Agent-based Simulation of Airborne Offshore Wind Farm Logistics as a System of Systems

Nils Raaf*¹, Patrick Ratei ¹, Nabih Naeem ¹, Prajwal Shiva Prakasha ¹

¹German Aerospace Center (DLR), Institute of System Architectures in Aeronautics, Hamburg *nils.raaf@dlr.de

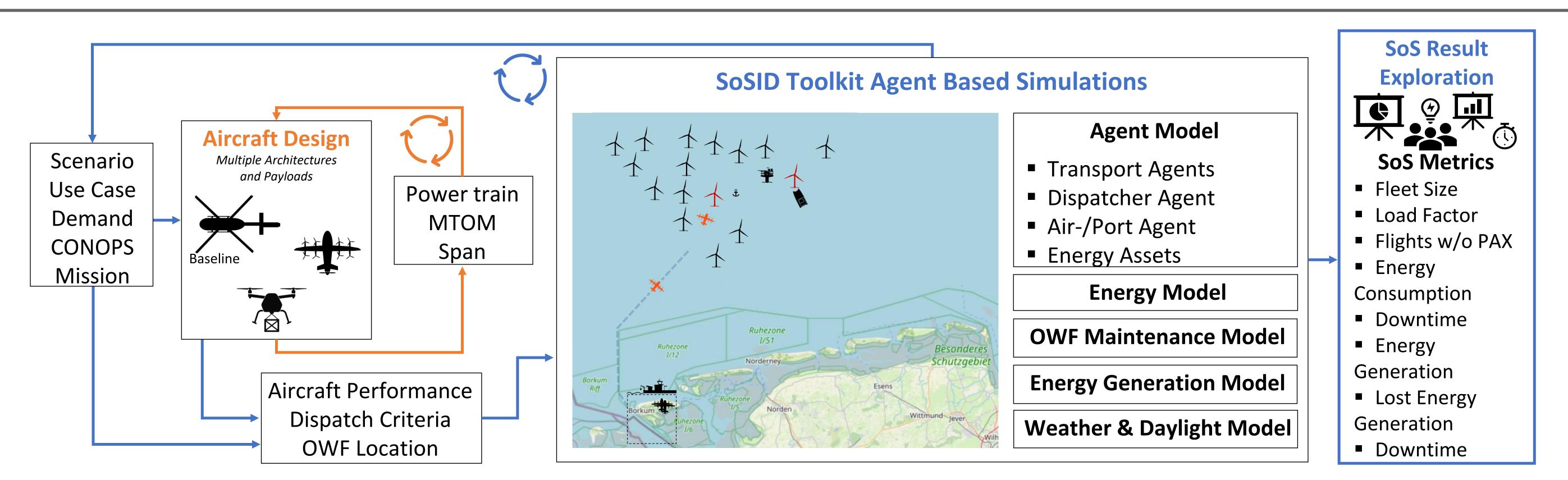


Figure 1: System of Systems Simulation Framework for Offshore Wind Farm Logistic Aircraft Design Using the System of Systems Inverse Design (SoSID) Toolkit

Airborne Offshore Logistics

Offshore wind farms (OWFs) are a key pillar of the energy transition, providing low-emission electricity worldwide. In the EU, the current 20 GW of installed capacity is targeted to triple by 2030 [1]. To maintain the growing number of wind farms with turbines of varying ages quickly, reliably, and with less dependence on sea conditions, and to respond swiftly to medical emergencies, helicopters are used alongside ships [2,3]. They hoist maintenance personnel and equipment directly onto the nacelle, eliminating in most cases the time-consuming transfer from crew transfer vessels (CTVs) and the internal climb within the turbine.

Figure 2: Hoisting Maneuver [4]

IAM for Wind Energy

Innovative air mobility vehicles already support inspections and serve as airborne cranes for maintenance work. With increasing range and payload of uncrewed, VTOL-capable systems with low emissions, new opportunities arise for OWF Operations traditionally logistics. performed by helicopters or CTVs can be flexibly supplemented when equipment is needed at short notice. Delivering items with Uncrewed Aerial Vehicles (UAVs) while transporting personnel by CTV could increase maintenance time and reduce turbine downtime [5]. Some aspects have been demonstrated in research projects and initial offshore operations, however the evaluation remains challenging due to operational constraints and aircraft limitations in the maritime environment.

System of Systems Approach

Given this complex situation, a system of systems (SoS) approach is appropriate, allowing the identified systems and their connections to be represented through agent-based modelling. Using the **DLR SoSID Toolkit**, simulations can be conducted to evaluate aircraft designs under varying operational conditions [6,7]. The following models were developed for this purpose:

- Weather & Daylight Model: Wind speeds/direction and significant wave height from NORA3 [8], sunrise and sunset times
- **Energy Generation Model:** Input of wind turbine data as a power curve, calculation using wind speed at hub height

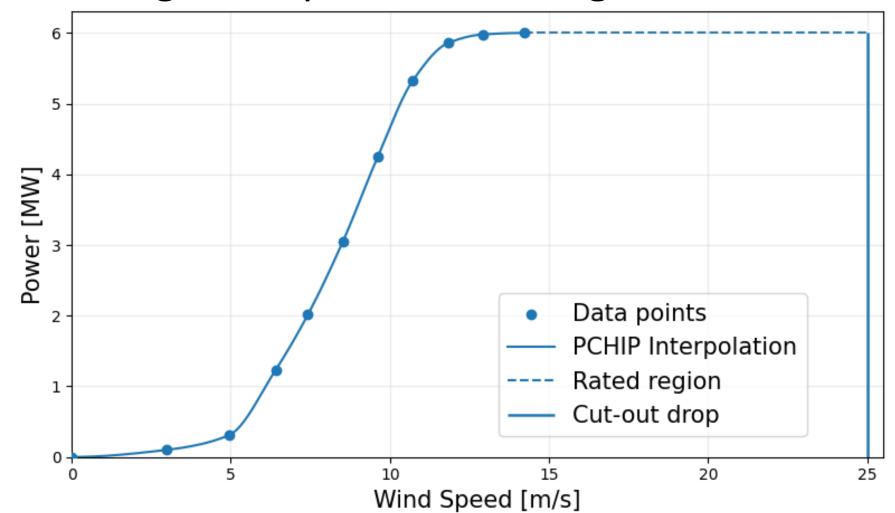


Figure 4: Exemplary Wind Turbine Power Curve

Maintenance Model: Definition of maintenance cases with personnel and equipment requirements with forced or stochastic triggering

order to approximate the energy requirements of the vehicles used, changes were also made to the existing **Energy Model**:

- Accounting for wind speeds for aircraft
- Performance model for ships factoring in wave heights

Simulation Parameters

Alongside UAV design, the fleet size represents a major influencing factor. Further important simulation parameters include the season, the distance to the mainland, and the scope and equipment needs of the maintenance activities.

Dispatching and Scheduling

Five operational strategies were identified:

All strategies are subject to specific boundary conditions, with daylight being particularly important, as personnel may only be transferred to or from installations during sunlight. UAVs are generally not allowed to fly at night.

Initial Results

First results demonstrate the potential of drones the relevance of further in-depth investigations on uncrewed aerial logistics.

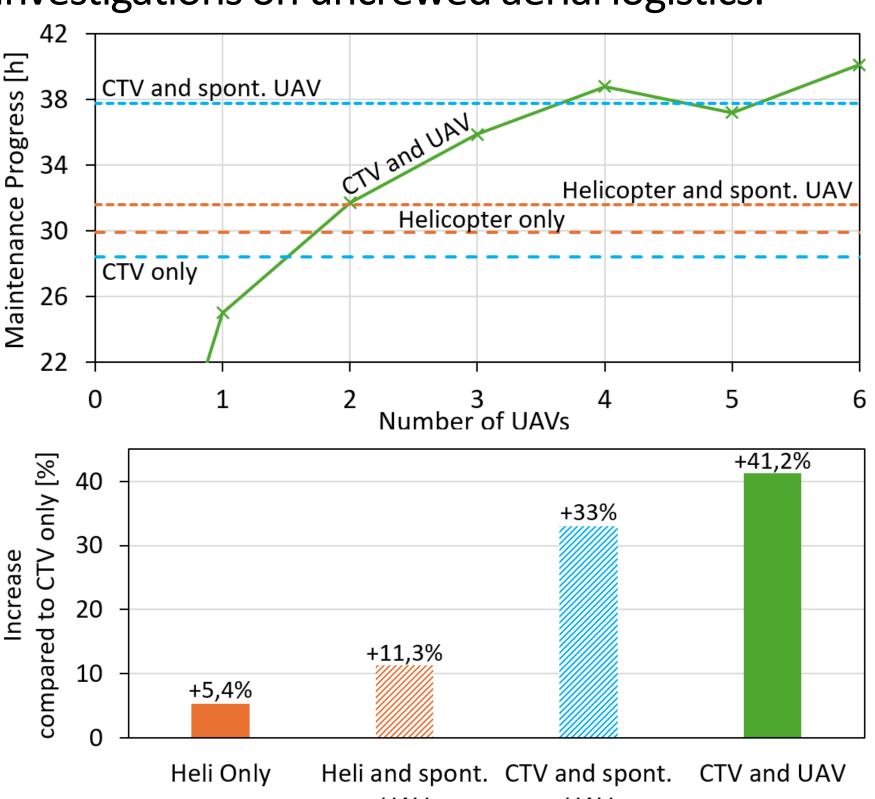


Figure 5: Initial Simulation Results for a First Test Case

References

- [1] European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – An EU Strategy to Harness the
- Potential of Offshore Renewable Energy for a Climate-Neutral Future, COM(2020) 741 final, Brussels, 2020 [2] Dalgic Yalcin, Lazakis Iraklis, Dinwoodie Iain, McMillan David, Revie Matthew. Advanced logistics planning for offshore
- wind farm operation and maintenance activities. Ocean Eng 2015;101:211–26 [3] Stuhr, M., Dethleff, D., Weinrich, N. et al. Notfallmedizinische Versorgung in Offshore-Windparks. Anaesthesist 65,
- 369–379 (2016). https://doi.org/10.1007/s00101-016-0154-7
- [4] KN Helicopters North Sea Windfarms. Heliops Magazine. 2024. URL: https://www.youtube.com/watch?v=y_MikAQuUrM (visited on 07/20/2025)
- [5] Alexander Donkels, Sebastian Cain, Jannik Wilhelm, John Dippmar, Detlef Heil, Jonas Janke, Tilmann Bruns, Advances on the integration of transport drones into offshore wind farms, CEAS Aeronaut. J., 2025, doi:
- 10.1007/s13272-025-00857-8 [6] San Kilkis, Prajwal S. Prakasha, Nabih Naeem and Björn Nagel. "A Python Modelling and Simulation Toolkit for Rapid Development of Systems Inverse Design (SoSID) Case Studies," AIAA 2021-3000, AIAA AVIATION 2021
- FORUM, August 2021. https://doi.org/10.2514/6.2021-3000 [7] P.S. Prakasha, N. Naeem, P. Ratei, B. Nagel, Aircraft architecture and fleet assessment framework for urban air
- mobility using a system of Systems Approach, Aerospace Science and Technology, Volume 125, 2022, doi: 10.1016/j.ast.2021.107072
- [8] Solbrekke, I.M., Sorteberg, A. NORA3-WP: A high-resolution offshore wind power dataset for the Baltic, North, Norwegian, and Barents Seas. Sci Data 9, 362 (2022). https://doi.org/10.1038/s41597-022-01451-x

