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WITH THE ADVENT of more pow-
erful and error-tolerant quantum 
computers, their use for commercial 
applications in industry and adminis-
tration comes within reach. A prom-
ising use case for quantum computers 
is solving NP-hard discrete optimiza-
tion problems. These are ubiquitous 
problems appearing in all industries, 
ranging from truck routing problems 
over energy grid distribution to sched-
uling or seat distribution problems 
in an airplane. However, finding a 
solution to these problems can be in-
credibly challenging for classical com-
puters, and calculations can quickly 
become infeasible even for small prob-
lem instances. Here, quantum com-
puters have the potential to massively 
boost these calculations. Currently, 
there are several promising algorithms 
and hardware platforms dedicated to 
tackle the problem of finding optimal 
solutions to optimization problems. 
Among the most promising algo-
rithms for digital quantum computers 
are the quantum approximate optimi-
zation algorithms (QAOA),1 Grover’s 
algorithm and variational eigensolv-
ers. Another very successful approach 
is to use special hardware that is tai-
lored to specifically solve optimiza-
tion problems using the adiabatic 
computation paradigm. These ma-
chines are called quantum annealers.

However, for a user trying to solve 
an optimization problem at hand, this 
jungle of different algorithms and ma-
chines with their different interfaces 
can easily become too much to handle 
without significant expertise in quan-
tum information theory. Therefore, 
specific software is needed to bridge 
the gap between the actual problem 
and the different hardware and algo-
rithmic platforms. This gap is exactly 
what our open source Python soft-
ware library with the complementary 
packages quark2 and quapps3 aims to fill.
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While quark provides a software 
tool to easily implement and reformu-
late discrete optimization problems 
and to interface to different hardware 
platforms and solvers, quapps provides 
a library which implements the most 
common optimization problems based 
on quark. These can either be loaded 
and used directly or modified to the 
users’ needs. The basic idea of how to 
implement an optimization problem 
using quark has already been presented 
in the work by Lobe.4 Here, we want 
to go into more detail on the modular 
structure, the extension with quapps and 
the interfaces to different solvers. Note 
that the packages are not intended to 
solve the optimization problems them-
selves, but to prepare the calculations 
by transforming the formulations 
into the common entry point of most 
quantum optimization approaches, the 
quadratic unconstrained binary opti-
mization (QUBO) problem formula-
tion, which we describe in more detail 
in the next section.

We additionally provide a set of 
instantiated optimization problems, 
which is derived from the quapps li-
brary with the work of Lobe and 
Windgätter.5 Its purpose is to sim-
plify the benchmarking of the possi-
ble quantum algorithm and quantum 
hardware combinations.

From the Problem to the 
Quantum Hardware
The package quark is a software 
framework which aims to provide 
a user-friendly, yet powerful tool to 
formulate discrete optimization use 
cases and interface them to several 
different classical and quantum solv-
ers. An overview of the functionality 
is given in Figure 1 and will be ex-
plained in more detail in this and the 
following section.

To understand the basic structure 
of quark, one needs to understand the 

basic building blocks of a discrete 
optimization problem and its for-
mulation as a QUBO problem. A 
discrete optimization problem is de-
fined as
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FIGURE 1. Overview of the packages quark and quapps. The discrete optimization 

problem is implemented by two input containers separating the parameter and the 

model description. The left boxes show the exemplary traveling salesperson problem. 

The QUBO transformation [cf. (1)–(4)] and reversely the solution decoding are performed 

by the quark package. It also provides an interface to multiple solvers. A set of standard 

problems can be directly loaded using the quapps library. The instance data set contains 

five random instances for each setup of corresponding parameters for each problem 

type, resulting in a total of 764 problem instances. SCIP: Solving Constraint Integer 

Programs; PySA: Python Simulated Annealing. 
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Quapps – Problem Library

• Traveling Salesperson
• Max Cut
• Max Colorable Subgraph
• Prime Factorization
• Arbitrary Ising Model
• Flight-Gate Assignment
• Knapsack
• Subset Sum
• Min k-Union
• Graph Partitioning

Instance Dataset

Traveling Salesperson
• Number of Locations |L | ∈ {8, 9, ..., 12}
• as Complete Graph,
• Random Edge Weights (Distances)d ∈ [1, 5]L2

Max Cut
• Number of Nodes N ∈ {8,16,32,64,128},
• for Graph Densities d ∈ {0.4, 0.6, 0.8},
• Random Edge Weights w ∈ [1, 5]N × N or 1

Max Colorable Subgraph
• Number of Nodes N ∈ {8,16,32,64,128},
• for Graph Densities d ∈ {0.4,0.6,0.8},
• Random Edge Weights w ∈ [1,5] N × N

Prime Factorization
• Bits Per Number b1,b2∈{3,4,...,10}
• Nontrivial Problem Instances

Random Ising Model
• Number of Nodes N ∈{8,16,32,64,128},
• Coupling Densitiesd ∈{0.2,0.4,0.6,0.8,1.0},
• Accuracy of 2 Decimals

Flight-Gate Assignment
• Fixed Time and Passenger Parameters From

Realistic Scenario,
•

•

Partial Instances From Decomposition of
Transfer Passenger Graph
With 3 to 17 Gates
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The objective function f as well 
as the functions in the constraints 
,ck  for an arbitrary number of con-

straints k, can have various differ-
ent formats. However, they have in 
common to act on a discretely val-
ued vector y of a given length with 
entries yi. While f describes the goal  
of the optimization, e.g., minimiz-
ing some cost, the constraints incor-
porate restrictions, e.g., allowing for 
a city to be visited only once by a 
salesperson on the route. To be us-
able for a quantum device, the ge-
neric optimization problem has to be 
reformulated as a QUBO. A QUBO 
problem has an objective function 
over binary variables, which is at 
most quadratic in any xi  and no fur-
ther constraints are added, i.e.,
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This means a specific QUBO problem 
is only defined by the given values for 
the hi  and J ,i j  parameters, which 
can be arbitrary real numbers. Those 
are usually represented in a vector 
h Rn!  and a matrix J Rn n! #  with n 
being the number of binary variables.

Transforming the optimization 
problem (1) to its QUBO form (2) 
can be highly nontrivial. The major 
mathematical steps are to transform 
all inequality constraints ck  in (1) to 
equality constraints, for instance in 
the standard form via slack variables 
z Zk!  with

	 ( ) ( ) 0,c y c y zk k k= - =l � (3)

to encode all integer variables using 
a binary representation and finally 
to reduce the degree of the objective 
function f and the constraints to qua-
dratic and linear degree, respectively. 
The resulting quadratic objective 

function ( )xf l  and linear functions 
of the equality constraints ( )c xkl  over 
binary variables x can then be used to 
compose the QUBO objective func-
tion by adding the constraint terms 
using a penalty weight km

	 ( ) ( ) ( ) .q x f x c xk
k

k
2

m= +l l^ h| � (4)

This can now be expanded into the 
QUBO form as in (2).

All the previously mentioned 
transformation steps between the 
generic and the QUBO optimiza-
tion formulations are implemented 
in the quark package, through the ap-
plication of several QUBO composi-
tion steps as shown in Figure 1. The  
final QUBO can then be the input 
for different solvers. Currently, we 
support four: the classical mixed-
integer problem solver SCIP (Solv-
ing Constraint Integer Programs),6 
the classical Python Simulated An-
nealing (PySA) solver,7 which im-
plements the simulated annealing 
algorithm, the D-Wave quantum 
annealer and the QAOA.jl solver.8 
The latter implements the QAOA on 
a classical quantum computer simu-
lator, which uses YAO9 as simula-
tion back end.

Modular Implementation 
Concept
In the following, we highlight our im-
plementation concept of optimization 
problems. Throughout the remainder 
of the article, the traveling salesper-
son problem (TSP) serves as an exam-
ple problem to illustrate the lifecycle 
of a generic optimization problem. 
The definition of TSP as optimization 
problem is shown in Figure 1, and 
the illustration of the most important 
programming steps of such a problem 
are shown in Figure 2.

In quark, the encoding of an opti-
mization problem is separated into 

two logical components. One is the 
Instance class, which defines the data 
container that provides all necessary 
input for the actual problem formu-
lation. In general, the input format 
is highly problem specific and thus 
needs to be defined individually by 
the user. In the case of the TSP, the 
instance container should be able to 
encode a weighted complete graph, 
e.g., with input in form of a diction-
ary of all edges and their weights. 
Conveniently, this structure can also 
be used to implement read and write 
functions. These can be implemented 
easily using the quark input-output 
(IO) utilities for HDF5 format files.

Based on this instance definition, 
the formulation of the problem’s ob-
jective function and constraints [cf. 
(1)] is done using the ConstrainedObjective 
class. To implement the functions, 
quark provides the Polynomial classes, 
which allow to create and compute 
with symbolical polynomials using 
integer and binary variables. For the 
TSP problem, this means creating one 
polynomial for the quadratic objec-
tive function and one for each of the 
linear constraints. Having this basic 
input, quark can generate a QUBO, 
like shown in equation (2), from the 
ConstrainedObjective definition. This is il-
lustrated in Figure 2, where the ob-
jective function and constraint is first 
transformed into a binary quadratic 
form stored in the ObjectiveTerms class 
[collecting individual terms such as 
(3)] and finally transformed into the 
QUBO format via the specification of 
the penalty weights. The final QUBO 
is stored in the Objective class.

All necessary steps in this work-
flow, such as the reduction of cu-
bic or higher-order polynomials, 
the constraint handling and much 
more, can be easily applied through 
the features of quark, which are illus-
trated in Figure 1. Note that, while 
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FIGURE 2. Simplified class workflow diagram in quark for the TSP problem. Users have to provide an Instance and a 

ConstrainedObjective class [cf. (1)] to define the use case, either by themselves or by loading them from quapps. A specific instance is 

defined via a dictionary containing the graph edges. Then all shown transformation steps to the QUBO format are automatically 

available. The blue boxes indicate the user input and the yellow boxes the supported solvers and algorithms.
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those encompass some standard 
mathematical procedures, the op-
timal reduction of polynomials for 
instance is a nontrivial problem. For 
an exhaustive study of the perfor-
mance of the different implemented 
reduction methods, we refer to the 
work by Schmidbauer et al.10

The final QUBO output is en-
coded in an appropriate format and 
can then be interfaced to multiple 
different computation back ends. For 
SCIP a corresponding ScipModel can 
be created and solved either directly 
from the optimization problem en-
coded in the ConstrainedObjective class 
or from the corresponding QUBO 
in the Objective class. The other solv-
ers directly accept the QUBO coef-
ficients as input. The computational 
result is returned as bit string or 
set of bit strings from the solv-
ers and can then be decoded to the 
original problem formulation and 
checked against the problem con-
straints, as illustrated in Figure 1. In 

the example case of the TSP, the as-
signment of the binary variables de-
scribes the shortest path to traverse 
all nodes of the given input graph.

To show the possible outcome of 
such a simulation of the TSP, we have 
performed simulations of ten random 
TSP instances for increasing problem 
sizes, i.e., increasing number of stops, 
with edge weights between 0 and 10. 
We used the exact SCIP solver, the 
D-Wave Advantage2 prototype2.6 
quantum annealer, computing 1,000 
samples per instance, and its classical 
counterpart, the simulated annealing 
algorithm with 100 samples per in-
stance. Note that we did not optimize 
the different algorithm and solver pa-
rameters, and thus our results do not 
serve as a benchmark but shall give 
the reader an idea of the different 
simulation back ends.

Figure 3(a) shows the success 
probabilities of the two heuristic 
methods to find the optimal solu-
tion, which has been calculated using 

the SCIP solver. One sees the expo-
nential decrease in finding the exact 
ground state for both algorithms for 
increasing problem sizes, with the 
quantum algorithm being outper-
formed by its classical counterpart. 
In the cases where the success prob-
ability is zero, only suboptimal solu-
tions were found. Figure 3(b) shows 
the computation time. These show 
the exponential increase in computa-
tion time of the classical algorithms 
against the constant scaling of the 
quantum annealing. Therefore, with 
improving quantum hardware, it is 
expected that these might be able to 
outperform the classical algorithms. 
The QUBO generation by quark per-
forms decently, having computation 
times at least an order of magni-
tude faster than the classical solvers. 
Therefore, it is currently no compu-
tational bottleneck.

The quapps package is based 
on quark and provides a library of 
standard implementations of some 
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FIGURE 3. Exemplary results for the TSP problem for 10 random instances using different solver back ends. (a) The success 

probability with increasing problem size against the exact SCIP solution. (b) The computation time per instance for each solver. The 

red curve shows QUBO generation time by quark.
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common discrete optimization prob-
lems, such as the TSP. It serves mul-
tiple purposes. First, it is a low-level 
entry point for users, who are new 
to both quantum computing and 
discrete optimization, to get famil-
iar with exemplary optimization 
problems, their implementation in 
quark, and their formulation as QU-
BOs for quantum optimization. 
Currently, eight different problems 
can be easily loaded and instantiated 
using only basic input, like a graph. 
Second, these standard problems are 
often the base of more complex real-
world problems, and users can easily 
extend them to their needs.

But the main strength of the 
quapps package is the easy gen-
eration of ready-to-use data for 
benchmarks. For this reason, the 
problem instances in quapps con-
tain random instance generators, 
which allow for quick generation 
of such data. This is particularly 
useful for quantum algorithms in 
the noisy intermediate-scale quan-
tum (NISQ) era, where every quan-
tum hardware is still prone to error 
and every machine has a different 
set of requirements on both prob-
lem and algorithm to be a suitable 
solver. As such, the performance 
of different optimization problems 
and quantum algorithms can dif-
fer significantly depending on the 
hardware back end and have to be 
tested individually. Generally, it is 
a priori not known which of the al-
gorithm and hardware choices are 
the best to solve a given optimiza-
tion problem. This makes bench-
marking the use case on different 
quantum computation platforms 
using different algorithms inevi-
table. Therefore, in conjunction to 
the quapps library, we also provide 
already instantiated optimization 
problems for these tests.

Instance Data Set for 
Benchmarking
In addition to the two open source 
libraries described in the previous 
chapters, we also provide an instance 
data set. It consists of already instan-
tiated optimization problems for the 
problem types that are implemented 
in the quapps library. They are publicly 
available and will be permanently 
updated with new problem implemen-
tations added to the quapps library.5

We have chosen these random 
instances to test different aspects of 
possible quantum hardware. There-
fore, for all problems implemented in 
quapps, we provide examples with in-
creasing problem sizes, e.g., increas-
ing graph sizes, which translates to 
a higher qubit count needed on the 
quantum hardware. Another typical 
property which we vary is the graph 
densities for all applications that are 
representable as a graph. This is use-
ful to test the chosen hardware and 
algorithm setup for problems which 
require a high qubit connectivity.

Similarly, other input problem 
properties that may affect the per-
formance of a quantum algorithm 
are covered by the instance data 
set. Specifically, the different prob-
lem types result for instance in dif-
ferent coefficient structures: while 
the unweighted Max Cut problem 
only yields coefficients of 1 and has 
no linear terms, the prime factoriza-
tion formulation results in increas-
ing powers of two for both the linear 
and quadratic terms and the random 
Ising models spread the coefficient 
values broadly.

As shown in Figure 1, the pack-
age quapps currently implements eight 
specific problem types for quantum 
optimization. A detailed description 
of each of these problem types can 
be found in the corresponding repos-
itory.3 We will therefore not explain 

the problems in more detail here. 
All problem instances were saved in 
HDF5 files using our build in quark 
IO routines.

For six of the quapps problems, we 
have created benchmark instances 
using the random generators imple-
mented within these problems. They 
provide problem instances with ran-
domly chosen input values which 
depend on the structure of the prob-
lem, e.g., a fully connected graph 
with random edge weights. In view 
of the qubit numbers that will be 
available in the near future, we lim-
ited ourselves to instances with a 
maximum of 128 binary variables 
in the resulting reformulated Ising 
problem because each of these bi-
nary variables is mapped to at least 
one qubit but usually multiple qubits 
on the hardware to embed the prob-
lem into the hardware graph.

We have estimated that these 
problems are the maximum prob-
lem sizes runnable on current quan-
tum hardware. These range between 

56.  qubits for ion trap architecture 
to a few hundreds of qubits for su-
perconducting systems. The ana-
log D-Wave annealer provides over 
5,000 qubits. The latter system ar-
chitectures, however, do not have 
fully connected qubits. Therefore, 
an optimization problem has to be 
embedded onto the hardware which 
significantly reduces the comput-
able problem sizes. Nevertheless, 
we will update our instance data set 
constantly to match the increasing 
hardware resources in the coming 
years. All together this resulted in 
different combinations of the defin-
ing parameters, which are described 
for each problem in Figure 1. In to-
tal, we provide 764 already instanti-
ated problems in our data set, which 
are ready to use for algorithmic and 
hardware benchmarking and testing.
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Comparison With  
Other Tools
In this section, we embed our soft-
ware into the growing landscape of 
quantum software. Specifically, we 
compare the quark package with some 
of the most used software packages 

for formulating QUBOs, which are 
D-Wave ocean SDK,11 Qiskit,12 Mu-
nich Quantum Toolkit - Quantum 
Auto Optimizer (MQT-QAO),13 
N-choose-K,14 and PyQUBO.15 The 
goal is to highlight the similarities 
and differences between the different 

packages and to embed our work 
into the zoo of existing frameworks. 
As criteria, we have chosen several 
advanced methods of the QUBO 
handling as well as a number of dif-
ferent interfaced standard solvers 
and algorithms.

Table 1. Comparison of different QUBO handling packages for some advanced QUBO 
handling techniques and their interfaced solvers/algorithms. Note, that we have 

not found the preprocessing features in the D-Wave ocean suite, but we also did not 
manage to verify their nonexistence due to the vast structure of this code.

D-Wave 
ocean SDK11 Qiskit12 MQT-QAO13 N-choose-K14 Py-QUBO15 quark2 

QUBO and Solution handling 

Multiple integer encodings ✗d ✗d ✓ ✗ ✓ ✓

Can handle arbitrary polynomial constraints ✓ ✗ ✓ ✗ ✗ ✓

Can handle boolean constraints ✗ ✗ ✓ ✓ ✓ ✗ 

Advanced polynomial reduction techniquesa ✓ ✗ ✓ ✗ ✗ ✓

Automatic problem simplification in 
preprocessingb 

? ✗ ✗ ✗ ✗ ✓

Validity and redundancy checks of constraints in 
preprocessingc 

? ✗ ✗ ✗ ✗ ✓

Automated slack variable handling ✓ ✗ ✓ ✗ ✗ ✓

Decoding of solution object ✓ ✓ ✓ ✓ ✓ ✓

Automated constraint checks of solution ✓ ✓ ✓ ✓ ✓ ✓

IO-routines for problem instances ✗ ✗ ✗ ✗ ✗ ✓

Interfaced solver 

D-Wave annealer ✓ ✓ ✓ ✓ ✓ ✓

Simulated annealing ✓ ✓ ✓ ✗  ✓ ✓

QAOA simulator ✗ ✓ ✓ ✓ ✗ ✓

VQE solver ✗ ✓ ✓ ✓e ✗ ✗ 

MI(NL)P solver ✗ ✓ ✗ ✓e ✗ ✓

Grover search ✗ ✓ ✓ ✓e ✗ x 
aPolynomial reduction techniques beyond the simple reduction of variable pairs in the naive ordering as they appear.
bChecks if the given objective function and constraints fix the value of some binary variables and substitute them accordingly.
cIncludes some checks if the given constraints are commensurate with one another and if redundant ones exist. The latter will be omitted.
dProvides only binary encoding.
eCan be accessed via the Qiskit optimize package similar to the QAOA algorithm.
MQT-QAO: Munich Quantum Toolkit-Quantum Auto Optimizer.
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The results of this comparison 
are shown in Table 1. It shows that, 
while some basic features, such as 
solution decoding and constraint 
checks, are available in all listed 
packages, many of the more ad-
vanced QUBO handling techniques 
are absent in competing tools. This 
includes even essential functions, 
such as the handling of slack vari-
ables and polynomial reductions, 
which are highly nontrivial to imple-
ment as a nonexpert and vital for the 
QUBO formulation.

Analyzing the table, we identify 
the quark package, the MQT-QAO 
package and the D-Wave ocean as 
the most versatile tools. In terms 
of usability, the MQT-QAO pack-
age provides a highly optimized 
workflow for the handling of op-
timization problems, which makes 
it a strong competitor of our quark 
package. While quark has a few more 
preprocessing features which aim at 
simplifying the optimization prob-
lem and checking for redundant 
constraint in a preprocessing step 
as well as preimplemented IO-rou-
tines, it features no native connec-
tion to the Grover Search algorithm 
as the MQT-QAO package does. 
The biggest distinction between 
quark and MQT-QAO from a user 
perspective is the interfaced quapps 
package, which already provides a 
growing set of preimplemented op-
timization problems.

A similar set of preimplemented 
problems is only provided within 
the D-Wave Leap platform, which 
is a very powerful software suite 
but is in our experience, not in-
tuitive in its handling. It provides 
many different problem classes, 
which can have very different in-
put types and functionalities, 
that can be confusing for nonex-
pert users to handle. Therefore, 

we believe that our quark package 
is a useful addition to the existing 
quantum software, as it provides 
very easy problem encoding and 
handling and equips the users with 
all necessary tools to easily create 
benchmark instances of their own 
problems for different solvers and 
quantum algorithms.

I n this work, we have outlined 
with quark and quapps two inter-
twined software packages that 

fill the need of easy-to-use software 
to code and ultimately run discrete 
optimization problems on both 
quantum and classical hardware. 
While quark provides powerful 
methods to encode and transform 
optimization problems into a for-
mat suitable for quantum comput-
ers and classical solvers, quapps 
provides a library of standard op-
timizations problems that can eas-
ily be used for both performance 

tests and as a base for more com-
plex problems.

Through its interface to multiple 
different solver back ends, this al-
lows also nonexpert users to test 
the best optimization platform and 
to identify the suitability of quan-
tum algorithms for their problem. 
In this context benchmarking differ-
ent quantum algorithms and hard-
ware back ends plays a vital role 
within the NISQ era because of the 
variety of different quantum com-
puter platforms. An optimization 
problem instance data set derived 
from the quapps package is provided 
to simplify this procedure. The data 
set will be updated continuously. We 
will soon add more problem types, 
such as the subset sum, knapsack, 
and graph partitioning problem, 
which have recently been added 
in quapps. The implementation of a 
load balancing and an antenna op-
timization problem is still ongoing. 
Bigger instance sizes will be added, 
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whenever more powerful quantum 
hardware is available in the next 
years to run these.

In conjunction, the quark and 
quapps packages offer an important 
contribution to make the rapidly in-
creasing field of quantum comput-
ing accessible to a broader audience, 
which has no prior knowledge in 
quantum information, and to sim-
plify algorithm benchmarking for 
current quantum computers. 
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