the time. See Figure 9 for
the confusion matrix. For a detailed view of performance at
each individual CyanoHAB level, see Figure 10.

Across all classes on the test set, the average precision is
64%, the average recall is 86%, the average specificity is 92%,
and the average Fl-score is 71.22% (see Table I).

Figure 11 shows a qualitative example of the model’s
performance on a selected image.
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Fig. 9. Confusion matrix showing the fraction of predictions for each class.
The y-axis represents the predicted label, and the x-axis represents the actual
label. Percentages are normalized along the x-axis.
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Fig. 10. Per-class performance across the CyanoHAB index on the test set.
Thick opaque lines represent correct classifications, while transparent lines
represent misclassifications. The sharp drops near the right end of the x-axis
correspond to CyanoHAB levels not represented in the training set.
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Fig. 11. Lake Winnebago results. Top left: actual CyanoHAB values.
Top right: actual values converted into three classes. Bottom right: model
predictions. Bottom left: difference map between ground truth and predictions.
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V. DISCUSSION
A. Model Performance

The model’s performance meets our expectations. We ini-
tially set a benchmark goal of 80% accuracy, which the model
surpasses with an average accuracy of 86% (see Table I).
Recall and specificity are also strong, with averages of 86%
and 92%, respectively. Notably, the specificity for CyanoHAB
levels 200-253 (high risk) is 99.54%, which is particularly
important for CyanoHAB monitoring. This means that when
the model predicts a pixel is not high risk, we can be highly
confident that this classification is correct.

The weakest metric is precision. While CyanoHAB 0-99
(low risk) achieves a precision of 98.1%, the precision for
moderate-risk (100-199) and high-risk (200-253) classes is
much lower, at 47.4% and 46.1%, respectively. This result can
be attributed to the extreme class imbalance in the dataset. As
shown in the middle-right of Figure 9, pixels that are actually
moderate risk are predicted as high risk only 3.9% of the time.
However, because there are so many moderate-risk pixels, this
small percentage corresponds to 900,177 pixels - making up
52.16% of all pixels predicted as high risk. A similar pattern
occurs with low-risk pixels misclassified as moderate risk: only
12% of low-risk pixels are predicted as moderate risk, but this
represents 20,863,560 pixels, which exceeds the number of
correctly predicted moderate-risk pixels (18,879,988). In fact,
they account for 52.4% of all pixels predicted as moderate
risk.

Thus, precision is the poorest-performing metric for
moderate- and high-risk CyanoHAB. However, this outcome
is acceptable for the intended application of this model.
Ideally, all metrics would perform well, but if one metric must
underperform, low precision at higher risk levels is the most
tolerable. This model is designed to serve as a coarse, first-
layer “alarm” for CyanoHAB outbreaks. If the model flags a
potential outbreak, further analysis - such as in situ testing -
would typically follow before any management action is taken.

B. Band Contribution

Figure 7 shows that there is a clear difference in spectral
signature between the three classes. To measure the impact of
each spectral band, we tested model performance across the
entire test set while a given band was randomized. Because
the data are normalized to have a mean of O and a standard
deviation of 1, random values could be drawn from a standard
normal distribution without affecting the overall variance of
the input to the model. We also repeated the test by setting
each band to zero rather than randomizing it, and observed
similar performance, so we report only the randomization
results. Figure 12 shows the result of this experiment.

Previous studies on remote sensing of CyanoHAB, includ-
ing research that informed the development of the CyAN
algorithm, have shown that the red portion of the electromag-
netic spectrum is most relevant for detecting cyanobacteria.
Specifically, a spectral shape algorithm centered on the 681 nm
band from the European Space Agency’s Medium Resolution
Imaging Spectrometer (MERIS) and a similar band from the
Sentinel-3 satellite was used to create the CyanoHAB values
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Fig. 12. Model performance (from top to bottom: overall, as well as for
low-, moderate-, and high-risk class, respectively) after randomizing a single
band. Random values are sampled from a normal distribution with mean O
and standard deviation 1. Accuracy is reported as the mean per-class accuracy.
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TABLE II
CHANGE IN ACCURACY FOR EACH CLASS WHEN RANDOMIZING EACH
BAND. VALUES OVER ABSOLUTE VALUE 10% ARE BOLDED.

TABLE III
ACCURACY RESULTS FOR THE EXPERIMENT IN WHICH ALL PIXELS IN A
64 X 64 IMAGE WERE SET TO THE VALUE OF THE TARGET PIXEL.

[ CyanoHAB Range [[  0-99 [ 100-199 | 200-253 | Average | [ CyanoHAB Range [[  0-99 [ 100-199 | 200-253 | Average |
Band 1 +0.0454 -0.1253 -0.045 -0.0416 Original 0.8829 0.8276 0.8776 0.8627
Band 2 +0.0186 -0.1535 +0.0365 -0.0328 Experiment 0.8820 0.7697 0.7363 0.7960
Band 3 -0.0748 -0.0410 -0.0856 -0.0671 A -0.0009 -0.0579 -0.1413 -0.0667
Band 4 -0.1105 -0.5654 -0.1251 -0.2670
Band 5 -0.5728 -0.0921 -0.8616 -0.5088
Band 6 +0.0027 -0.3176 -0.0604 -0.1251 TABLE IV
Band 7 +0.0505 04435 | +00176 | -0.1251 ACCURACY RESULTS FOR THE EXPERIMENT IN WHICH ALL PIXELS OTHER
Band 8 -0.0372 -0.1455 -0.1840 | -0.1222 THAN THE TARGET PIXEL WERE REPLACED WITH RANDOM VALUES
Band 8a -0.3469 -0.064 -0.0108 | -0.1406 SAMPLED FROM A NORMAL DISTRIBUTION WITH MEAN 0 AND STANDARD
Band 10 +0.0399 -0.1132 +0.0079 -0.0218 DEVIATION 1.

Band 11 +0.0706 -0.2833 -0.0015 -0.0714

Band 12 +0.0493 -0.1961 +0.0045 -0.0474 l CyanoHAB Range H 0-99 [ 100-199 [ 200-253 [ Average ]
Original 0.8829 0.8276 0.8776 0.8627
Experiment 0.9985 0.0015 0.0000 0.3333
A 0.1156 -0.8261 -0.8776 -0.5294

that serve as reference data for our model. That spectral shape
algorithm uses the 665 nm, 681 nm, and 709 nm bands [4],
[31], [34]. Although Sentinel-2 data do not have as high a
spectral resolution within the red region, Band 4 (665 nm) and
Band 5 (705 nm) are closest to the bands used in the CyAN
algorithm. Therefore, the poor model performance observed
when these two bands are removed, as shown in Figure 12, is
expected.

Figure 12 and Table II show how the results vary by
class. Interestingly, the contribution of individual bands differs
significantly between classes. Both low-risk and high-risk
classes suffer significant performance drops when Band 5 is
removed, whereas moderate risk is comparatively unaffected.
Conversely, moderate-risk performance depends strongly on
Band 4. High risk also relies on Band 8 (842 nm), while low
risk relies more on Band 8A (865 nm). Moderate risk, which
has the lowest accuracy among the three classes, appears to de-
pend on a wider range of bands, as its performance decreases
by more than 0.1 when Bands 1 (443 nm), 2 (490 nm), 6
(740 nm), 7 (783 nm), 8, 9 (940 nm), 11 (1610 nm), and
12 (2190 nm) are removed. Interestingly, removing almost the
same set of bands (1, 2, 6, 7, 9, 11, 12) slightly improves the
performance of the low-risk class, suggesting that these bands
provide a weak but informative signal for distinguishing the
boundary between the two classes.

Overall, these results indicate that the spectral informa-
tion contained in Sentinel-2 data is sufficient for detecting
cyanobacteria. Although MERIS and Sentinel-3 data have
higher spectral resolution in the red region, the model ap-
pears to compensate by leveraging a broader portion of the
spectrum, particularly for detecting moderate-risk CyanoHAB.
These findings suggest that hyperspectral satellite imagery
with additional spectral bands - such as that provided by
NASA’s PACE mission - may further improve the accuracy of
CyanoHAB detection when combined with machine learning
approaches [16].

C. Spatial Contribution

To determine the impact of surrounding pixels on a given
pixel’s classification, we conducted two experiments in which
we replaced all other pixels in the image with synthetic data.

In the first experiment, for each pixel in the test dataset, we
set all other pixels in the 64 x 64 image to the same value
as the target pixel. The performance was then measured on a
per-pixel basis, and the results are shown in Table III.

Model performance is notably reduced for both the
moderate- and high-risk classes. In contrast, the low-risk class
shows minimal change, indicating that its predictions are less
dependent on spatial context.

In the second experiment, we replaced all surrounding pixels
with random values sampled from a normal distribution with
mean 0 and standard deviation 1. As described in Section V-B,
the normalized preprocessing step ensures that this substitution
does not substantially alter the overall input distribution. The
results are shown in Table IV and indicate that the model’s
performance is highly dependent on spatial context for the
moderate- and high-risk classes. When surrounding pixels are
replaced with random noise, accuracy for these classes drops
dramatically, approaching zero. In contrast, the accuracy for
the low-risk class increases, suggesting that the model may
occasionally misclassify low-risk pixels as higher risk due to
contextual information from neighboring pixels. Overall, this
experiment highlights that spatial context plays a critical role
in the detection of CyanoHAB hotspots, particularly for the
more severe classes.

D. Comparison with normalized difference indices

To better understand the benefit of using a deep learning
model that incorporates all available spectral bands as input,
we compare its performance to that of five different nor-
malized difference indices (NDIs) commonly used to detect
CyanoHAB. The Floating Algae Index (FAI), described by
Liu et al. [20], is a spectral formula that can be applied to
Sentinel-2 or LANDSAT products. The Normalized Difference
Vegetation Index (NDVI), Normalized Difference Chlorophyll
Index (NDCI), the Band 8A-Band 4 (B8AB4) index, and the
Band 3-Band 2 (B3B2) index are existing NDIs that Kislik et
al. [19] applied to Sentinel-2:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully ¢

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3629586

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE V
AVERAGE METRICS ACROSS 3 GROUPS FOR THE NDIS AND THE PAPER’S
CNN MODEL ON THE TEST DATASET.

[ Model [[ Accuracy [ Precision [ Recall [ Specificity | FI-Score ]

FAI 0.5759 0.3706 0.5759 0.7265 0.2787
NDVI 0.2845 0.3030 0.2845 0.6239 0.2934
NDCI 0.2772 0.2879 0.2773 0.6143 0.2825
B8AB4 0.2899 0.3053 0.2899 0.6306 0.2970
B3B2 0.3181 0.3011 0.3181 0.6547 0.3057
CNN 0.8627 0.6387 0.8627 0.9168 0.7122

Aga — A
FAI = Bg, — <Bo4 + (B11 — Boa) - 84) (6)

5 B )\11 - A4
NDVI = M ©)
NDCI = M (8)
B8AB4 = ginrgzi 9)
B3B2 = H7 (10)

where B3, Bos, Bos, Bos, Bsa, and By are the reflectance
values of bands 3, 4, 5, 8, 8a, and 11 respectively. The A
values are constants that refer to the central wavelength of the
respective bands.

In order to compare the NDI output to the output of our
model, we converted each NDI’s continuous values into a
discrete, three-class representation consistent with our model.
We used a Bayesian optimization algorithm to optimize the
thresholds for each NDI on the training dataset before applying
them to the test dataset. We chose to optimize the macro
Fl-score, defined as the unweighted mean of the Fl-scores
across all classes, because it is well suited to imbalanced
datasets and jointly accounts for precision and recall. The
resulting performance metrics on the test dataset using the
optimized thresholds are shown in Table V. The results clearly
demonstrate that the CNN model, which utilizes all spectral
bands, substantially outperforms all NDIs. This finding sup-
ports the conclusion in Section V-B that spectral information
across the entire wavelength range contributes meaningfully
to CyanoHAB detection performance.

E. Performance on Smaller Bodies of Water

One of the primary motivations of this paper is to improve
the spatial resolution of CyanoHAB detection in order to
enable more effective monitoring of smaller bodies of water.
Quantitatively evaluating this improvement is challenging due
to the scarcity of high-resolution reference data. As a result,
direct comparisons must rely on synthetically interpolated data
from CyAN, and evaluation is largely qualitative.

Figure 13 shows a section of the Allegheny Reservoir, a
smaller body of water that was not used for training or testing.
The 300 m resolution of the CyAN prediction is clearly limited
in this narrow reservoir, as the coarse pixelation makes it
difficult to determine which specific areas are experiencing
CyanoHAB events. Our model’s prediction (bottom right) is

Sentinel 2 Image

CyAN HAB Index

0

CyAN HAB Class Prediction HAB Class

200-253

100-199

a

Fig. 13. Images of the Allegheny Reservoir in Pennsylvania from August 20,
2019 comparing the reference data (CyAN) and the prediction. The bottom
right image, despite a limited cloud and land filter, clearly demonstrates the
advantage of using a higher spatial resolution model to monitor CyanoHAB
in smaller bodies of water. Circled in blue is an area that our model predicts
as high-risk CyanoHAB but which could not be identified by CyAN due to its
coarse predictions. Note that this region was included in neither the training
nor test datasets. The prediction was generated without tiling.

imperfect, primarily due to a relatively simple cloud and cloud-
shadow filter: cloud edges are often misclassified as high-risk
CyanoHAB, and cloud shadows are frequently classified as
low or moderate risk instead of being masked as no data.
Nonetheless, the advantage of our model’s prediction is clear.
The reservoir’s shoreline is much more clearly delineated,
and our model is able to produce a low-risk prediction for
Quaker Lake (right side of the image), which is too small to
be resolved in the CyAN prediction. Even more importantly,
the model predicts high-risk CyanoHAB in the narrow channel
connecting the reservoir and Quaker Lake (circled in blue)
- a region that CyAN is unable to resolve. This represents
actionable information for monitoring efforts that would be
missed if relying solely on CyAN.

Figures 14 and 15 present additional case studies illustrating
the benefits of higher-resolution CyanoHAB detection. In both
cases, smaller water bodies and shoreline features are more
clearly characterized with our model compared to the standard
CyAN output. Figure 14 shows that our model successfully
detects a high-risk HAB event localized to a narrow shoreline
segment that CyAN fails to resolve. Figure 15 highlights how
finer pixel size enables the detection of CyanoHAB in smaller
tributaries that would otherwise go undetected when using
CyAN.

VI. CONCLUSION

This study demonstrates that deep learning, and specifically
convolutional neural networks (CNNs), can effectively predict
harmful cyanobacterial blooms (CyanoHABs) using Sentinel-
2 satellite imagery. Despite the lack of a chlorophyll a-specific
spectral band available on Sentinel-3, the model successfully
leverages the complex relationships among the available spec-
tral bands, together with spatial context, to classify CyanoHAB
risk levels (low, moderate, high) with an overall accuracy of
86.2%. Of particular importance for monitoring applications,
the model achieves a specificity of 99.54% for the high-risk
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Fig. 14. Images of Swan Lake in Michigan from July 2, 2019 comparing the
reference data (CyAN) and the prediction.

200-253
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CyAN HAB Index
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200-253
100-199

0-99

Fig. 15. Images of Lake Jordan in North Carolina from July 28, 2019
comparing the reference data (CyAN) and the prediction.

class, indicating that pixels predicted as high-risk are almost
always correctly classified.

Bands 4 (665 nm) and 5 (705 nm) are identified as the most
critical for CyanoHAB detection. When Band 4 or Band 5 was
randomized, overall accuracy dropped substantially to 59.5%
and 35.4%, respectively. The effect is even more pronounced
for the high-risk class, where randomizing Band 5 reduces
accuracy to just 1.2% (from 87.8%). Nevertheless, 11 of the 12
Sentinel-2 bands cause more than a 10% decrease in accuracy
for at least one class when randomized, underscoring the
importance of the full spectral range for robust detection.

Spatial context also plays a crucial role. When surrounding
pixels are replaced with entirely random values, model per-
formance for moderate- and high-risk CyanoHAB dropped to
near 0%, indicating that spatial information is indispensable
for accurate classification. Together, these findings highlight
the value of combining spectral and spatial features for oper-
ational CyanoHAB monitoring.

The use of interpolation to increase the spatial resolution
of both the CyAN reference data and the Sentinel-2 input
bands introduces important limitations in terms of accuracy
and reliability. While interpolation allows for approximate

10

spatial alignment, it does not recover true high-resolution
information, which may lead to over-optimistic performance
estimates. Ideally, the model should be validated against in situ
measurements in future work to confirm the accuracy of the
predictions. Even if such validation yields lower quantitative
performance, the finding that the full spectrum of Sentinel-
2 bands contributes meaningfully to CyanoHAB detection
remains an important result for guiding future research.

It is important to note that the model was trained and
evaluated exclusively on summer data. Although CyanoHAB
events are most prevalent during summer and early fall, they
can also occur in other seasons. Future work should therefore
explore the temporal adaptability of the model to ensure robust
performance across different seasonal conditions.

Another promising avenue for improving model perfor-
mance is the integration of a virtual orange band, similar to
the approach proposed by Niroumand-Jadidi and Bovolo [26].
By explicitly providing a band known to be informative for
CyanoHAB detection, the model may be relieved from the
need to approximate this spectral feature from the existing
bands. Whether this would lead to higher predictive per-
formance or simply reduce training time remains an open
question and warrants further investigation.

Overall, this study demonstrates that combining the full
spectral range of Sentinel-2 with spatial context enables
accurate detection of CyanoHABs at higher resolution than
previous satellite-based approaches. The large, automatically
generated CyanoHAB dataset - spanning 938,607 images
and 1.86 billion labeled pixels across the continental U.S.
- provides a geographically diverse resource that supports
model development, enables spatially independent training
and testing, and facilitates the analysis of all spectral bands.
While interpolation and seasonal limitations remain, the results
highlight the value of comprehensive spectral inputs and
suggest avenues for improvement, including in situ validation,
temporal extension, and the potential use of virtual bands.
These contributions provide a strong foundation for scalable,
high-resolution monitoring of harmful cyanobacterial blooms.
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