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Solving discrete optimization problems
is one of the most promising use cases on
quantum computers. The libraries quark and
quapps provide an easily usable, modular
workflow to encode discrete optimization
problems and interface them to both
classical and quantum hardware.
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WITH THE ADVENT of more pow-
erful and error-tolerant quantum
computers, their use for commercial
applications in industry and adminis-
tration comes within reach. A prom-
ising use case for quantum computers
is solving NP-hard discrete optimiza-
tion problems. These are ubiquitous
problems appearing in all industries,
ranging from truck routing problems
over energy grid distribution to sched-
uling or seat distribution problems
in an airplane. However, finding a
solution to these problems can be in-
credibly challenging for classical com-
puters, and calculations can quickly
become infeasible even for small prob-
lem instances. Here, quantum com-
puters have the potential to massively
boost these calculations. Currently,
there are several promising algorithms
and hardware platforms dedicated to
tackle the problem of finding optimal
solutions to optimization problems.
Among the most promising algo-
rithms for digital quantum computers
are the quantum approximate optimi-
zation algorithms (QAOA),! Grover’s
algorithm and variational eigensolv-
ers. Another very successful approach
is to use special hardware that is tai-
lored to specifically solve optimiza-
tion problems using the adiabatic
computation paradigm. These ma-
chines are called quantum annealers.
However, for a user trying to solve
an optimization problem at hand, this
jungle of different algorithms and ma-
chines with their different interfaces
can easily become too much to handle
without significant expertise in quan-
tum information theory. Therefore,
specific software is needed to bridge
the gap between the actual problem
and the different hardware and algo-
rithmic platforms. This gap is exactly
what our open source Python soft-
ware library with the complementary
packages quark? and quapps? aims to fill.
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While quark provides a software
tool to easily implement and reformu-
late discrete optimization problems
and to interface to different hardware
platforms and solvers, quapps provides
a library which implements the most
common optimization problems based
on quark. These can either be loaded
and used directly or modified to the
users’ needs. The basic idea of how to
implement an optimization problem
using quark has already been presented
in the work by Lobe.* Here, we want
to go into more detail on the modular
structure, the extension with quapps and
the interfaces to different solvers. Note
that the packages are not intended to
solve the optimization problems them-
selves, but to prepare the calculations
by transforming the formulations
into the common entry point of most
quantum optimization approaches, the
quadratic unconstrained binary opti-
mization (QUBO) problem formula-
tion, which we describe in more detail
in the next section.

We additionally provide a set of
instantiated optimization problems,
which is derived from the quapps li-
brary with the work of Lobe and
Windgitter.” Its purpose is to sim-
plify the benchmarking of the possi-
ble quantum algorithm and quantum
hardware combinations.

The package quark is a software
framework which aims to provide
a user-friendly, yet powerful tool to
formulate discrete optimization use
cases and interface them to several
different classical and quantum solv-
ers. An overview of the functionality
is given in Figure 1 and will be ex-
plained in more detail in this and the
following section.

To understand the basic structure
of quark, one needs to understand the

basic building blocks of a discrete min  £(y)

optimization problem and its for- s.t.

mulation as a QUBO problem. A 0 <ci(y)<u, 1)
discrete optimization problem is de-

fined as with y, € Z.
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FIGURE 1. Overview of the packages quark and quapps. The discrete optimization
problem is implemented by two input containers separating the parameter and the
model description. The left boxes show the exemplary traveling salesperson problem.
The QUBO transformation [cf. (1)—(4)] and reversely the solution decoding are performed
by the quark package. It also provides an interface to multiple solvers. A set of standard
problems can be directly loaded using the quapps library. The instance data set contains
five random instances for each setup of corresponding parameters for each problem
type, resulting in a total of 764 problem instances. SCIP: Solving Constraint Integer
Programs; PySA: Python Simulated Annealing.
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The objective function [ as well
as the functions in the constraints
¢k, for an arbitrary number of con-
straints k, can have various differ-
ent formats. However, they have in
common to act on a discretely val-
ued vector y of a given length with
entries yi. While f describes the goal
of the optimization, e.g., minimiz-
ing some cost, the constraints incor-
porate restrictions, e.g., allowing for
a city to be visited only once by a
salesperson on the route. To be us-
able for a quantum device, the ge-
neric optimization problem has to be
reformulated as a QUBO. A QUBO
problem has an objective function
over binary variables, which is at
most quadratic in any x; and no fur-
ther constraints are added, i.e.,

min Y bixi+ Y Jixix;
st. xe{0,1}. (2)

This means a specific QUBO problem
is only defined by the given values for
the b, and J;; parameters, which
can be arbitrary real numbers. Those
are usually represented in a vector
heR" and a matrix Je€R”" with n
being the number of binary variables.

Transforming the optimization
problem (1) to its QUBO form (2)
can be highly nontrivial. The major
mathematical steps are to transform
all inequality constraints ¢, in (1) to
equality constraints, for instance in
the standard form via slack variables
L E 7, with

c(y)=cily) =z =0, 3)

to encode all integer variables using
a binary representation and finally
to reduce the degree of the objective
function f and the constraints to qua-
dratic and linear degree, respectively.
The resulting quadratic objective

function f'(x) and linear functions
of the equality constraints ¢, (x) over
binary variables x can then be used to
compose the QUBO objective func-
tion by adding the constraint terms
using a penalty weight Ax

qx)=f (x)+2k:/h(ci~(x))2~ (4)

This can now be expanded into the
QUBO form as in (2).

All the previously mentioned
transformation steps between the
generic and the QUBO optimiza-
tion formulations are implemented
in the quark package, through the ap-
plication of several QUBO composi-
tion steps as shown in Figure 1. The
final QUBO can then be the input
for different solvers. Currently, we
support four: the classical mixed-
integer problem solver SCIP (Solv-
ing Constraint Integer Programs),’
the classical Python Simulated An-
nealing (PySA) solver,” which im-
plements the simulated annealing
algorithm, the D-Wave quantum
annealer and the QAOA.jl solver.3
The latter implements the QAOA on
a classical quantum computer simu-
lator, which uses YAO? as simula-
tion back end.

In the following, we highlight our im-
plementation concept of optimization
problems. Throughout the remainder
of the article, the traveling salesper-
son problem (TSP) serves as an exam-
ple problem to illustrate the lifecycle
of a generic optimization problem.
The definition of TSP as optimization
problem is shown in Figure 1, and
the illustration of the most important
programming steps of such a problem
are shown in Figure 2.

In quark, the encoding of an opti-
mization problem is separated into

two logical components. One is the
Instance class, which defines the data
container that provides all necessary
input for the actual problem formu-
lation. In general, the input format
is highly problem specific and thus
needs to be defined individually by
the user. In the case of the TSP, the
instance container should be able to
encode a weighted complete graph,
e.g., with input in form of a diction-
ary of all edges and their weights.
Conveniently, this structure can also
be used to implement read and write
functions. These can be implemented
easily using the quark input-output
(IO) utilities for HDFS format files.

Based on this instance definition,
the formulation of the problem’s ob-
jective function and constraints [cf.
(1)] is done using the ConstrainedObjeciive
class. To implement the functions,
quark provides the Polynomial classes,
which allow to create and compute
with symbolical polynomials using
integer and binary variables. For the
TSP problem, this means creating one
polynomial for the quadratic objec-
tive function and one for each of the
linear constraints. Having this basic
input, quark can generate a QUBO,
like shown in equation (2), from the
ConstrainedObjective definition. This is il-
lustrated in Figure 2, where the ob-
jective function and constraint is first
transformed into a binary quadratic
form stored in the Objectivelerms class
[collecting individual terms such as
(3)] and finally transformed into the
QUBO format via the specification of
the penalty weights. The final QUBO
is stored in the Objective class.

All necessary steps in this work-
flow, such as the reduction of cu-
bic or higher-order polynomials,
the constraint handling and much
more, can be easily applied through
the features of quark, which are illus-
trated in Figure 1. Note that, while
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import networkx as nx

weights_dict = {
("B", "HH"): 290,
def __init__(self, weights_dict, start_node=None): ("B", "DD"): 193,
self.graph = nx.DiGraph() ¥
self.graph.add_weighted_edges_from([(nodel, node2, weight)
for (nodel, node2), weight in weights_dict.items()])
self.start_node = start_node or list(self.graph.edges) [0]

class TSPInstance():

tance (weights_dict)

instance

from quark import PolyBinary, ConstraintBinary, ConstrainedObjective
edObjective.

class TSPConstrainedObjective(ConstrainedObjective): ance (instance)

@staticmethod constrained_objective
def _get_objective_poly(instance): min 290 x_B_0 x_HH_1
# sum_(1,k) sum_i (d_l_k * x_1_% * z_k_i+1) + 290 x_B_1 x_HH 2 + ...
return PolyBinary({(('X', nodel, i), ('X', node2, i+1)): s.t. 1==1xB_1+1xB2+ ...
instance.graph[node1] [node2] ['weight '] 1==1xHH 1+ 1 x_HH 2 + ...
for nodel, node2 in instance.graph.edges
for i in range(len(instance.graph.nodes)+1)}) ==1x_B_ 1+ 1 x_HH_1 + ...
@staticmethod B
def _get_constraints(instance): x_*_* in {0,1}

constraints = {}

# for all 4: sum_l z_1_% ==

for i in range(len(instance.graph.nodes)+1):
poly = PolyBinary({(('X', n, i),): 1 for n in instance.graph.nodes})
constraints[f"one_node_per_{i}"] = ConstraintBinary(poly, 1, 1)

penalty_scale = 10

bjective.
_terms ()

objective_terms
min P_1 * (290 x_B_O x_HH_1 + ...)
+P_2 % (1 xB_1x B2+ ...)
+P_3 x (1 x B_1 x HH 1+ ...)
s.t. x_*_* in {0,1}

return constraints

ms.get_objective

objective
min 290 x_B_O0 x_HH_1 + ...
+ 10 x_B_1 x_B_2 + ...

SCIPModel.get_from_constrained_objective SCIPModel .get_from_objective + 10 x B_1 x HH_1 + ...
(constrained_objective) (objective) s.t. x_*_* in {0,1}
variable_mapping objective_compact
x_B_0 <->x0 min 290 x0 x1 + 290 x2 x3 + ...
x_HH_1 <->x1 + 10 x_10 x_20 + ...
.. s.t. x* in {0,1}

ipact.polynomial.
presentation()

h = [10, 10, ...

J=1[l[0, 290, ...
o, o,...
|

scip_model

solution_vect
[0, 1,0, .

on (solution_vector) .
pact (variable_mapping)

solution
scip_model.solve() X BO =0
x HH_1=1

FIGURE 2. Simplified class workflow diagram in quark for the TSP problem. Users have to provide an Instance and a
ConstrainedObjective class [cf. (1)] to define the use case, either by themselves or by loading them from quapps. A specific instance is
defined via a dictionary containing the graph edges. Then all shown transformation steps to the QUBO format are automatically
available. The blue boxes indicate the user input and the yellow boxes the supported solvers and algorithms.
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those encompass some standard
mathematical procedures, the op-
timal reduction of polynomials for
instance is a nontrivial problem. For
an exhaustive study of the perfor-
mance of the different implemented
reduction methods, we refer to the
work by Schmidbauer et al.!”

The final QUBO output is en-
coded in an appropriate format and
can then be interfaced to multiple
different computation back ends. For
SCIP a corresponding ScipModel can
be created and solved either directly
from the optimization problem en-
coded in the ConstrainedObjective class
or from the corresponding QUBO
in the Objective class. The other solv-
ers directly accept the QUBO coef-
ficients as input. The computational
result is returned as bit string or
set of bit strings from the solv-
ers and can then be decoded to the
original problem formulation and
checked against the problem con-
straints, as illustrated in Figure 1. In

the example case of the TSP, the as-
signment of the binary variables de-
scribes the shortest path to traverse
all nodes of the given input graph.

To show the possible outcome of
such a simulation of the TSP, we have
performed simulations of ten random
TSP instances for increasing problem
sizes, i.e., increasing number of stops,
with edge weights between 0 and 10.
We used the exact SCIP solver, the
D-Wave Advantage2 prototype2.6
quantum annealer, computing 1,000
samples per instance, and its classical
counterpart, the simulated annealing
algorithm with 100 samples per in-
stance. Note that we did not optimize
the different algorithm and solver pa-
rameters, and thus our results do not
serve as a benchmark but shall give
the reader an idea of the different
simulation back ends.

Figure 3(a) shows the success
probabilities of the two heuristic
methods to find the optimal solu-
tion, which has been calculated using

the SCIP solver. One sees the expo-
nential decrease in finding the exact
ground state for both algorithms for
increasing problem sizes, with the
quantum algorithm being outper-
formed by its classical counterpart.
In the cases where the success prob-
ability is zero, only suboptimal solu-
tions were found. Figure 3(b) shows
the computation time. These show
the exponential increase in computa-
tion time of the classical algorithms
against the constant scaling of the
quantum annealing. Therefore, with
improving quantum hardware, it is
expected that these might be able to
outperform the classical algorithms.
The QUBO generation by quark per-
forms decently, having computation
times at least an order of magni-
tude faster than the classical solvers.
Therefore, it is currently no compu-
tational bottleneck.

The quapps package is based
on quark and provides a library of
standard implementations of some
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FIGURE 3. Exemplary results for the TSP problem for 10 random instances using different solver back ends. (a) The success
probability with increasing problem size against the exact SCIP solution. (b) The computation time per instance for each solver. The
red curve shows QUBO generation time by quark.
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common discrete optimization prob-
lems, such as the TSP. It serves mul-
tiple purposes. First, it is a low-level
entry point for users, who are new
to both quantum computing and
discrete optimization, to get famil-
iar with exemplary optimization
problems, their implementation in
quark, and their formulation as QU-
BOs for quantum optimization.
Currently, eight different problems
can be easily loaded and instantiated
using only basic input, like a graph.
Second, these standard problems are
often the base of more complex real-
world problems, and users can easily
extend them to their needs.

But the main strength of the
quapps package is the easy gen-
eration of ready-to-use data for
benchmarks. For this reason, the
problem instances in quapps con-
tain random instance generators,
which allow for quick generation
of such data. This is particularly
useful for quantum algorithms in
the noisy intermediate-scale quan-
tum (NISQ) era, where every quan-
tum hardware is still prone to error
and every machine has a different
set of requirements on both prob-
lem and algorithm to be a suitable
solver. As such, the performance
of different optimization problems
and quantum algorithms can dif-
fer significantly depending on the
hardware back end and have to be
tested individually. Generally, it is
a priori not known which of the al-
gorithm and hardware choices are
the best to solve a given optimiza-
tion problem. This makes bench-
marking the use case on different
quantum computation platforms
using different algorithms inevi-
table. Therefore, in conjunction to
the quapps library, we also provide
already instantiated optimization
problems for these tests.

In addition to the two open source
libraries described in the previous
chapters, we also provide an instance
data set. It consists of already instan-
tiated optimization problems for the
problem types that are implemented
in the quapps library. They are publicly
available and will be permanently
updated with new problem implemen-
tations added to the quapps library.’

We have chosen these random
instances to test different aspects of
possible quantum hardware. There-
fore, for all problems implemented in
quapps, we provide examples with in-
creasing problem sizes, e.g., increas-
ing graph sizes, which translates to
a higher qubit count needed on the
quantum hardware. Another typical
property which we vary is the graph
densities for all applications that are
representable as a graph. This is use-
ful to test the chosen hardware and
algorithm setup for problems which
require a high qubit connectivity.

Similarly, other input problem
properties that may affect the per-
formance of a quantum algorithm
are covered by the instance data
set. Specifically, the different prob-
lem types result for instance in dif-
ferent coefficient structures: while
the unweighted Max Cut problem
only yields coefficients of 1 and has
no linear terms, the prime factoriza-
tion formulation results in increas-
ing powers of two for both the linear
and quadratic terms and the random
Ising models spread the coefficient
values broadly.

As shown in Figure 1, the pack-
age quapps currently implements eight
specific problem types for quantum
optimization. A detailed description
of each of these problem types can
be found in the corresponding repos-
itory.3 We will therefore not explain

the problems in more detail here.
All problem instances were saved in
HDFS files using our build in quark
1O routines.

For six of the quapps problems, we
have created benchmark instances
using the random generators imple-
mented within these problems. They
provide problem instances with ran-
domly chosen input values which
depend on the structure of the prob-
lem, e.g., a fully connected graph
with random edge weights. In view
of the qubit numbers that will be
available in the near future, we lim-
ited ourselves to instances with a
maximum of 128 binary variables
in the resulting reformulated Ising
problem because each of these bi-
nary variables is mapped to at least
one qubit but usually multiple qubits
on the hardware to embed the prob-
lem into the hardware graph.

We have estimated that these
problems are the maximum prob-
lem sizes runnable on current quan-
tum hardware. These range between
~ 56 qubits for ion trap architecture
to a few hundreds of qubits for su-
perconducting systems. The ana-
log D-Wave annealer provides over
5,000 qubits. The latter system ar-
chitectures, however, do not have
fully connected qubits. Therefore,
an optimization problem has to be
embedded onto the hardware which
significantly reduces the comput-
able problem sizes. Nevertheless,
we will update our instance data set
constantly to match the increasing
hardware resources in the coming
years. All together this resulted in
different combinations of the defin-
ing parameters, which are described
for each problem in Figure 1. In to-
tal, we provide 764 already instanti-
ated problems in our data set, which
are ready to use for algorithmic and
hardware benchmarking and testing.
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In this section, we embed our soft-
ware into the growing landscape of
quantum software. Specifically, we
compare the quark package with some
of the most used software packages

for formulating QUBOs, which are
D-Wave ocean SDK, ! Qiskit,!? Mu-
nich Quantum Toolkit - Quantum
Auto Optimizer (MQT-QAO),'3
N-choose-K,'* and PyQUBO.!® The
goal is to highlight the similarities
and differences between the different

packages and to embed our work
into the zoo of existing frameworks.
As criteria, we have chosen several
advanced methods of the QUBO
handling as well as a number of dif-
ferent interfaced standard solvers
and algorithms.

Table 1. Comparison of different QUBO handling packages for some advanced QUBO
handling techniques and their interfaced solvers/algorithms. Note, that we have
not found the preprocessing features in the D-Wave ocean suite, but we also did not

manage to verify their nonexistence due to the vast structure of this code.

D-Wave
ocean SDK'' | Qiskit'2 MQT-QA0'™ | N-choose-K'* | Py-QUBO'™

QUBO and Solution handling

Multiple integer encodings xd xd 4
Can handle arbitrary polynomial constraints v X v
Can handle boolean constraints X X 4
Advanced polynomial reduction techniques? v X v
Automatic problem simplification in ? X X
preprocessing®

Validity and redundancy checks of constraintsin ~~ ? X X
preprocessing®

Automated slack variable handling v X v
Decoding of solution object v v v
Automated constraint checks of solution v v 4
10-routines for problem instances X X X
Interfaced solver

D-Wave annealer v v v/
Simulated annealing v v v
QAOA simulator X v v
VQE solver X v v
MI(NL)P solver X v X
Grover search X v 4
aPolynomial reduction technigues beyond the simple reduction of variable pairs in the naive ordering as they appear.

bChecks if the given objective function and constraints fix the value of some binary variables and substitute them accordingly.
CIncludes some checks if the given constraints are commensurate with one another and if redundant ones exist. The latter will be omitted.

9dProvides only binary encoding.
©Can be d via the Qiskit optimize p
MQT-QAO: Munich Quantum Toolkit-Quantum Auto Optimizer.
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The results of this comparison
are shown in Table 1. It shows that,
while some basic features, such as
solution decoding and constraint
checks, are available in all listed
packages, many of the more ad-
vanced QUBO handling techniques
are absent in competing tools. This
includes even essential functions,
such as the handling of slack vari-
ables and polynomial reductions,
which are highly nontrivial to imple-
ment as a nonexpert and vital for the
QUBO formulation.

Analyzing the table, we identify
the quark package, the MQT-QAO
package and the D-Wave ocean as
the most versatile tools. In terms
of usability, the MQT-QAO pack-
age provides a highly optimized
workflow for the handling of op-
timization problems, which makes
it a strong competitor of our quark
package. While quark has a few more
preprocessing features which aim at
simplifying the optimization prob-
lem and checking for redundant
constraint in a preprocessing step
as well as preimplemented 10-rou-
tines, it features no native connec-
tion to the Grover Search algorithm
as the MQT-QAO package does.
The biggest distinction between
quark and MQT-QAO from a user
perspective is the interfaced quapps
package, which already provides a
growing set of preimplemented op-
timization problems.

A similar set of preimplemented
problems is only provided within
the D-Wave Leap platform, which
is a very powerful software suite
but is in our experience, not in-
tuitive in its handling. It provides
many different problem classes,
which can have very different in-
put types and functionalities,
that can be confusing for nonex-
pert users to handle. Therefore,
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we believe that our quark package
is a useful addition to the existing
quantum software, as it provides
very easy problem encoding and
handling and equips the users with
all necessary tools to easily create
benchmark instances of their own
problems for different solvers and
quantum algorithms.

n this work, we have outlined

with quark and quapps two inter-

twined software packages that
fill the need of easy-to-use software
to code and ultimately run discrete
optimization problems on both
quantum and classical hardware.
While quark provides powerful
methods to encode and transform
optimization problems into a for-
mat suitable for quantum comput-
ers and classical solvers, quapps
provides a library of standard op-
timizations problems that can eas-
ily be used for both performance

tests and as a base for more com-
plex problems.

Through its interface to multiple
different solver back ends, this al-
lows also nonexpert users to test
the best optimization platform and
to identify the suitability of quan-
tum algorithms for their problem.
In this context benchmarking differ-
ent quantum algorithms and hard-
ware back ends plays a vital role
within the NISQ era because of the
variety of different quantum com-
puter platforms. An optimization
problem instance data set derived
from the quapps package is provided
to simplify this procedure. The data
set will be updated continuously. We
will soon add more problem types,
such as the subset sum, knapsack,
and graph partitioning problem,
which have recently been added
in quapps. The implementation of a
load balancing and an antenna op-
timization problem is still ongoing.
Bigger instance sizes will be added,

SEPTEMBER/OCTOBER 2025 | IEEE SOFTWARE a1


mailto:lukas.windgaetter@dlr.de

FOCUS: QUANTUM SOFTWARE AND ITS ENGINEERING

whenever more powerful quantum
hardware is available in the next
years to run these.

In conjunction, the quark and
quapps packages offer an important
contribution to make the rapidly in-
creasing field of quantum comput-
ing accessible to a broader audience,
which has no prior knowledge in
quantum information, and to sim-
plify algorithm benchmarking for
current quantum computers. &
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