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Abstract. In recent years, the concept of Mobility-as-a-Service has significantly
impacted the transportation sector by integrating diverse modes of transport into a
user-friendly experience. The advancement of human mobility patterns has been
facilitated by the utilisation of mobile sensing technologies, but this progress has
also raised concerns regarding privacy and the management of data. This study
suggests increasing the applicability of human mobility data by generating syn-
thetic data with deep learning models trained on the existing dataset. Our approach
aims to enhance the practicality of human mobility data. The produced synthetic
data encompasses real-world dynamics and give possibility to develop and eval-
uate the algorithms for personalised travel recommendations, while safeguarding
sensitive information. Exploring this domain has the potential to bring about a
paradigm shift in the field of mobility solutions that prioritise privacy, efficiency,
and user satisfaction, ultimately leading to the development of a sustainable urban
mobility framework.
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1 Introduction

The concept of Mobility-as-a-Service (MaaS) has gained significant attention in recent
years, revolutionising the way people move by integrating various modes of transporta-
tion into a seamless user experience. The mobile sensing technologies continuously
collect a wealth of data about people’s movements, interactions, and behaviours, result-
ing in a massive influx of data. However, while this abundance of data has enormous
potential for improving our understanding of human mobility patterns, it also poses
privacy, data security, and data management challenges.

The introduction of synthetic data generation (SDG) techniques opens a wide range
of transformative possibilities in the field of mobility research, especially when it comes
to delivering personalised travel recommendations. Synthetic data (SD) can be defined
as artificially generated data that uses pre-existing datasets or models to accurately
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emulate the statistical attributes and characteristics present in real-world data [1]. This
is especially useful in situations where obtaining actual data would be prohibitively
expensive, time-consuming or impossible [2]. Its importance originates from the intrinsic
adaptability in addressing a set of problems such as data augmentation [3], imputation
of missing data [4], restoring “fairness” in biased data [5], and ensuring confidentiality
[6]. Furthermore, it enables researchers to develop and test algorithms and applications
in a controlled environment, removing the need to expose sensitive data.

Current advances in SDG are becoming popular in various domains including
ecology, computer vision, industrial engineering etc. However, it isn’t yet extensively
explored in the mobility area. In this study, we propose a approach to increase the appli-
cability of human mobility data by generating synthetic data with deep learning (DL)
models trained on the existing dataset. Next Section describes applied research methods
and Sect. 3 is devoted to results’ presentation. The final goal of this research is to analyse
the place of SDG techniques within the realm of personalised travel recommendation
algorithms. By intertwining real data from actual trips with synthetic data, the research
creates a dynamic and adaptable framework for future travel suggestions.

2 Data and Methods

Data Description. The rapidly growing field of human mobility data (HMD) benefits
from the Sussex-Huawei Locomotion (SHL) dataset, which captures the human move-
ment in various contexts and environments [7]. The latter explores human locomotion
from running and walking to biking and public transport. The data collection process
involved three people and reflected the spontaneity and unpredictability of human mobil-
ity through everyday activities like long-distance travel and museum visits. For complete
movement data capture, Huawei Mate 9 smartphones were placed at the hands, torso,
hips, and bags, with the purpose of measuring pressure, ambient light, acceleration, and
GPS coordinates. The dataset’s annotations, which describe movement modes, envi-
ronmental and situational contexts like road conditions, traffic scenarios, and social
interactions, demonstrate its high variability.

Personalising services means adapting to an individual’s behaviour. Therefore, focus-
ing on a single user’s (User 1)) GPS locations and activity labels is crucial in this context.
Due to its narrow focus, the dataset contains every move, turn, and pause, as well their
unique behaviours, routines, and social habits. The study’s 391 h over five months show
its focus on User 1’s mobility’s complexities and patterns. This longitudinal method con-
siders seasonal fluctuations, changing habits, and external mobility influences, giving
a more complete picture than short-term datasets. It also allows a more in-depth anal-
ysis without the noise and disparities of a multi-user dataset by removing the broader
variability introduced by multiple users.

SDG Model Architecture. A notable development in the field of unsupervised machine
learning is the introduction of generative adversarial networks (GANs) [8]. GANs con-
sist of two neural components: the discriminator, which verifies the authenticity of the
SD by comparing it to real data, and the generator, which generates SD. The training
process continuously improves both the discriminator and the generator. A model capa-
ble in tabular data synthesis is of course necessary when it comes to the SHL dataset,
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which integrates location and activity labels. On the other hand, the conditional tabular
generative adversarial network (CTGAN), is a model specifically designed to handle
categorical attributes found in tabular data and ensuring consistent and stable learning
[9, 10], which makes this model an ideal candidate for generating data that closely
resembles the characteristics of our mobility dataset (Table 1).

Table 1. Data structure of input data for SDG task

Attribute Timestamp Latitude Longitude Activity label

Type Datetime format Float float String
(YYYY-MM-DD hh:mm:ss)

Example 2017-03-01 13:58:18 50.86075 —0.09689 Still_Sit_Inside

The model is initialised with a random noise vector (sampling from a standard
Gaussian distribution) thatis the primary input for the generator. The vector is propagated
over multiple fully connected layers. The Rectified Linear Unit (ReLU) is the activation
function that is used in each of these layers. It is essential for introducing the non-
linearities that the generator needs to properly represent complex data distributions.
Each layer has Batch Normalisation (BN) applied to it to improve training stability
and convergence. BN standardises intermediate activations and reduces the problem of
internal covariate shift. To accommodate the intrinsic heterogeneity of tabular data, the
generator’s terminal layer uses a bifurcated activation strategy. For discrete attributes,
such as “activity label”, the Gumbel-Softmax activation is employed because it facilitates
gradient-based methods that allow for optimisation in discrete spaces. The hyperbolic
tangent (tanh) function is utilised for continuous attributes as “latitude”, which precisely
mirror the distributions found in actual data.

By using the same amount of densely connected layers, the discriminator is made to
switch to its adversarial counterpart. Each layer in the model makes use of the LeakyRe LU
activation function, which is an altered form of the standard ReLU. Including this func-
tion allows for the possibility of a slight negative gradient during the times when the
unit is not in use. This choice solves the problem of “diminishing neuron” activation,
ensuring that gradients flow consistently during the backpropagation process. These
layers also include dropout mechanisms that, with each training cycle, probabilistically
deactivate a subset of neurons.

Ultimately, to guarantee Lipschitz continuity, CTGAN uses the Wasserstein loss
Sfunction with gradient penalty, which enables the synthesised data to statistically match
the original dataset and adhere to the intricate spatial “coordinates-activity” dynamics
present in actual activity recordings.

To evaluate the coherence of suggested approach was used set of metrics proposed
in [11] and investigated the quality of SD generation on HMD. First metric is Abso-
lute Semantics, which refers to the understanding of the meaning of each location in
a trajectory. This can be evaluated by analysing the locations and types of activities
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present in both types of data and by comparing their distributions to assess represen-
tativeness. Marginal Distributions evaluates the distribution of individual variables in
the SD compared to the original dataset. If these distributions are similar, it suggests
that the SD maintains the statistical properties of the original data. The Maximum
Mean Discrepancy (MMD) measures the difference between distributions of SD and
the original. Jensen-Shannon Divergence (JSD) quantifies the similarity between two
probability distributions and is a symmetrized and smoothed version of the Kullback-
Leibler divergence. A smaller MMD and JSD mean the distributions are more similar.
Relative Semantics entails understanding a location’s meaning relative to other loca-
tions in a trajectory, involving transitions analysis between different types of locations
and evaluating their logic. Pairwise semantic distances, involving distances calculations
between location pairs based on their semantic meanings, can measure this. By ensuring
that SD closely mirrors real data in terms of semantics and spatial-temporal patterns,
ensure that personalised mobility algorithms are built on robust and meaningful data.

3 Results

The following results demonstrate the DL model’s ability to generate SD.

Absolute Semantics: the scatterplots on Fig. 1 depict the spatial distribution of activ-
ities in datasets. The original dataset exhibits distinct clusters of activities, suggesting
specific geographical zones where certain activities predominantly occur. For example,
certain latitudes and longitudes have a high concentration of “Bike” activities, which
could imply popular biking routes or parks. Other clusters might indicate residential or
commercial areas based on the nature of the activities. The generated by CTGAN SD
aims to replicate these patterns. While it does capture the general spatial structure and
distribution of activities, there are subtle differences. Some activity clusters in the SD are
more dispersed than in real, while others are denser. This divergence can be attributed
to the inherent randomness and generative nature of SD production. However, the over-
all spatial semantics are largely preserved in the SD, making it a valuable resource for
analysis that doesn’t compromise individual data points from the original set.

Marginal Distributions: the Kernel Density Estimation plots for marginal latitude and
longitude distributions show distinct patterns that demonstrate the SD generation pro-
cess’s accuracy (Fig. 2). Blue curves represent the original data and show peaks and
distributions of key geographical areas where activities are concentrated. The SD’s red
curves closely match these patterns, indicating that the SD generation captured the orig-
inal dataset’s spatial nuances. Although some latitude and longitude ranges deviate, the
overall congruence is good, and the distributions are similar.

MMD and JSD: values are presented in Table 2. “Latitude” has a very low MMD,
indicating that the original and SD sets have similar means. JSD value of 0.35, which is
not negligible, but not excessive, supports this. It means that the probability distributions
for this attribute are similar. The MMD value for “Longitude” is slightly higher, but still
small, indicating close means and the JSD value of 0.42 suggests that the distributions
differ, but the SD still closely matches the original data. For the “Activity label” MMD
and JSD are extremely low. Hence, the distributions of this categorical variable in the
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Fig. 1. Spatial distribution of activities: real user (left), simulated agent (right). Created by Authors

in Python.
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Fig. 2. Kernel Density Estimation plots for Latitude and Longitude distributions. Created by
Authors in Python.

original and SD sets are very similar, which means that CTGAN replicated well the
activity label distribution from the original dataset.

Table 2. Summary of MMD and JSD for all attributes.

Attribute MMD JSD
Latitude 0.000077 0.35
Longitude 0.00052 042
Activity label 0.00072 0.02

Relative Semantics: the matrices (Fig. 3) capture the transition probabilities between
different activity labels. In the original data heatmap, distinct patterns of activity transi-
tions can be discerned, with certain activity combinations exhibiting higher probabilities,
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as indicated by the deeper shades of blue. These patterns provide insights into the inher-
ent structure and sequence in which activities tend to occur. The SD heatmap seeks to
emulate these patterns. Most of the transition patterns in the original data are mirrored in
the SD, as evident from the consistency in colour shades. This suggests that the CTGAN
has effectively captured the dynamics of activity transitions, preserving the intricate
relationships and sequences between activities.

4 Conclusion

There results outlined in this paper highlight the capabilities of CTGAN, in generating
synthetic human mobility data of exceptional quality. These datasets accurately reflect
the inherent characteristics and dynamic patterns of mobility, providing a solid basis for
future research. Within this framework, the reliability of the generative task was assessed
by comparing the artificial dataset with the real dataset using statistics-based metrics.
This serves as a pivotal reference point for evaluating the accuracy and efficacy of GAN-
based models. Hence, this model has potential applications in the field of Mobility as a
Service (MaaS), which include the ability to enhance route planning, analyse individual
mobility patterns, identify preferred modes of transportation, and simulate user behaviour
in various transportation scenarios.
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Fig. 3. Heatmaps highlighting activity changes for real and synthetic dataset. Created by Authors
in Python.
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