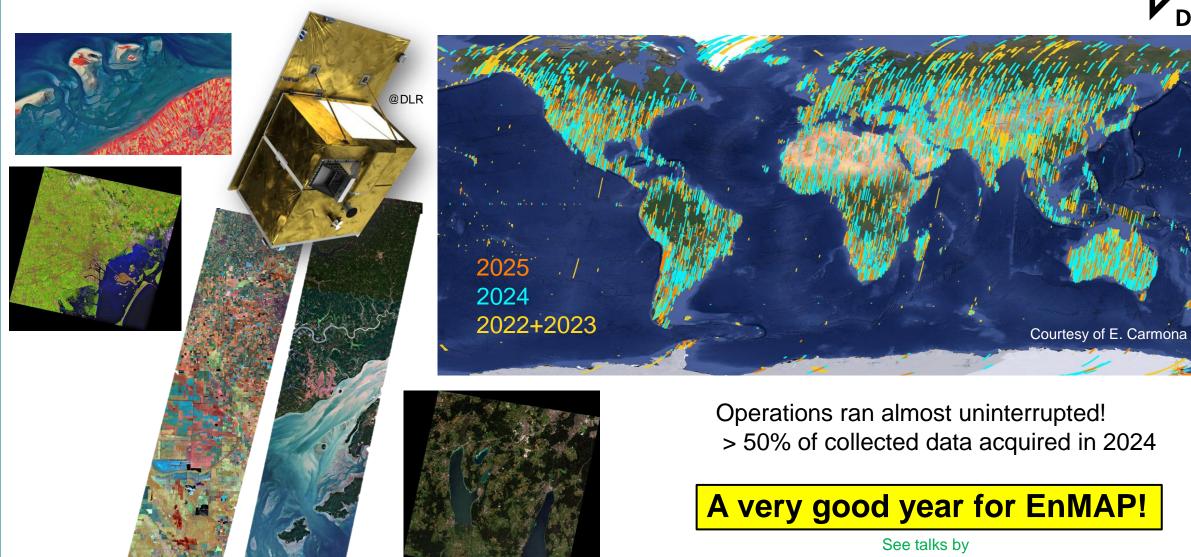
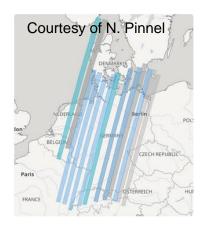


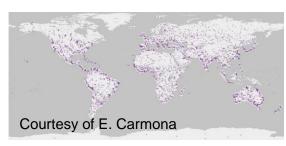
ENMAP MISSION STATUS

Dr. Laura La Porta, Mission Manager, & Vera Krieger, Mission Science Coordinator on behalf of the EnMAP Consortium


- D. Reintsema, R. Wernitz, K. Bagschik, M. Bock, S. Fischer
- E. Carmona, D. Schulze, N. Pinnel, S. Baumann, M. Pato, S. Hartung,
- M. Habermeyer, S. Engelbrecht, K. Wirth, ...
- S. Chabrillat, K. Segl, A. Okujeni, ...
- R. Feckl, M. Betz, S. Baur, ...

EnMAP – 3rd yr in-orbit, 2nd yr routine operations

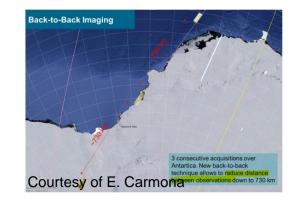

Operations ran almost uninterrupted! > 50% of collected data acquired in 2024


A very good year for EnMAP!

Emiliano Carmona Three years of EnMAP Ground Segment Operations Ruper Feckl Overview and Status of the Spacecraft from the Perspective of the Manufacturer

Highlights

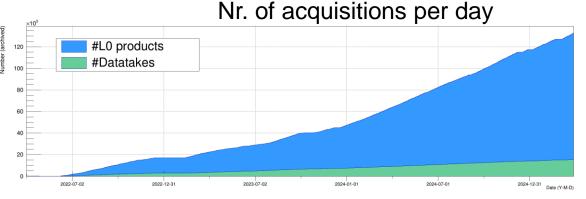
Extensive Foreground & Background Mission



Inuvik (X-band D/L)

New feature
 Average Nr. DT/day
 Increased by ~20%

Changes in IPS and proposal/quota handling

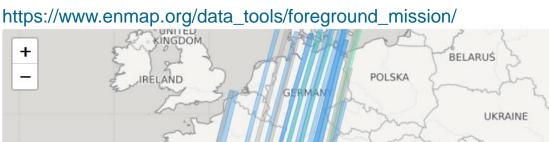

NEW

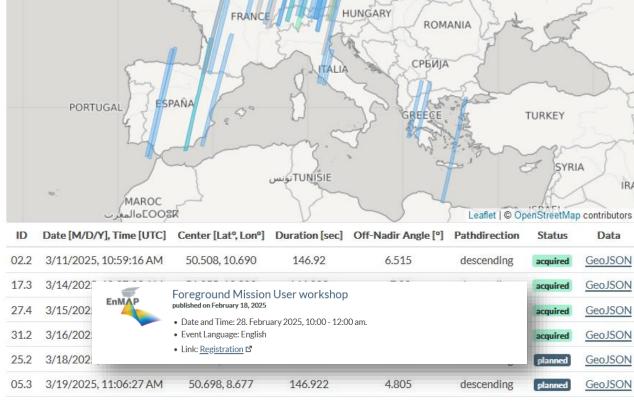
A single-tile observation is now automatically extended to 3 tiles (1 tile equals 30km)

15 tiles added to the quota/contingent for all existing active proposals to take this extension into account.

Improved exploitation of EnMAP S/C capabilities

- < Data-Take / day > ~226 in Q4-2024
- In total > 14.500 Earth Data-Take
 > 122.500 1-tile-L0 products

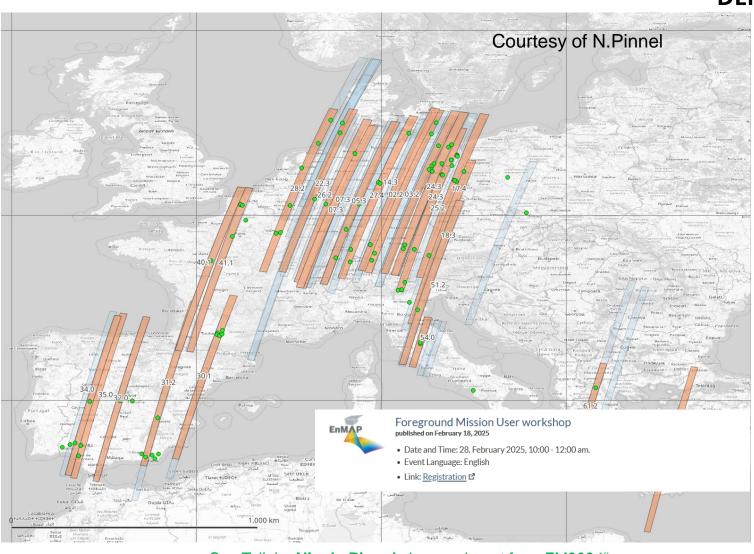



Courtesy of E. Carmona

Foreground Mission

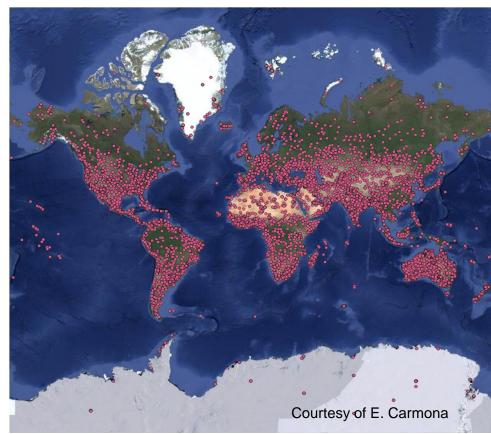
Goals 2024

- optimizing acquisition rate
- generating time series covering EU, in particular Germany
- Ran since 2022 parallel to campaigns
- Started as program in 03/2024
- Stripes ~1000 km long
- Defined with users (workshops, survey)
- Updated to take seasons into account
- Assigned max. priority
- Flexible (campaigns, weather)
- Collected > 450 stripes since 2022
- Acquired > 130 stripes since 03/2024
- 50% stripes has cloud coverage < 20%



See Talk by Nicole Pinnel "Lesson learnt from FM2024"

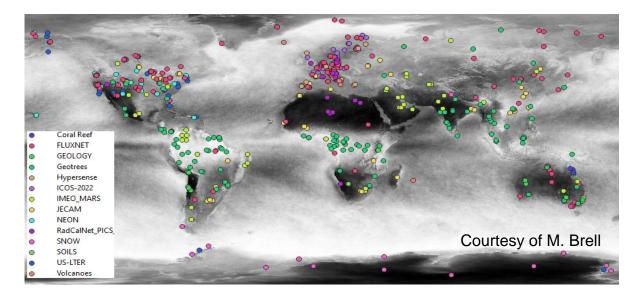
Foreground Mission


- FM ran in parallel to several on-ground campaigns:
 - Methane Experiment (USGS)
 - Greenland (GFZ)
 - Artic (AWI)
 - Soil Sites/Demmin (GFZ)
 - Oil detection (Mexico) (NASA)
 - Aquatic/Agriculture (Uni Valencia)
 - Sardegna, Largo di Garda (CNR)
 - Jolanda di Savoia (ITC, CNR)
 - Namibia (HU Berlin, GFZ)
 - Deception Island, Antarctica (GFZ)
 - ..
- Coordination by GFZ supported by the Ground Segment Application Support
- User input is very welcome!

See Talk by Nicole Pinnel "Lesson learnt from FM2024"

Background Mission

Targets


- network sites (+ US-LTER, Fluxnet, Geotrees tropical areas)
- specific targets linked to thematic applications (snow,soil, geology, volcanoes, coral reef, methan leaks)

Goals

focus on time-series, but areal coverage in progress
 Global Targets List (> 600 sites)

Priority low Schedule

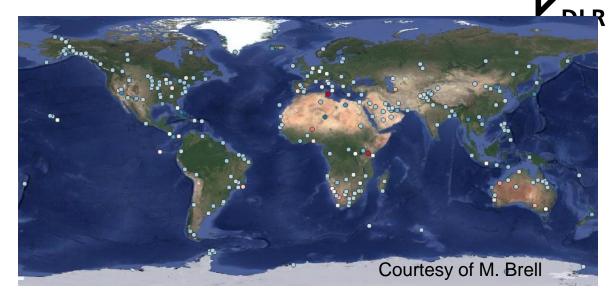
- updated quartely
 New planning feature
- tests ongoing

See talks by **Emiliano Carmona** Three years of EnMAP Ground Segment Operations

Moon calibrations

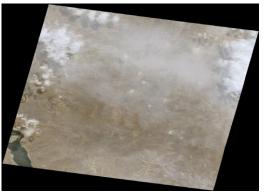
DIR

- Moon observations for calibration & cal/val studies
- Along-track scanning strategy
- 7 Moon acquisitions since launch
- More frequent acquisitions in future, close in time to Sun calibrations
- Data not publicly available
- Started collaborations with external partners for Moon data exploitation


See Talk by Miguel Pato Overview of EnMAP processor and calibration activities

EnMAP & PRISMA match-ups

- ~ 70 common acquisitions globally distributed (including science or network sites in the frame of cal/val or thematic campaigns)
- Goals: development of L1/L2 transfer functions (for multi-sensor time-series analyses), and/or cross-calibrations
- Regular meeting to identify/select match-ups
- Schedule prepared 1x month



Courtesy of E. Carmona

- 69 attempts 06/2024-02/2025
- 48 successfull
- ~24 with cloud-coverage < 20%

Workflow well established → ongoing work!

Courtesy of E. Carmona

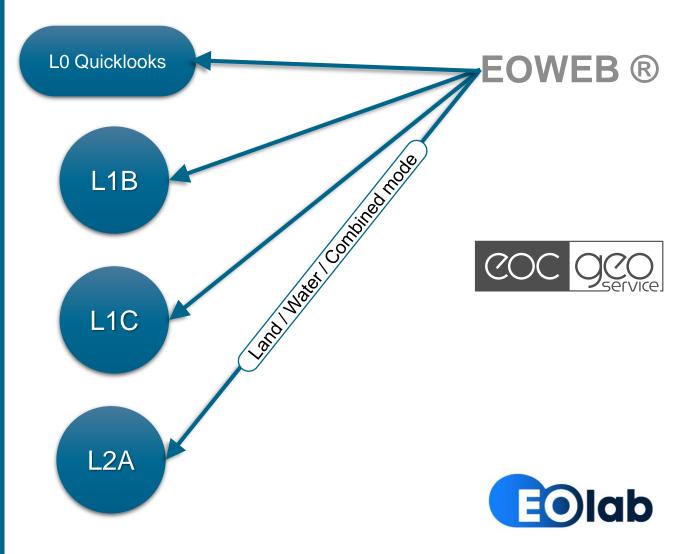
Contact us if you are interested in collaborating!

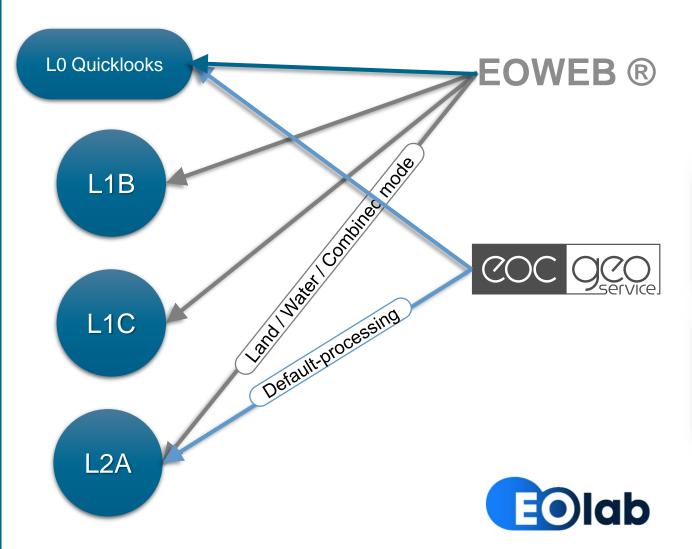
Ordering Observations and Accessing the Catalogue

Browse archive

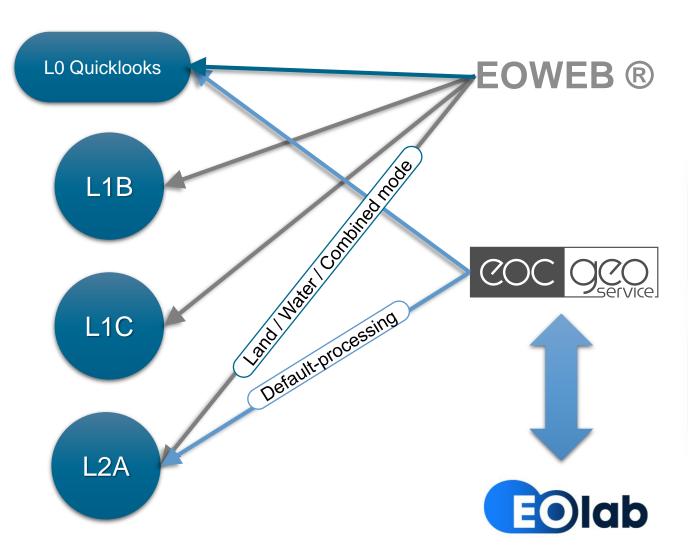
Plan & Submit Obs. Request

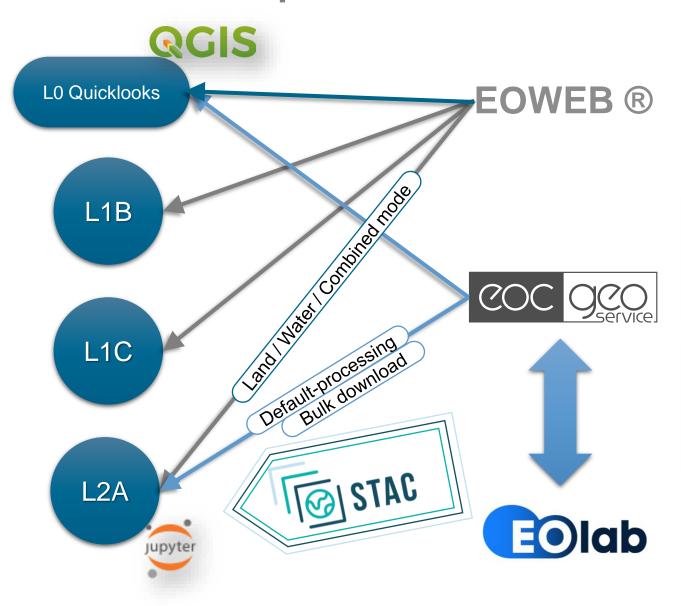
L0 Quicklooks











SpatioTemporal Asset Catalog (STAC) Access

STAC EnMAP data is hosted by the **EOC** Geoservice:

https://geoservice.dlr.de/eoc/ogc/stac/

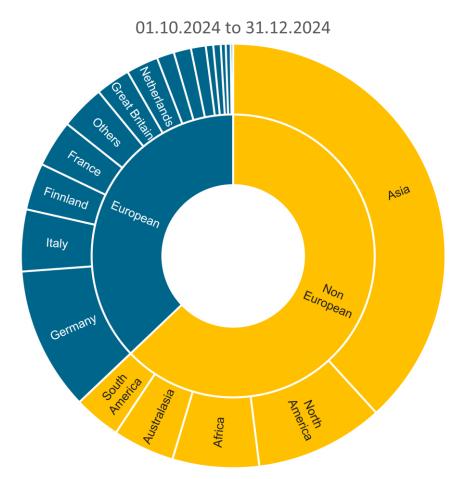
EnMAP LO HSI Quicklook Products items

L0 quicklooks do not require registration

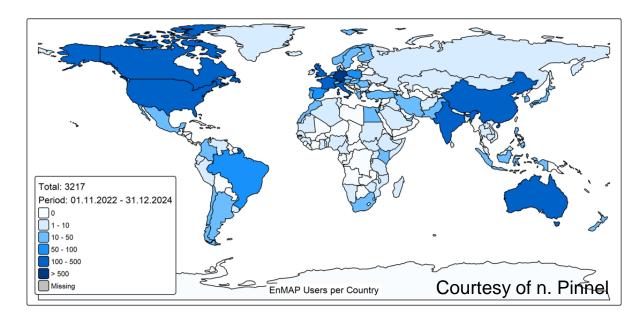
EnMAP L2A HSI Products items

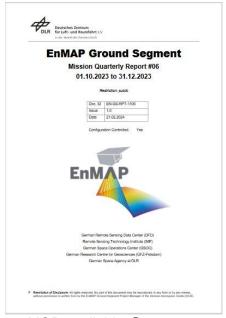
Access to EnMAP **L2A** Data **requires** an account linked to an authorized institution

- Python-based STAC access for bulk querying and downloading L0 quicklooks and L2A data.
- Data downloads currently require an additional manual authorization workaround via cookie authentication
- Tutorial & Templates available


Access via QGIS

Access via URL: https://geoservice.dlr.de/eoc/ogc/stac/v1

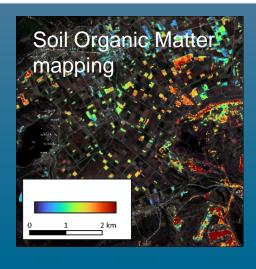



- Via QGIS STAC API Browser Plugin
- EnMAP L2A data currently not accessible due to missing authentication method
- QGIS 3.42.0 'Münster' was released on 2025-02-21 which now features **native STAC support**, however with limited functionality

Users

More and more international users

MQR available @ enmap.org

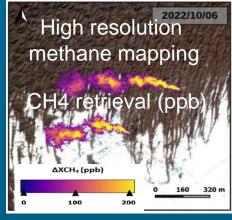

Icon	Topic	New within reporting period 01.07.2024 to 30.09.2024		
		Proposal	Total tiles requested	Total tiles granted
	VEGETATION	25	5294	1195
	GEO/SOIL	26	2693	285
	WATER	10	3410	180
91	SNOW/ICE	0	0	0
	URBAN	0	0	0
	ATMOSPHERE	5	127	59
	HAZARD/RISK	1	12	12
	METHODS	0	0	0
	CAL/VAL	1	999	999
	Total	68	12535	2730

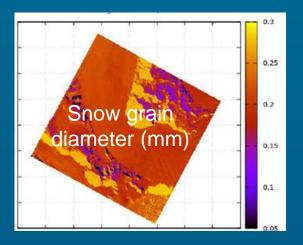
Extensive science program

Agricultural test site, northern Greece Chabrillat et al., 2024

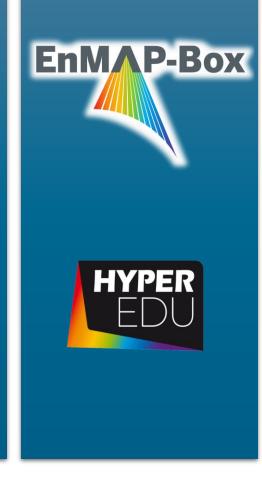
White mica composition

Al-nich White mica composition (nm) Al-poor


2198 2202 2206 2210


Al-nich White mica composition (nm) Al-poor

2198 2202 2206 2210

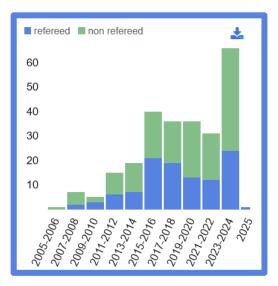

Rekodiq porphyry Cu–Au deposit, Pakistan Asadzadeh et al., 2024

Turkmenistan oil & gas field *Roger et al.,* 2023

Aviator glacier, Antarctica Kokhanovsky et al., 2024

See Talk by Sabine Chabrillat EnMAP imaging spectroscopy mission Science exploitation program: Science results 3 years after launch

Projects and institutions – a selection



Publications

Source: NASA ADS

Remote Sensing of Environment

Volume 315, 15 December 2024, 114379

The EnMAP spaceborne imaging spectroscopy mission: Initial scientific results two years after launch

Sabine Chabrillat a b o o , Saskia Foerster a y o , Karl Segl a o , Alison Beamish a o , Maximilian Brell a o , Saeid Asadzadeh a o , Robert Milewski a o , Kathrin J. Ward a o , Arlena Brosinsky a o , Katrin Koch a o , Daniel Scheffler a o , Stephane Guillaso a o , Alexander Kokhanovsky a o , Sigrid Roessner a o , Luis Guanter c o , Hermann Kaufmann a , Nicole Pinnel d o , Emiliano Carmona d o , Tobias Storch d o , Tobias Hank o o ...Sebastian Fischer w

Comparison of ASI-PRISMA Data, DLR-EnMAP Data, and Field Spectrometer Measurements on "Sale 'e Porcus", a Salty Pond (Sardinia, Italy)

by Massimo Musacchio ^{1,*} ⊠ ¹/₂, Malvina Silvestri ¹ ⊠ ¹/₂, Vito Romaniello ¹ ⊠ ¹/₂, Marco Casu ^{2,3} ⊠ ¹/₂, Maria Fabrizia Buongiorno ¹ ⊠ ¹/₂ and Maria Teresa Melis ² ⊠ ¹/₂

- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Via di Vigna Murata 605, 00143
 Roma, Italy
 Posteriori del Colonia i Science Cittadille Università di Colonia del Co
- ² Department of Chemical and Geological Sciences, Cittadella Universitaria (Blocco A)-S.S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
- ³ Department of Earth Sciences (DES), La Sapienza Università di Roma—Piazzale Aldo Moro 5, 00185 Rome, Italy
- * Author to whom correspondence should be addressed.

Remote Sens. 2024, 16(6), 1092; https://doi.org/10.3390/rs16061092

LETTER - OPEN ACCESS

High-resolution observations of NO₂ and CO₂ emission plumes from EnMAP satellite measurements

Christian Borger*, Steffen Beirle, André Butz, Leonie Olivia Scheidweiler and Thomas Wagner* Published 25 March 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd

Environmental Research Letters, Volume 20, Number 4

Citation Christian Borger et al 2025 Environ. Res. Lett. 20 044034

DOI 10.1088/1748-9326/adc0b1

Full mission evaluation of EnMAP water leaving reflectance products using three atmospheric correction processors

MARIANA A. SOPPA, 1 MAXIMILIAN BRELL, 2
SABINE CHABRILLAT, 2, 3 LEONARDO M. A. ALVARADO, 1, 4
PETER GEGE, 5 STEFAN PLATTNER, 5
IAN SOMLAI-SCHWEIGER, 5 THOMAS SCHROEDER, 6
FRANÇOIS STEINMETZ, 7 DANIEL SCHEFFLER, 2
VITTORIO E. BRANDO, 8 MARIANO BRESCIANI, 9
CLAUDIA GIARDINO, 9 SIMONE COLELLA, 8
DIETER VANSTEENWEGEN, 10 MAXIMILIAN LANGHEINRICH, 11
EMILIANO CARMONA, 11 MARTIN BACHMANN, 11
MIGUEL PATO, 11 SEBASTIAN FISCHER, 12
AND ASTRID BRACHER 1, 13, 10

Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery

by Ana B. Pascual-Venteo 1.* ⊠ . Jose L. Garcia 1 ⊠ Katja Berger 1.2 ⊠ . José Estévez 1 ⊠ . Jorge Vicent 1.3 ⊠ . Adrián Pérez-Suay 1 ⊠ . Shari Van Wittenberghe 1 ⊠ . and Jochem Verrelst 1 ⊠ .

- ¹ Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, Spain
- ² Helmholtz Center Potsdam, GEZ German Research Center for Geosciences, 14473 Potsdam, German
- ³ Magellium, 31520 Toulouse, France
- Author to whom correspondence should be addressed.

Remote Sens. 2024, 16(7), 1211; https://doi.org/10.3390/rs16071211

Detecting methane emissions from palm oil mills with airborne and spaceborne imaging spectrometers

Adriana Valverde^{1,*} , Javier Roger¹, Javier Gorroño¹, Itziar Irakulis-Loitxate^{1,2}
and Luis Guanter^{1,3}

Asadzadeh, S., Koellner, N., Chabrillat, S. (2024), **Detecting rare earth elements using EnMAP hyperspectral satellite data:** a case study from Mountain Pass, California. Scientific Reports, 14, 20766. doi: 10.1038/s41598-024-71395-2 &

Evaluation of EnMAP imagery for predictive modelling of soil salinity in highly saline soils @EGU24-17168

Francisco M. Canero, Diego Lopez-Nieta, and Victor Rodriguez-Galiano
University of Seville, Department of Physical Geography, Seville, Spain (fcanero@us.es)

Identification of a Potential Rare Earth Element Deposit at Ivanpah Dry Lake, California Through the Bastnäsite Indices

by Otto C. A. Gadea [□] and Shuhab D. Khan * □

Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

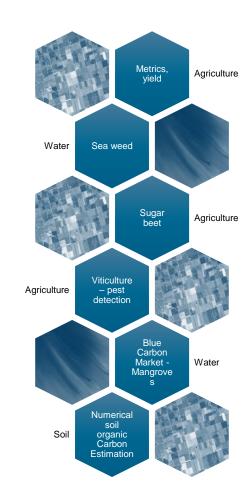
* Author to whom correspondence should be addressed.

Remote Sens. 2024, 16(23), 4540; https://doi.org/10.3390/rs16234540

Hajaj, S., Harti, A.E., Pour, A.B. *et al.* Recurrent-spectral convolutional neural networks (RecSpecCNN) architecture for hyperspectral lithological classification optimization. *Earth Sci Inform* 18, 125 (2025). https://doi.org/10.1007/s12145-024-01534-w

& more to come...

Commercial users



- Agency call for ideas to German companies → 5 funded projects
- New role for commercial user (Cat-2) opened in 02/2025
- Currently only German companies can task EnMAP
- German companies with science projects funded by EU-institutional organisations → Cat-1 (higher prio)
- ESA members state companies have access to the catalogue, other requests considered on a case-by-case basis

NEW

Outlook

Supported by:

Federal Ministry
for Economic Affairs
and Climate Action

On the basis of a decision
by the German Bundestag

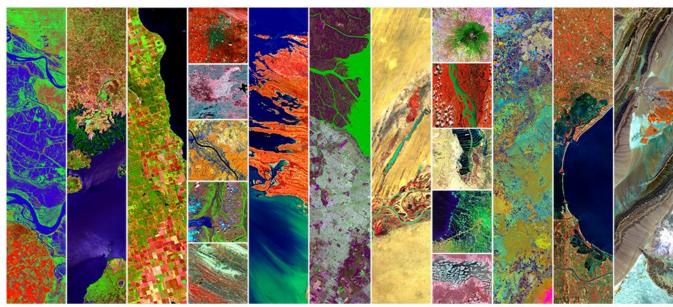
- EnMAP for Charter
 - Feasibility study concluded; next step: regular operations

User Support and Data dissemination

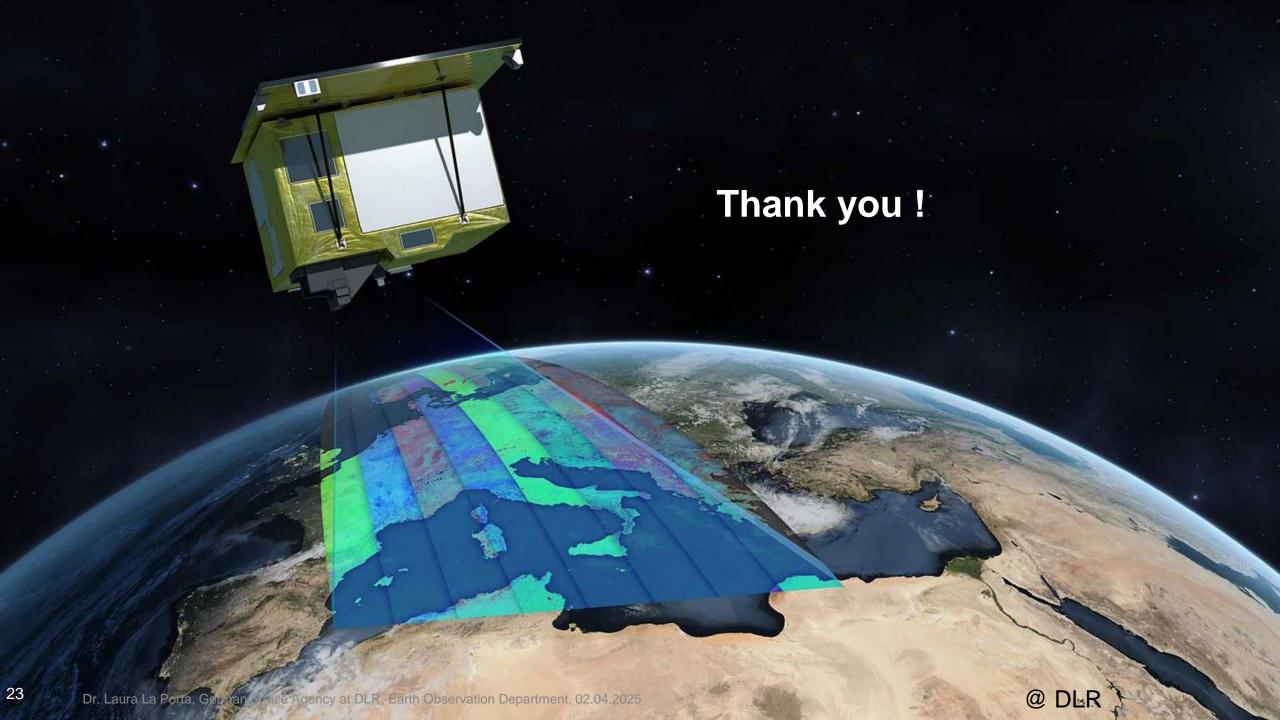
- EnMAP users survey (feedback)
- EOLAB/CODE platform
- More conferences and workshops!
 - LPS2025 EnMAP sessions, EnMAP for public authorities workshop in 2026

Synergies & Cooperation with other hyperspectral sensors:

- Acquisition and analysis of parallel PRISMA/EnMAP acquisitions
- Further attendance of dedicated conferences: sensors cross-calibrations
- Cooperation with EMIT, DESIS, PACE ... CHIME/SBG core sites
- EnMAP // ESA Rose-L campaign (EnMAP LMU & GFZ teams -- > field measurements)


Mission extension preparation!

See Saskia Förster et al– Preparing and engaging national stakeholders for hyperspectral data utilization across research, public authorities and commercial applications


Conclusion

All you need is on the EnMAP official website!

Images: EnMAP data ©DLR [2023/2024]

