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Introduction and experimental setup

The importance of turbulent separated flow is undoubted for a wide range of applications, and in
particular at the borders of the aircraft flight envelope. At the same time, turbulence modeling in
Reynolds-Averaged Navier-Stokes equations still requires improvements to correctly predict the
shape and size of turbulent separation bubbles (TSBs). For reliable turbulence model validation
and modeling extensions, high-quality experimental data are necessary. A new experiment, focu-
sing on geometry-induced separation of a turbulent boundary layer at quasi-zero pressure gradient,
was designed and conducted within the DLR project ADaMant [1] to provide such validation data.
The measurements were performed in the Large Water Tunnel of TU Braunschweig (GWB) on a
flat-plate configuration featuring a 25° Backward-Facing Ramp (BFR). The model configuration is
shown in Figure 1. The BFR had a height h =8 mm and was located at a streamwise distance
xn = 1.134 m from the plate leading edge; it was designed to induce a TSB but no secondary recir-
culation, following the findings of a preliminary wind-tunnel experiment [2].

The measurements were conducted using Lagrangian Particle Tracking by Shake-The-Box
(STB) [3] and Temperature-Sensitive Paint (TSP) [4]. The application of these measurement tech-
nigues was enabled by a modular model design: a module with a glass insert was used for the STB
measurements (STB module in Figure 1, left), whereas a module with TSP coating and integrated
electrical heating was used for the TSP measurements (TSP module in Figure 1, right). The glass
in the STB module allowed a minimization of light reflections at the wall during the STB mea-
surements, while the integrated heating in the TSP module enabled an enhancement of the flow-
induced thermal signatures at the surface, which were captured via TSP. As can be seen in Fi-
gure 1, the flat plate was installed vertically in the GWB test section, spanning the whole test-sec-
tion height. The laser-optical arrangement for the STB measurement system (5 high-speed came-
ras and a dual-head laser illuminating two measurement subvolumes) is sketched in Figure 1
(left). The high-speed camera for the TSP measurements was also mounted at the same position
as the central STB camera, whereas the TSP was excited by three high-power LED systems.

Results

The experiments were conducted at four different freestream velocities (in the range U. = 1.2—
2.6 m/s), corresponding to Reynolds numbers Rex, = xhU-/v = 1.2-2.7 - 10°, where v is the fluid
viscosity. The present work focuses on the results obtained at the lowest Reynolds number
(Rexn = 1.2 - 109) in the region downstream of the BFR.

Figure 2 (left) shows instantaneous particle tracks over 10 time-steps reconstructed by STB, color-
coded by the streamwise component of the velocity, for two wall-parallel slices at different distances
from the surface downstream of the BFR. Figure 2 (right) shows an instantaneous temperature
distribution (map of temperature fluctuations T’ downstream of the BFR). Both STB and TSP results
indicate recirculating flow characteristic of a TSB up to approximately X = X — x, = 40 mm from the
BFR. Furthermore, a streaky pattern is visible in both datasets. These streamwise-oriented streaks
are the focus of current analysis, aiming at the improvement of the understanding of the structure
of a turbulent boundary layer in the presence of geometry-induced TSB.
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Figure 1. Left: sketch of the experimental setup for the STB measurements. Right: picture of the flat-plate model
with TSP module installed in the GWB test section, as seen from a downstream location.
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Figure 2. Results obtained at Rexn = 1.2 - 10%, where X = 0 corresponds to the BFR location xn, y = 0 to the mid-
span location, and z = 0 to the vertical location of the plate surface downstream of the BFR. Left: particle tracks
reconstructed by STB, color-coded by the streamwise component of the velocity u, for wall-parallel slices close to
the model surfaces upstream (top, left) and downstream (bottom, left) of the BFR. Right: instantaneous distribution
of the surface temperature fluctuations, obtained from the TSP data downstream of the BFR.
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