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The existence of a maximally entangled pure state is a cornerstone result of entanglement theory
that has paramount consequences in quantum information theory. A natural generalization of this
property is to consider whether a notion of maximal entanglement is possible among all states with
the same spectrum (where the aforementioned case of pure states corresponds to the particular
choice in which the spectrum is a delta distribution, i.e., rank-1 states). Despite positive evidence
in the past that such a notion might exist at least in the case of two-qubit states, it was recently
shown in [Phys. Rev. Lett. 133, 050202 (2024)] that the answer to the above question is negative.
This reference proved this for particular choices of the spectrum in the case of rank-2 two-qubit
density matrices. While this settles the problem in general, it still leaves open whether there are
other choices of the spectrum outside the case of pure states where a maximally entangled state
for a fixed spectrum might exist. In this work we extend this impossibility result to all rank-2 and
rank-3 two-qubit states as well as for a large class of eigenvalue distributions in the case where the
rank equals four.

I. INTRODUCTION

The study of entanglement plays a central role in the
foundations of quantum mechanics. This interest has
been boosted in the last decades due to its applications
in quantum information theory, where it is regarded as
a resource that provides an advantage in order to imple-
ment certain tasks. A crucial question from this point
of view is to identify the entangled state that maximizes
the performance of a given task. In particular, the analy-
sis becomes simpler if there exists a state that is optimal
irrespectively of the particular task, giving thus rise to a
universal notion of maximal entanglement.

These questions can be addressed in the context of
entanglement theory (see e.g. the review articles [1–3]),
which is formulated as a quantum resource theory [4]. In
quantum information theory entangled states are used by
spatially separated parties and, hence, bound to proto-
cols pertaining to the class of local operation and clas-
sical communication (LOCC). This immediately induces
an operational order in the set of entangled states and it
makes it possible to quantify entanglement. An entan-
glement measure is given by any function from the set
of states to the non-negative real numbers that preserves
the order induced by LOCC manipulation and maps all
non-entangled (i.e., separable) states to zero.

Thus, the study of LOCC protocols is a pivotal part
of entanglement theory and Nielsen’s theorem [5], which
characterizes LOCC convertibility between bipartite pure
states, is a central result. In particular, it implies that
LOCC induces in general only a partial order in the set
of entangled states. That is, there exists pairs of in-
comparable states under LOCC and there cannot be a
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unique entanglement measure. Instead, there are differ-
ent entanglement measures, which can be provided with
different operational meanings in relation to the partic-
ular kind of advantage one quantifies, and, in general,
the notion of some state being more useful than another
can only be made task-dependent. This notwithstand-
ing, a salient feature of this theorem is that this notion
can be made task-independent for pairs that are related
by the partial order. In particular, it turns out that the
two-qudit generalized Bell state,

|ϕ+d ⟩ =
1√
d

d∑
i=1

|ii⟩, (1)

can be transformed by LOCC into any other two-qudit
state (pure or not). According to the above discussion,
it then follows that |ϕ+d ⟩ is the maximally entangled two-
qudit state. The existence of a universal notion of maxi-
mal entanglement is a very pleasant feature of the theory
of bipartite entanglement. Whether it is e.g. teleporta-
tion or entanglement-assisted state discrimination, the
above state must be the most useful state for any task to
be implemented by LOCC protocols once the underlying
local dimension d of our physical system is fixed. This
also entails that |ϕ+d ⟩ maximizes all entanglement mea-
sures among all two-qudit states and it provides a way
to gauge the entanglement content of all other states.
Therefore, in an ideal scenario we would always choose

to distribute the maximally entangled state, as it is uni-
versally optimal for any LOCC task. Suppose, however,
that we have a device that only produces states in some
set S, which is a strict subset of the set of all 2-qudit
states. If |ϕ+d ⟩ /∈ S, then it is not a priori clear what
the most entangled state in S is and it could be that
our choice had to be conditioned on the task to be im-
plemented, i.e., on a particular choice of entanglement
measure to be optimized. Nevertheless, a universal (i.e.,
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task-independent) notion of maximal entanglement in S
might be possible and the principles of entanglement the-
ory clearly dictate how to formulate this. We will say, if
it exists, that ρ ∈ S is the maximally entangled state in
the set S if for every state σ ∈ S, there exists an LOCC
map Λ such that Λ(ρ) = σ. One can easily envision situ-
ations where this problem might arise in practice, in par-
ticular because in this case one is bound to mixed states
and perfect pure states such as |ϕ+d ⟩ cannot be prepared.
A particularly relevant instance of this problem occurs
when one studies entanglement generation schemes by
Hamiltonian (i.e., joint unitary) evolution on an input
separable state such as those considered in [6, 7]. If this
input state is pure, we would always choose to engineer
the unitary evolution to lead to the maximally entangled
state |ϕ+d ⟩. However, in the presence of noise the input
state will become mixed and, even if we have perfect
control of the induced evolution, in this case the output
could never be a pure state such as |ϕ+d ⟩. In fact, un-
der the above assumption, we can and only can prepare
states that have the same spectrum as the initial separa-
ble input state.

To formalize this problem, we consider the simplest
case of two-qubit states and we define S(λ1, λ2, λ3, λ4) to
be the set of all two-qubit density matrices with ordered
eigenvalues given by (λ1, λ2, λ3, λ4). The question we
want to address is for any given spectrum whether there
exists a maximally entangled state in S(λ1, λ2, λ3, λ4),
and, if so, what could this state be. Notice that, accord-
ing to what we have been discussing, |ϕ+2 ⟩ is the maxi-
mally entangled state in S(1, 0, 0, 0), so this question is
also a natural generalization of the above. Interestingly,
Ref. [8] showed that for any choice of eigenvalue distribu-
tion the same state in S(λ1, λ2, λ3, λ4) is the unique (up
to local unitary equivalence) maximizer among all states
in S(λ1, λ2, λ3, λ4) of three different important entangle-
ment measures: the entanglement of formation [9], the
relative entropy of entanglement [10] and the negativity
[11]. If a maximally entangled state in S(λ1, λ2, λ3, λ4)
existed, it has to maximize all entanglement measures
among S(λ1, λ2, λ3, λ4), so this was taken as positive evi-
dence that the family of states found in [8] could provide
the maximally entangled states in S(λ1, λ2, λ3, λ4) and
they have been referred to in the literature as MEMSs
(maximally entangled mixed states). However, against
this evidence, it has been recently proven in [12] that
this is not the case and that a universal notion of max-
imal entanglement for a fixed spectrum does not always
exist. Namely, it has been shown therein that there is
no maximally entangled state in the set S(λ, 1 − λ, 0, 0)
whenever λ ∈ (2/3, 1). This settles the question in gen-
eral and shows that there is unfortunately not always
a universally optimal choice of output state in the sce-
nario of entanglement generation by Hamiltonian evolu-
tion described above. Hence, this choice must be condi-
tioned on a particular task in which one wants to max-
imize the entanglement-based advantage. Nevertheless,
the result of [12] still leaves open whether there are other

choices of the spectrum for which a maximally entangled
state in S(λ1, λ2, λ3, λ4) might exist beyond the case of
S(1, 0, 0, 0). This is the goal of the present work.

A possible way to show that there is no maximally
entangled state in S(λ1, λ2, λ3, λ4) is to find an entan-
glement measure different to those considered in [8] that
has a different maximizer than the corresponding MEMS.
However, the explicit computation of entanglement mea-
sures relies on hard optimization problems and this seems
to be a daunting task. The approach followed in [12]
goes instead to the very definition of maximally en-
tangled state in a set. Since entanglement measures
cannot increase under LOCC, the result of [8] implies
that no isospectral local-unitary-inequivalent state can
be transformed by LOCC into the corresponding MEMS.
Thus, if we find a single instance of an isospectral local-
unitary-inequivalent state that cannot be obtained ei-
ther by LOCC from the corresponding MEMS, we can
conclude that there is no maximally entangled state in
S(λ1, λ2, λ3, λ4) for that eigenvalue distribution. Never-
theless, the problem of deciding when an LOCC proto-
col exists transforming a given mixed state into a given
mixed target state is also known to be highly non-trivial.
In fact, there is no generalization of Nielsen’s theorem to
this case and only the particular instances of probabilis-
tic [13] and approximate [14] transformations among pure
states and transformations from pure states to ensembles
[15] and mixed states [16] have been characterized. Ref-
erence [12] obtains its result by considering a well-known
relaxation of LOCC to the superset of the so-called non-
entangling (NE) maps [17–25]. In addition to making it
possible to find a relatively simple counterexample of a
target state that cannot be obtained by NE maps from
the MEMS when the spectrum is given by (λ, 1− λ, 0, 0)
with λ ∈ (2/3, 1), one obtains as a by-product that a
maximally entangled state for a fixed spectrum in this
case cannot exist in any resource theory of entanglement.
This is because, according to the formalism of quantum
resource theories [4], the maximal set of transformations
into which one can relax LOCC in the single-copy regime
is NE. Thus, while, for instance, the resource theory of
pure multipartite entanglement has a cleaner picture by
considering this relaxation [21], this is not the case for
the problem at hand.

In this paper, we put forward completely different tech-
niques than those used in [12] by considering a differ-
ent but also well-known relaxation of LOCC: the class
of separable (SEP) maps [26–32]. This allows us to find
isospectral states that cannot be obtained by LOCC from
the MEMS of [8] for all eigenvalue distributions corre-
sponding to the cases of rank equal to two and three.
Thus, we conclude that there cannot exist a maximally
entangled state in the set S(λ1, λ2, λ3, 0) (if λ2 ̸= 0).
Unfortunately, these techniques do not seem to extend
easily to the full-rank case. For this reason, and also be-
cause of that pointed out above of whether this notion is
possible in a less restrictive resource theory of entangle-
ment, we also generalize the techniques used in [12] based
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on NE transformations. This makes it possible to write
the convertibility question as a linear program [33] and
perform a systematic analysis. While this does not al-
low us to exclude the existence of a maximally entangled
state in S(λ1, λ2, λ3, λ4) for all possible eigenvalue distri-
butions, this reproduces to a large extent the results in
the rank-deficient cases under SEP and discards a large
class of spectra in the full-rank case even under this more
permissive class of operations. Thus, our results suggest
that a maximally entangled two-qubit state for a fixed
spectrum never exists outside the pure-state case, and,
if this is not the case, it can only happen in very par-
ticular cases. In addition to this, we believe that our
results might be of independent interest for the general
and relatively unexplored problem of discerning LOCC
convertibility in the case of mixed states.

This article is structured as follows. We set our nota-
tion and provide basic definitions in Sec. II. In Sec. III we
consider SEP transformations among mixed states and
prove the non-existence of a maximally entangled two-
qubit state for a fixed spectrum in the non-pure rank-
deficient cases. In Sec. IV we present the aforementioned
results based on NE convertibility. We conclude with
some discussion on the obtained results in Sec. V.

II. PRELIMINARIES

In this article we only consider two-qubit quantum
systems. Hence, their corresponding Hilbert space is
C2 ⊗ C2 ≃ C4. Thus, any element |ψ⟩ of this space
will always be given with respect to the canonical basis
{|i⟩ ⊗ |j⟩ := |ij⟩}, i.e.,

|ψ⟩ =
1∑

i,j=0

ψij |ij⟩, (2)

and analogously for any 4× 4 matrix X, i.e.

X =

1∑
i,j,k,l=0

Xijkl|ij⟩⟨kl|. (3)

The set of all two-qubit states is characterized by the set
of two-qubit density matrices, which is denoted by D,
i.e.,

D = {ρ ∈ C4×4 : ρ† = ρ, ρ ≥ 0, trρ = 1}. (4)

The range, kernel and support of a matrix will be de-
noted respectively by R, ker and supp . Since all density
matrices are Hermitian, for every ρ ∈ D it holds that
R(ρ) = supp (ρ) := (ker(ρ))⊥. Moreover, given any pure-
state ensemble decomposition {pi, |ψi⟩}ni=1 of ρ ∈ D, i.e.,

ρ =

n∑
i=1

pi|ψi⟩⟨ψi| (5)

with pi > 0 ∀i and
∑

i pi = 1, it is well-known that it
must hold that |ψi⟩ ∈ R(ρ) ∀i (see e.g. [34]). We will use

S ⊂ D to refer to the set of separable two-qubit density
matrices, that is, density matrices ρ ∈ D additionally
fulfilling that they can be written as

ρ =
∑
i

pi|ϕi⟩⟨ϕi| ⊗ |χi⟩⟨χi|, (6)

for some choice of convex weights {pi} and unit-norm
vectors |ϕi⟩, |χi⟩ ∈ C2 ∀i. This set can be characterized
by the partial transposition criterion [35, 36]. It states
that ρ ∈ S if and only if (iff) ρΓ ≥ 0, where the super-
script Γ stands for the image under partial transposition,
i.e., the linear map defined by the following action on the
computational basis: (|ij⟩⟨kl|)Γ = |kj⟩⟨il|. A state that
is not separable is said to be entangled. A pure state
is described by a rank-1 density matrix and it can be
characterized by a (not necessarily normalized) choice of
element in C2 ⊗ C2 that spans its support. In this case
ρ ∝ |ψ⟩⟨ψ| and notice that ρ is separable iff |ψ⟩ = |ϕ⟩⊗|χ⟩
for some choice of |ϕ⟩, |χ⟩ ∈ C2. Thus, we label accord-
ingly the (not necessarily normalized) elements of C2⊗C2

as separable or entangled.
State transformations in quantum theory are given by

completely positive and trace-preserving (CPTP) maps.
Any such map Λ : D → D admits a so-called Kraus
representation,

Λ(·) =
k∑

i=1

Ki ·K†
i , (7)

where {Ki} ⊂ C4×4 satisfying
∑

iK
†
iKi = 1l. For these

and other facts about the theory of CPTP maps see e.g.
[37]. In the following we will consider particular classes
of CPTP maps. The class of LOCC maps is notoriously
involved to define and the reader is referred to [38]. Here
we will only mention that local-unitary (LU) transforma-
tions, i.e., Λ : D → D such that

Λ(·) = UA ⊗ UB · U†
A ⊗ U†

B (8)

with UA, UB ∈ C2×2 unitary matrices, are always LOCC.
Furthermore, notice that these transformations are al-
ways invertible by another LU transformation, and,
hence, by LOCC. Therefore, states related by local uni-
taries are always interconvertible by LOCC and, conse-
quently, equivalent from the point of view of entangle-
ment theory. Hence, whenever we speak about the set of
entangled states and we make claims such as a given state
being the unique entangled state having some property,
it should be understood that we are speaking about the
corresponding equivalence classes under this equivalence
relation. It is known that the set of LOCC maps is a
strict subset of the set of SEP maps, which, in turn, is
a strict subset of the set of NE maps (see e.g. [38]). A
CPTP map Λ : D → D is in the class of SEP maps if
it admits a Kraus representation as in Eq. (7) such that
Ki = Ai⊗Bi ∀i for some matrices {Ai}, {Bi} ⊂ C2×2. A
CPTP map Λ : D → D is NE if Λ(ρ) ∈ S ∀ρ ∈ S. These
two sets of maps are topologically closed and, therefore,
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if ρ ∈ D can be transformed to arbitrary precision to a
state σ ∈ D by SEP (NE) maps, then there must exist a
SEP (NE) map Λ : D → D such that Λ(ρ) = σ.

Given any possible spectrum for a density matrix in D,

we will denote by λ⃗ = (λ1, λ2, λ3, λ4) the corresponding
4-tuple of eigenvalues arranged in non-increasing order
(which must then satisfy

∑
i λi = 1 and λi ≥ 0 ∀i) and,

as discussed in the introduction,

S(λ1, λ2, λ3, λ4) = {ρ ∈ D : eig (ρ) = {λ1, λ2, λ3, λ4}},
(9)

where eig (·) stands for the spectrum of a matrix. The
elements of the Bell basis of C2 ⊗ C2 are denoted by

|Φ1⟩ =
1√
2
(|00⟩+ |11⟩), |Φ2⟩ =

1√
2
(|00⟩ − |11⟩),

|Φ3⟩ =
1√
2
(|10⟩+ |01⟩), |Φ4⟩ =

1√
2
(|10⟩ − |01⟩),

(10)

and the corresponding density matrices by Φi = |Φi⟩⟨Φi|
(i ∈ {1, 2, 3, 4}). The MEMSs of [8] that maximize sev-
eral entanglement measures in S(λ1, λ2, λ3, λ4) are then
given by

ρλ⃗ = λ1Φ1 + λ2|01⟩⟨01|+ λ3Φ2 + λ4|10⟩⟨10| :=
4∑

i=1

λiξi,

(11)
where we use the shorthand notation

ξ1 = Φ1, ξ2 = |01⟩⟨01|, ξ3 = Φ2, ξ4 = |10⟩⟨10|.
(12)

As explained in the introduction, if there exists a choice

of λ⃗ and σ ∈ S(λ1, λ2, λ3, λ4) such that ρλ⃗ cannot be
transformed by SEP or NE into σ, then we can con-
clude that there is no maximally entangled state in
S(λ1, λ2, λ3, λ4). We will often consider states in D that
are diagonal in the Bell basis, i.e.,

σ =

4∑
i=1

piΦi, (13)

where
∑

i pi = 1 and pi ≥ 0 ∀i. These states have {pi}
as their spectrum and they are known to be entangled
iff maxi pi > 1/2 [39]. In fact, it is known [40] that
tr(ρΦi) ≤ 1/2 must hold for any i ∈ {1, 2, 3, 4} if ρ ∈
S. In particular, the main result of [12] is that there
exists no NE map transforming ρ(λ,1−λ,0,0) into λΦ1 +
(1 − λ)Φ3 when λ ∈ (2/3, 1), implying that there is no
maximally entangled state in S(λ, 1 − λ, 0, 0) under the
above hypothesis on the parameter λ.

It should be noted that it follows from the results of
[8] that all elements of S(λ1, λ2, λ3, λ4) are separable iff

λ1 − λ3 − 2
√
λ2λ4 ≤ 0. (14)

Thus, the question of the existence of a maximally entan-
gled state in S(λ1, λ2, λ3, λ4) only makes sense under the

assumption that the above inequality is violated. This is
always the case when the rank equals 2. The same hap-
pens when the rank equals 3 except in the case λ1 = λ3
(i.e., λ⃗ = (1/3, 1/3, 1/3, 0)).

III. IMPOSSIBILITY RESULTS VIA SEP
TRANSFORMATIONS

To study SEP transformations among rank-deficient
states in D, we will use certain properties of strict sub-
spaces of C2⊗C2 that will correspond to the supports of
the involved density matrices (which, as mentioned be-
fore, is the same as their ranges). In particular, notice
first that if V is a 2-dimensional subspace of C2⊗C2 then
either all states in V are separable or there is only one
separable state or there are only 2 separable states [41].
If V = span{|χ1⟩, . . . , |χm⟩} and A,B ∈ C2×2, we denote
by (A⊗B)V := span{A⊗B|χ1⟩, . . . , A⊗B|χm⟩}.

Lemma 1. If V is a 2-dimensional subspace of C2 ⊗C2

and A,B ∈ C2×2 are invertible, then (A ⊗ B)V is a 2-
dimensional subspace that has the property of having all
states separable or just one or just two iff V has the same
property.

Proof. This is obvious from the fact that A and B are
invertible (and, hence, so is A⊗B and (A⊗B)V must be
2-dimensional as well) and that in this case |ψ⟩ ∈ C2⊗C2

is separable iff so is A⊗B|ψ⟩.

Three-dimensional subspaces of C2 ⊗ C2 can be cat-
alogued by whether their (one-dimensional) orthogonal
complement is spanned by a separable or an entangled
state. We have a similar property as in the previous
case.

Lemma 2. If V is a 3-dimensional subspace of C2 ⊗C2

and A,B ∈ C2×2 are invertible, then (A ⊗ B)V is a 3-
dimensional subspace that has the property of having a
separable or an entangled orthogonal complement iff V
has the same property.

Proof. The proof follows the same reasoning as the pre-
vious lemma by noticing that if |ψ⟩ ∈ V ⊥, then A−1 ⊗
B−1|ψ⟩ ∈ ((A⊗B)V )⊥.

We can now state and prove the main results in this
section. Given the different structures described above,
we consider the cases of rank equal to two and rank equal
to three separately. However, the main idea behind the
proofs is the same.

Theorem 3. There is no maximally entangled state in
S(λ, 1− λ, 0, 0) for all λ ∈ [1/2, 1).

Proof. Let ρλ = ρ(λ,1−λ,0,0) (cf. Eq. (11)). As already
explained, it is enough to prove that for every given λ ∈
[1/2, 1) there exists no SEP map that transforms ρλ into a
particular choice of state in S(λ, 1−λ, 0, 0). We establish
this choice in the following. For a convenient choice of
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ϵ ∈ R to be specified later, we denote by |Φ1(ϵ)⟩ the
properly normalized state proportional to |Φ1⟩ + ϵ|10⟩.
Additionally, we use Φ1(ϵ) = |Φ1(ϵ)⟩⟨Φ1(ϵ)| and define

ρλ(ϵ) = λΦ1(ϵ) + (1− λ)|01⟩⟨01|. (15)

Notice that ρλ(ϵ) is isospectral to ρλ = ρλ(0) for every
ϵ and that for every choice of λ ∈ [1/2, 1) there exists
a choice of ϵ > 0 sufficiently small such that ρλ(ϵ) is
entangled as well. This is due to the well-known fact that
the set of separable states is topologically closed (see e.g.
[34]). Using such a choice of ϵ for any given λ we prove
the theorem by showing that ρλ cannot be transformed
to ρλ(ϵ) by SEP. Assume then for a contradiction that
there exists a SEP map Λ : D → D such that

Λ(ρλ) = ρλ(ϵ) (16)

and let Vϵ = span{|Φ1(ϵ)⟩, |01⟩} = R(ρλ(ϵ)), which has
the property of containing exactly two separable states
for all ϵ > 0 (see e.g. [42]). On the other hand, V0 =
span{|Φ1⟩, |01⟩} = R(ρλ) contains exactly one separable
state [42]. By linearity, Eq. (16) enforces that

λΛ(Φ1) + (1− λ)Λ(|01⟩⟨01|) = λΦ1(ϵ) + (1− λ)|01⟩⟨01|.
(17)

Since Λ(Φ1) and Λ(|01⟩⟨01|) are positive semidef-
inite, this implies that V ⊥

ϵ ⊆ ker(Λ(Φ1)) and
V ⊥
ϵ ⊆ ker(Λ(|01⟩⟨01|)). Consequently, we have that
R(Λ(Φ1)) ⊆ Vϵ and R(Λ(|01⟩⟨01|)) ⊆ Vϵ. If there ex-

ists a SEP map Λ(·) =
∑

iAi ⊗Bi ·A†
i ⊗B†

i fulfilling the
last condition, then{

|ψi⟩ :=
Ai ⊗Bi|Φ1⟩

||Ai ⊗Bi|Φ1⟩||

}
,

{
|ϕi⟩ :=

Ai ⊗Bi|01⟩
||Ai ⊗Bi|01⟩||

}
(18)

give pure states respectively in ensemble decompositions
of Λ(Φ1) and Λ(|01⟩⟨01|), and, therefore, they all must
belong to their respective ranges and, hence, to Vϵ (when-
ever the above norms are non-zero). Moreover, given that
ρλ(ϵ) is entangled, so must be Λ(Φ1) and there must ex-
ist at least one value of i (take without loss of generality
i = 1) such that A1 and B1 are invertible and |ψ1⟩ ̸= 0
is an entangled state. The above invertibility property
guarantees that |ϕ1⟩ ̸= 0, which must be separable. Thus,
|ψ1⟩ and |ϕ1⟩ are two different (and linearly independent)
vectors in Vϵ and, consequently, Vϵ = span{|ψ1⟩, |ϕ1⟩}.
However, this means that Vϵ = (A1 ⊗ B1)V0 and, as per
Lemma 1, we have reached a contradiction.

Theorem 4. There is no maximally entangled state in

S(λ1, λ2, λ3, 0) for any 4-tuple of ordered eigenvalues λ⃗ =
(λ1, λ2, λ3, 0) with λ1 ̸= λ3 > 0 (cf. Eq. (14)).

Proof. The proof is very similar to the case of rank equal
to 2 and we use the same notation as therein, where now

ρλ⃗(ϵ) = λ1Φ1(ϵ) + λ2|01⟩⟨01|+ λ3Φ2, (19)

which still has the property of being isospectral to ρλ⃗ =
ρλ⃗(0). For the same reasons as before, for every choice of

λ⃗ such that ρλ⃗ is entangled (i.e., λ1 ̸= λ3), there exists
a choice of ϵ > 0 sufficiently small such that ρλ⃗(ϵ) is

entangled as well. For such a choice of ϵ for any given λ⃗,
assume then for a contradiction that there exists a SEP
map Λ : D → D such that

Λ(ρλ⃗) = ρλ⃗(ϵ) (20)

and let Vϵ = span{|Φ1(ϵ)⟩, |01⟩, |Φ2⟩} = R(ρλ⃗(ϵ)), which
has the property of having an entangled orthogonal com-
plement for all ϵ > 0 (spanned by ϵ|00⟩+ϵ|11⟩−

√
2|10⟩)1.

On the other hand, the orthogonal complement of V0 =
span{|Φ1⟩, |01⟩, |Φ2⟩} = R(ρλ⃗) is spanned by the sepa-
rable state |10⟩. By linearity of Λ, like before, it must
hold that R(Λ(Φ1)), R(Λ(|01⟩⟨01|)), R(Λ(Φ2)) ⊆ Vϵ and

if there exists a SEP map Λ(·) =
∑

iAi ⊗ Bi · A†
i ⊗ B†

i
fulfilling the above condition, then{

|ψi⟩ :=
Ai ⊗Bi|Φ1⟩

||Ai ⊗Bi|Φ1⟩||

}
,{

|ϕi⟩ :=
Ai ⊗Bi|01⟩

||Ai ⊗Bi|01⟩||

}
,{

|χi⟩ :=
Ai ⊗Bi|Φ2⟩

||Ai ⊗Bi|Φ2⟩||

}
(21)

must all belong to Vϵ (whenever the above norms are non-
zero). Furthermore, given that ρλ(ϵ) is entangled, there
must exist at least one value of i (take without loss of
generality i = 1) such that A1 and B1 are invertible and,
hence, |ψ1⟩, |ϕ1⟩ and |χ1⟩ are nonzero and moreover lin-
early independent (since so are {|Φ1⟩, |01⟩, |Φ2⟩}). This
entails that Vϵ = span{|ψ1⟩, |ϕ1⟩, |χ1⟩}. However, this
means that Vϵ = (A1 ⊗ B1)V0 and, as per Lemma 2, we
have reached a contradiction.

IV. IMPOSSIBILITY RESULTS VIA NE
TRANSFORMATIONS

The techniques of the previous section rely heavily on
the fact that both the input and target density matrices
of the SEP protocol have non-trivial kernels and, thus,
it is not clear how to use them in the case of full-rank
density matrices. Moreover, as already discussed in the
introduction, even if we have already proven that a maxi-
mally entangled state for a fixed spectrum never exists in
the non-pure rank-deficient case in the standard resource
theory of entanglement that uses LOCC convertibility, it

1 To see this, notice that

ϵ|00⟩+ ϵ|11⟩ −
√
2|10⟩ = (Aϵ ⊗ 1l)(|00⟩+ |11⟩)

with

Aϵ =

(
ϵ 0

−
√
2 ϵ

)
.

Hence, Aϵ is invertible ∀ϵ > 0.
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is still interesting to explore whether this restriction can
be lifted by considering a resource theory with a more
permissive class of transformations. This leads us to con-
sider NE maps, which is the largest class of transforma-
tions that give rise to a well-defined resource theory of
entanglement for single-copy manipulation [4]. Reference
[12] established the non-existence of a maximally entan-
gled state in S(λ, 1 − λ, 0, 0) for λ ∈ (2/3, 1) by proving
that there exists no NE map in this case transforming
ρλ⃗ into an isospectral rank-2 Bell-diagonal state (cf. Eq.
(13)). Here, we extend this approach to arbitrary rank
and consider again the possibility of transforming ρλ⃗ to
an isospectral Bell-diagonal state, which from now on we
are going to denote by

σλ⃗ =
∑
j

λjΦj . (22)

Thus, we aim at finding obstructions to the existence of
a NE map Λ : D → D such that Λ(ρλ⃗) = σλ⃗. As already
commented in the introduction, we are going to do so
by reducing this question to the feasibility of a linear
program (LP).

Before addressing this, some comments are in order.
First, as discussed after Eq. (13), σλ⃗ is entangled iff
λ1 > 1/2. Notice that this only defines a strict subset
of the region corresponding to inverting the inequality in
Eq. (14), where the question of the existence of a max-
imally entangled state in S(λ1, λ2, λ3, λ4) is well posed.
Therefore, since a transformation by LOCC from an en-
tangled state to a separable state is always possible, our
approach carries the inherent limitation that it will never
work to discard the existence of a maximally entangled
state in S(λ1, λ2, λ3, λ4) whenever λ1 ≤ 1/2 (see actually
Theorem 5 below). Second, and in relation to this, it
thus comes as a natural option to consider target states
that are not Bell-diagonal. In fact, the LP approach that
we are going to present can be immediately adapted to
consider arbitrary isospectral target states. However, we
have numerically investigated this option with random
target states and we have found that this does not lead
to any substantial improvement. Last, even if we restrict
ourselves to Bell-diagonal states as targets, there is still
some freedom in how to assign the eigenvalues to the
Bell eigenstates (recall that the eigenvalues are ordered).
Nevertheless, once we explain the LP approach, it will
become apparent that this has no effect in its feasibility.
Consequently, without loss of generality in what comes
to the performance of our method, we can stick to the
assignment made in Eq. (22).

A. Eigenvalue distributions for which a NE
transformation to Bell-diagonal states is possible

As we have just discussed, if we fix the target states
to be Bell-diagonal states, we will never be able to
prove the nonexistence of a maximally entangled state in
S(λ1, λ2, λ3, λ4) for spectra satisfying λ1 ≤ 1/2. It turns

out that the situation is more complex once we restrict
ourselves to NE transformations. As we prove in the
following, the MEMS state ρλ⃗ happens to be convertible
by NE transformations to isospectral Bell-diagonal states
for certain non-trivial eigenvalue distributions where σλ⃗
is actually entangled.

Theorem 5. If it holds that

1− λ1 − 2λ2 ≥ 0, (23)

then there exists a NE map Λ : D → D such that Λ(ρλ⃗) =
σλ⃗.

Proof. We construct explicitly the NE map Λ that imple-
ments the transformation under the stated hypothesis on
the spectrum. Namely, since the case λ1 = 1 is trivial,
let us assume that λ1 ̸= 1 and

Λ(X) = tr(Φ1X)Φ1+
tr[(1l− Φ1)X]

1− λ1
(λ2Φ2+λ3Φ3+λ4Φ4).

(24)
The map Λ is manifestly CPTP because it has the form
of a measure-and-prepare quantum channel (see e.g. [37])
and it obviously has the desired property that Λ(ρλ⃗) =
σλ⃗. Hence, it only remains to prove that Λ is NE. Notice
first that the output of the map is a convex combination
of two states and that the latter is separable. This is
because the condition given by Eq. (23) is equivalent to

λ2
1− λ1

≤ 1

2
. (25)

Thus,

λ2Φ2 + λ3Φ3 + λ4Φ4

1− λ1
(26)

is a Bell-diagonal state with maximal eigenvalue not
larger than 1/2, and, hence, separable. As a consequence,
for any ρ ∈ D, Λ(ρ), which is also a Bell-diagonal state,
can only be entangled if tr(Φ1ρ) > 1/2. But, for every
ρ ∈ S it must hold that tr(Φ1ρ) ≤ 1/2. Therefore, it
must hold that Λ(ρ) ∈ S for every ρ ∈ S, as we wanted
to prove.

Notice that this does not of course imply that a maxi-
mally entangled state exists in S(λ1, λ2, λ3, λ4) when the
condition of Eq. (23) holds. It could still be that it is
impossible to transform ρλ⃗ to other isospectral states in
this region. Notice as well that Eq. (23) is only meaning-
ful when the rank is 3 or 4, because otherwise it reduces
to λ1 − 1 ≥ 0, which can only occur in the trivial case
of rank equal to 1. Moreover, when the rank is 3 it can
only hold when λ2 = λ3, and, in particular, it is worth
pointing out that in this case the transformation is possi-
ble by NE but not by SEP. This is because when λ3 > 0
(supp (ρ(λ1,λ2,λ3,0)))

⊥ = ker(ρ(λ1,λ2,λ3,0)) is spanned by a
separable state, while ker(σ(λ1,λ2,λ3,0)) is spanned by an
entangled state. Thus, we can use the exact same argu-
ments as in the proof of Theorem 4 to see that a rank-3
MEMS given by ρλ⃗ can never be transformed by SEP
into a (isospectral or not) rank-3 Bell-diagonal state.
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B. Eigenvalue distributions for which a NE
transformation to Bell-diagonal states is impossible

Along the lines of [12], by assuming the existence of

a NE map Λ(ρλ⃗) = σλ⃗ for fixed λ⃗ one can determine a
set of fundamental constrains that must be satisfied; if

this is not the case, λ⃗ can be ruled out as a valid spectral
point where the map exists. As already mentioned, this
constraints can be cast as a feasibility question for a LP.
In general, the latter has the following form

max
x

cTx

such thatAx ≤ b,

x ≥ 0 , (27)

where A ∈ Rn×m, x, c ∈ Rm, and b ∈ Rn are given. The
set {x ∈ Rm : Ax ≤ b, x ≥ 0} is called the feasible re-
gion of the LP and, by construction, it is always a convex
polytope. When the feasible set is empty, the LP is said
to be infeasible. There are two reasons why a given LP
might not admit a solution. One obvious possibility is
because the LP is infeasible. The other is because the
feasible region is unbounded (which will never happen in
our case because in our problem it will also hold that
x ≤ (1, 1, . . . , 1)). LPs constitute a basic field of study
in optimization theory. There are many algorithms, such
as interior point methods, that allow to solve them ef-
ficiently and they are included in standard libraries for
most programming languages. Furthermore, duality the-
ory provides means to certify that a numerically found
solution is indeed correct or that the LP is infeasible. For
more details regarding LPs the reader is referred to [33]
and references therein.

In order to present this LP approach, we begin by as-
suming that there exists a NE map Λ such that Λ(ρλ⃗) =
σλ⃗. Recalling Eq. (11), by linearity this implies that∑

j

λjΛ(ξj) =
∑
j

λjΦj . (28)

At this point, we define

Fij = tr(ΦiΛ(ξj)) (29)

and from Eq. (28), it follows that∑
j

λjFij = λi (30)

holds for all i ∈ {1, 2, 3, 4}. Since Λ is trace-preserving,
it must also hold that∑

i

Fij = 1 ∀j. (31)

Given that Λ is a positive map, we also have the obvious
inequality constraints

Fij ≥ 0 ∀i, j. (32)

Additionally, because (ξ1 + ξ3)/2 is separable we must
have as well that

Fi1 + Fi3 ≤ 1 ∀i, (33)

and because ξ2 and ξ4 are separable that

Fi2 ≤ 1

2
, Fi4 ≤ 1

2
∀i. (34)

Notice that for i = 1 and i = 3

1

2
ξi +

1

4
(ξ2 + ξ4) (35)

is a separable Bell-diagonal state. Therefore, we also
obtain the constraints

Fi1 +
1

2
(Fi2 + Fi4) ≤ 1 ∀i (36)

and

Fi3 +
1

2
(Fi2 + Fi4) ≤ 1 ∀i. (37)

Actually, the conditions given by Eqs. (34), (36) and
(37) can be generalized by considering for a ∈ [0, 1] the
family of states given by

τ±a = 2a(1− a)Φ1 + a2|01⟩⟨01|+ (1− a)2|10⟩⟨10|
± a(1− a)(|01⟩⟨10|+ |10⟩⟨01|)

τ̃±a = 2a(1− a)Φ2 + a2|01⟩⟨01|+ (1− a)2|10⟩⟨10|
± a(1− a)(|01⟩⟨10|+ |10⟩⟨01|). (38)

It can be easily checked that (τ±a )Γ ≥ 0 and (τ̃±a )Γ ≥ 0
hold ∀a ∈ [0, 1]. Consequently, these states are always
separable and it must therefore hold for arbitrary values
of a ∈ [0, 1] and for all i that

2a(1− a)Fi1 + a2Fi2 + (1− a)2Fi4 ≤ 1

2
,

2a(1− a)Fi3 + a2Fi2 + (1− a)2Fi4 ≤ 1

2
. (39)

Notice that the aforementioned inequalities correspond
to the cases a ∈ {0, 1/2, 1}.
In summary, for a given spectrum distribution λ⃗, if

there exists a NE map Λ such that Λ(ρλ⃗) = σλ⃗, then
it must be possible to assign values to the 16 variables
{Fij} such that the conditions given by Eqs. (30), (31),
(32), (33), and (39) are all fulfilled at the same time. By
considering a discretization of the interval [0, 1] in which
the parameter a in Eq. (39) takes values, we obtain a
finite list of linear constraints. Thus, if we arrange the
unknowns {Fij} into a vector x ∈ R16, for which Eq. (32)
becomes x ≥ 0, the problem can be expressed in the form
Ax ≤ b for some suitably chosen matrix A and vector b

that only depend on λ⃗. Hence, our problem boils down to

the feasibility of a given LP. If for a given spectrum λ⃗ this
LP is infeasible, then we can conclude that there exists no
NE map implementing the transformation Λ(ρλ⃗) = σλ⃗,
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FIG. 1. Feasibility of the LP for values of λ⃗ constrained to
λ1 > 1/2 for the choices λ4 = 0, 0.01, 0.03, 0.06 (notice that
λ1 > λ3 + 2

√
λ2λ4 is always satisfied in these cases). Note

that λ4 = 0 corresponds to the rank-3 case. Feasible regions
of the LP are in blue and green and infeasible regions are in
orange and black. The green region corresponds to the points
where we analytically know that the LP is feasible due to
Theorem 5, while the black region corresponds to the points
of infeasibility due to Theorems 6, 7 and 8.

and, as a consequence, that the set S(λ1, λ2, λ3, λ4) does
not admit a maximally entangled state.

The question of the feasibility of this LP can be easily
solved with the aid of a computer. Figure 1 depicts the
results obtained for four different choices of λ4, which
were obtained in a few seconds by an implementation in
a standard desktop computer. The green region corre-
sponds to the points where we not only know that the
LP is feasible but that the transformation is indeed pos-
sible by NE as per Theorem 5. Other feasible regions
of the LP have been colored in blue, whereas infeasi-
ble regions have been colored in orange. Thus, for all
eigenvalue distributions corresponding to this latter case
a maximally entangled state for the given spectrum does
not exist. As can be seen from Fig. 1, our approach
allows to prove this property for a general set of possi-
ble spectra within the constraints given by λ1 > 1/2 and
that of Theorem 5 even in the case of full rank and under
the most permissive class of transformations. The black
region within the orange region, corresponds to the cases
where we can rule out the feasibility of the LP without
the need of numerical means, which is the content of the
remaining of this section. While this region is strictly
contained in the orange region and we have therefore not
been able to prove analytically the infeasibility of the LP
in the exact same regions that numerics dictate, the fol-
lowing results allow us to establish the nonexistence of
a maximally entangled state for a fixed spectrum under
NE transformations for a large class of eigenvalue distri-

butions and not just a specific choice, which is as far as
numerical implementations can go.
Before concluding this section with these last results,

we are now in the position to explain why the feasibility
of the LP does not depend on how we choose to match
the eigenvalues with the Bell eigenstates in Eq. (22). Let
π be an arbitrary permutation in {1, 2, 3, 4} and suppose
that we choose instead as a target state

σπ
λ⃗
=

∑
j

λπ(j)Φj . (40)

Under the assumption that there is a NE map Λ such
that Λ(ρλ⃗) = σπ

λ⃗
, all the constraints from before stay the

same except for that of Eq. (30), which now reads∑
j

λjFij = λπ(i). (41)

Hence, the assignment {Fij} is feasible for the LP cor-
responding to Λ(ρλ⃗) = σλ⃗ iff the assignment {Fπ(i)j} is
feasible for the LP corresponding to Λ(ρλ⃗) = σπ

λ⃗
. There-

fore, one LP is feasible iff the other is.

1. Rank-2 case

Theorem 6. Let ρλ⃗ and σλ⃗ be given respectively by

Eqs. (11) and (22) with λ⃗ = (λ, 1− λ, 0, 0). Then, there
exists no NE map Λ : D → D such that Λ(ρλ⃗) = σλ⃗ for
λ ∈ (1/2, 1).

Proof. Suppose such a map exists. Then, arguing as in
[12] under the assumption that λ < 1 we obtain that it
must hold that

F11 =
3λ− 1

2λ
, F21 =

1− λ

2λ
, F12 = F22 =

1

2
. (42)

Then, the condition of Eq. (39) boils down to

2a(1− a)
3λ− 1

2λ
+
a2

2
≤ 1

2
. (43)

Thus, choosing a = 1/(2λ) ∈ (1/2, 1), it follows that it
must hold that

12λ2 − 9λ+ 2

8λ3
≤ 1

2
(44)

which is a contradiction when λ > 1/2. To see this,
notice that the last inequality is equivalent to

4λ3 − 12λ2 + 9λ− 2 ≥ 0 (45)

and that 4λ3 − 12λ2 + 9λ− 2 = 4(λ− 1/2)2(λ− 2).

2. Rank-3 case

Theorem 7. Let ρλ⃗ and σλ⃗ be given respectively by Eqs.
(11) and (22) with λ3 > λ4 = 0. Then, there exists no
NE map Λ : D → D such that Λ(ρλ⃗) = σλ⃗ whenever
2λ1 − λ2 > 1 and λ2 > λ3.
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Proof. To prove the claim we assume that 2λ1 − λ2 > 1
and we will show that if there exists a NE map Λ such
that Λ(ρλ⃗) = σλ⃗, then it must necessarily hold that λ2 =
λ3. Notice first that the premise that λ4 = 0 implies that
F4j = 0 ∀j. Equation (30) when i = 1 reads

λ1 = λ1F11 + λ2F12 + (1− λ1 − λ2)F13, (46)

which can be rewritten as

λ1 = (1− λ1 − λ2)(F11 + F13)

+ (2λ1 + λ2 − 1)(F11 + F12/2)

− (2λ1 − λ2 − 1)F12/2. (47)

Since 1−λ1−λ2 ≥ 0 and 2λ1+λ2−1 = λ1−λ3 ≥ 0, Eqs.
(33) and (36) together with the above one entail that

λ1 ≤ λ1 − (2λ1 − λ2 − 1)F12/2, (48)

and, thus, our assumption that 2λ1 − λ2 > 1 enforces
that F12 = 0. This implies, by Eqs. (31) and (34) and
the fact that F42 = 0, that F22 = F32 = 1/2. In addition
to this, Eq. (46) boils down to

λ1 = λ1F11 + (1− λ1 − λ2)F13, (49)

and because of Eq. (33) we must then conclude that
F11 = 1 and F13 = 0. This leads then to F21 = F31 = 0
as per Eq. (31). With all these constraints Eq. (30) for
i = 2 now reads

F23 =
λ2

2(1− λ1 − λ2)
=

λ2
2λ3

. (50)

However, the second inequality in Eq. (39) imposes then
for a < 1 that

λ2
2λ3

= F23 ≤ 1 + a

4a
→a→1

1

2
. (51)

Thus, if λ2 > λ3, we immediately obtain a contradiction
in the above condition by taking a sufficiently close to 1.
Hence, the last inequality can only hold if λ2 = λ3, as we
wanted to show.

3. Rank-4 case

Theorem 8. Let ρλ⃗ and σλ⃗ be given respectively by Eqs.
(11) and (22). Then, there exists no NE map Λ : D → D
such that Λ(ρλ⃗) = σλ⃗ in any of the spectral regions given
by

A = {2λ2 + λ3 − λ1 < 0, 2λ3 + λ4 − λ2 < 0},
B = {2λ2 + λ3 − λ1 < 0, 2λ3 + λ4 − λ2 ≥ 0, λ3 ≤ 2λ4,

λ2 > λ3 + λ4},
C = {2λ2 + λ3 − λ1 < 0, 2λ3 + λ4 − λ2 ≥ 0, λ3 > 2λ4,

λ2 >
3

2
λ3}. (52)

Proof. Equation (30) for i = 1 reads

λ1 = λ1F11 + λ2F12 + λ3F13 + λ4F14. (53)

Using Eq. (33) for i = 1 this then implies that

λ1 ≤ λ3 + (λ1 − λ3)F11 + λ2F12 + λ4F14, (54)

which can then be rewritten as

λ1 − λ3 ≤ (λ1 − λ3)

(
F11 +

F12 + F14

2

)
+

(
λ2 −

λ1 − λ3
2

)
F12 +

(
λ4 −

λ1 − λ3
2

)
F14.

(55)

Equation (36) for i = 1 then implies that

0 ≤
(
2λ2 + λ3 − λ1

2

)
F12+

(
2λ4 + λ3 − λ1

2

)
F14. (56)

Observe now that

2λ4 + λ3 − λ1 = λ4 + (1− λ2 − 2λ1)

= λ4 − λ2 + (1− 2λ1), (57)

is always negative for λ1 > 1
2 . Thus, if in addition it

holds that 2λ2 + λ3 − λ1 < 0, we must necessarily have
that F12 = F14 = 0, and, then, by Eqs. (53) and (33),
that F13 = 0 and F11 = 1. This, in turn, leads to F21 =
F31 = F41 = 0. With these constrains, Eq. (30) for i = 2
reads

λ2 = λ2F22 + λ3F23 + λ4F24, (58)

which gives

F23 ≥ λ2 − λ4
2λ3

. (59)

For this to have a valid solution (i.e., fulfilling F23 ≤ 1),
we must then have

2λ3 + λ4 − λ2 ≥ 0. (60)

This proves that there cannot exist a NE map implement-
ing the desired transformation for spectra in the region
A.
We assume now that the first two inequalities defining

the region B hold and use Eq. (37) for i = 2 to obtain
from Eq. (58) that

λ2 − λ3 ≤
(
λ2 −

λ3
2

)
F22 −

(
λ3
2

− λ4

)
F24 (61)

must hold. Now, imposing that Eq. (34) should be satis-
fied entails that

2λ2 − 3λ3 + (2λ3 − 4λ4)F24 ≤ 0. (62)
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If we assume that λ3−2λ4 ≤ 0 is true, using that F24 ≤ 1
2

(Eq. (34)) we then have that

λ2 − λ3 − λ4 ≤ 0 (63)

must hold. This proves the claim in the spectral region
given by B.

Finally, if we on the other hand assume that λ3−2λ4 >
0 is true in Eq. (62), using that F24 ≥ 0 (Eq. (32)) we
then have that

2λ2 − 3λ3 ≤ 0. (64)

Thus, there cannot be a solution in the region C either
and this concludes the proof.

V. CONCLUSIONS

Whereas Ref. [12] proved the impossibility of having a
maximally entangled mixed state for a fixed spectrum in
general by considering some particular eigenvalue distri-
butions for rank-2 two-qubit states, in this work we have
investigated whether this notion is possible at all beyond
the case of pure states (i.e., rank equal to one). In the
two-qubit case, this question boils down to the possibility
of transforming the so-called MEMS of Eq. (11) to any
other isospectral state employing LOCC protocols. We
have generalized the technique used in [12] based on NE
convertibility to define a LP, whose infeasibility implies
the impossibility of transforming the MEMS into a par-
ticular isospectral target state. We have also provided
new techniques that make it possible to conclude that
certain transformations from the MEMS are impossible
by SEP maps. Since SEP and NE operations are relax-
ations of LOCC, whereby a negative answer precludes
LOCC convertibility, this has allowed us to prove that
a maximally entangled two-qubit state for a given spec-
trum cannot exist in all cases where the rank is two or
three as well as for a considerable class of eigenvalue dis-
tributions in the case where the rank is four. While the
presence of blue and green patches displayed in Fig. 1
still leaves the question open in these spectral regions in
the latter case, our results give a clear perspective on
the problem at hand. They show that not only a no-
tion of maximal entanglement for a fixed spectrum does

not always exist, but that it never does in most cases.
These findings indicate that even if it turns out that some
eigenvalue distributions happen to permit such a notion
beyond the case of pure states, they can only have a
marginal impact.

Our results manifest that transformations under
LOCC between mixed states share little analogy with
the case of pure states and preclude generalizations of
Nielsen’s theorem even in restricted settings such as
eigenvalue-preserving conversions. In addition to this,
the techniques we have put forward might find applica-
tion in the general problem of concluding that certain
state transformations among mixed states cannot be im-
plemented by LOCC. In particular, notice that the im-
possibility results of Sec. III do not require the isospec-
trality condition and that they even apply to stochas-
tic LOCC (i.e., probabilistic LOCC transformations with
non-zero probability of success) by considering instead
trace-non-increasing maps. Finally, as discussed in [12],
whenever a maximally entangled two-qubit state for a
fixed spectrum does not exist, then there must exist
an entanglement measure that has a different maximizer
than the state of Eq. (11). However, it would be inter-
esting to find such a measure with a clear operational
meaning, i.e., a particular task of practical relevance
where there is an isospectral state that outperforms the
so-called MEMS.
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