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1 Introduction

In this chapter, we are concerned with the Geometrically Exact, Intrinsic Model for
Dynamics of Curved and Twisted Anisotropic Beams. The model was developed in
2003 by Hodges [1]. In the following, we refer to it as Intrinsic Beam (IB) model.
As a geometrically exact formulation, it allows to model beams undergoing large
deformations, making it particularly interesting for applications regarding highly
flexible structures such as helicopter blades [2, 3].

We are interested in using the model to simulate the rotor blades of rotary-wing
aircraft. Therefore, we focus on beams that are clamped at one end (rotor head) and
free swinging at the other (blade tip).

The intrinsic beam equations are a system of partial differential equations (PDEs)
in one spatial dimension and in time. We formulate the equations as a system of
linear hyperbolic balance laws. A similar formulation is derived in [4], where it is
also shown that the underlying system is indeed hyperbolic. We then discretize the
equations in space using a Discontinuous Galerkin (DG) method as commonly used
for hyperbolic balance laws, see, e.g., [5, 6, 7, 8].
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2 The Intrinsic Beam Model

In this section, we consider theoretical aspects. We first introduce the governing
equations in the form they were originally derived in [1]. Based on this, we present
and analyse the formulation as linear hyperbolic balance law from [4].

2.1 Original Formulation of the Equations

We start with some preliminary definitions required for the IB equations. For more
details, see [1, 9].

We consider a beam that is, in general, initially curved and twisted and of
anisotropic material. We describe the geometry of the beam by a one-dimensional
reference line (also called centerline) of initial length ℓ which is the elastic axis of
the beam. The beam is clamped at one end (𝑥 = 0) and free swinging at the other
(𝑥 = ℓ), where 𝑥 is the running length coordinate along the undeformed beam axis.
We consider the behavior of the beam in a given time interval [0, 𝑇] and use 𝑡 to de-
note the time coordinate. All following quantities are ‘body-attached‘, meaning that
they are expressed in the coordinate system of the deformed beam (at the reference
line).

Let 𝐹 (𝑥, 𝑡) denote the internal forces of the beam, 𝑀 (𝑥, 𝑡) the internal moments,
𝑉 (𝑥, 𝑡) the linear velocities, Ω(𝑥, 𝑡) the angular velocities, 𝑘 (𝑥) the initial curvature
of the beam, 𝜅(𝑥, 𝑡) the angular strains, 𝛾(𝑥, 𝑡) the linear strains, 𝑃(𝑥, 𝑡) the linear
momentum, 𝐻 (𝑥, 𝑡) the angular momentum, 𝑓ext (𝑥, 𝑡) external forces acting along
the beam and 𝑚ext (𝑥, 𝑡) external moments. All defined quantities in this paragraph
have values in R3. Where it is clear from the context, we omit the dependency on
(𝑥, 𝑡).

To shorten the notation, we write a cross-product matrix as:

𝑤̃ := ©­«
0 −𝑤3 𝑤2
𝑤3 0 −𝑤1
−𝑤2 𝑤1 0

ª®¬ , for 𝑤 := ©­«
𝑤1
𝑤2
𝑤3

ª®¬ ∈ R3.

So, 𝑤̃𝑧 = 𝑤 × 𝑧 for 𝑤, 𝑧 ∈ R3. Let finally 𝑒1 := (1, 0, 0)𝑇 .
The intrinsic beam model can now be formulated as

𝐹′ + ( 𝑘̃ + 𝜅)𝐹 + 𝑓ext = ¤𝑃 + Ω̃𝑃 ,

𝑀 ′ + ( 𝑘̃ + 𝜅)𝑀 + (𝑒1 + 𝛾̃)𝐹 + 𝑚ext = ¤𝐻 + Ω̃𝐻 + 𝑉̃𝑃 ,

𝑉 ′ + ( 𝑘̃ + 𝜅)𝑉 + (𝑒1 + 𝛾̃)Ω = ¤𝛾 ,

Ω′ + ( 𝑘̃ + 𝜅)Ω = ¤𝜅 ,

(1)

for 𝑥 ∈ (0, ℓ) and 𝑡 ∈ (0, 𝑇), where (·)′ denotes the partial derivative with respect to
𝑥 and ¤(·) denotes the partial derivative with respect to 𝑡.
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2.2 Constitutive Laws

The system (1) contains 8 unknown vectors (𝐹, 𝑀,𝑉,Ω, 𝜅, 𝛾, 𝑃, 𝐻) but provides only
4 vector equations. To close the formulation, we employ two constitutive laws: The
mass matrix M(𝑥) ∈ R6×6 relates the linear and angular momentum vectors 𝑃, 𝐻

to the linear and angular velocity vectors 𝑉,Ω. The flexibility matrix C(𝑥) ∈ R6×6

relates the linear and angular strains 𝛾, 𝜅 to the internal forces and moments 𝐹, 𝑀 .
Together, this results in the following constitutive equations as also used for example
in [1, 9, 10]: (

𝑃

𝐻

)
= M

(
𝑉

Ω

)
,

(
𝛾

𝜅

)
= C

(
𝐹

𝑀

)
. (2)

Specific values of M and C depend on the material properties of the modeled beam
and are not relevant for the purpose of this paper. Both M and C are symmetric and
assumed to be positive definite. For more details, see [1, 9]. This allows to combine
both constitutive laws into one equation using:

©­­­«
𝑃

𝐻

𝛾

𝜅

ª®®®¬ = −𝐴−1
©­­­«
𝐹

𝑀

𝑉

Ω

ª®®®¬ with 𝐴 := −
(
0 M
C 0

)−1
. (3)

2.3 Formulation as Linear Hyperbolic Balance Law

By writing the system (1) in a matrix-vector form and plugging in (3), we can
obtain a linear balance law. For this type of PDE system, there exists extensive
literature, especially regarding its discretization with DG methods such as [5, 6, 8].
This literature provides the basis for our analysis.

More precisely, using 𝑢(𝑥, 𝑡) := (𝐹𝑇 , 𝑀𝑇 , 𝑉𝑇 ,Ω𝑇 )𝑇 ∈ R12, the intrinsic beam
equations result in the following advective form of a linear balance law:

𝑢𝑡 + 𝐴𝑢𝑥 = 𝑄adv (𝑢) , (4)

where we now use (·)𝑥 and (·)𝑡 as a notation for the partial derivatives with respect
to 𝑥 and 𝑡, respectively, to facilitate the notation in terms of the discretization in Sect.
3. The source term 𝑄adv is given by:

𝑄adv (𝑢) := −𝐴
((
𝐸 0
0 −𝐸𝑇

)
+

(
L(C𝑠) 0

0 −L𝑇 (C𝑠)

)
−

(
0 L(𝑦)M
0 0

))
𝑢 − 𝐴𝑞ext (5)

with 𝑠 := (𝑢1, . . . , 𝑢6), 𝑦 := (𝑢7, . . . , 𝑢12), 𝑞ext = ( 𝑓 𝑇ext, 𝑚
𝑇
ext, 0, 0)𝑇 , the matrix
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𝐸 (𝑥) :=
(
𝑘̃ 0
𝑒1 𝑘̃

)
,

and the linear operator L : R6 → R6×6 defined as

L(𝑧) :=
(
𝑧2 0
𝑧1 𝑧2

)
, with 𝑧1, 𝑧2 ∈ R3, 𝑧 :=

(
𝑧1
𝑧2

)
.

This useful notation for L is adopted from [11]. From the definition of the source
term, we see that the balance law contains non-linearities of degree two that result
from the multiplication of the second and third matrix in (5) with 𝑢.

If we multiply the advective form of the balance law (4) with the block-diagonal
matrix Γ of the flexibility and mass matrices, we obtain the following capacity form
of the equation:

Γ𝑢𝑡 + Π𝑢𝑥 = 𝑄(𝑢) . (6)

Here, the matrices Γ(𝑥) and Π are defined as:

Γ(𝑥) :=
(
C 0
0 M

)
, Π := −

(
0 𝐼

𝐼 0

)
,

where 𝐼 denotes the 6 × 6 identity matrix. The source term 𝑄 is then:

𝑄(𝑢) := Γ𝑄adv (𝑢) =
((

0 −𝐸𝑇

𝐸 0

)
+

(
0 −L𝑇 (C𝑠)

L(C𝑠) 0

)
−

(
0 0
0 L(𝑦)M

))
𝑢 + 𝑞ext ,

(7)

where 𝑞ext := (0, 0, 𝑓 𝑇ext, 𝑚
𝑇
ext)𝑇 .

Note that Eqs. (4) and (6) are in fact equivalent. The latter one, however, enables
summation-by-parts of the discrete operator, which facilitates the energy analysis of
the solution in the discrete context as we will see in Sect. 3.

In [4], an explicit form of the transformation matrix 𝑇 is constructed that diago-
nalizes the system matrix 𝐴. For the scope of this chapter, we do not need the full
definition of 𝑇 and refer the reader to [4]. More details about the following deriva-
tions can be found in [12]. However, the matrix 𝑇 has a specific block structure that
allows us to derive mathematically useful boundary conditions. More precisely, 𝑇
consists of two invertible matrices 𝑇1 (𝑥), 𝑇2 (𝑥) ∈ R6×6 with:

𝑇 =
1
2

(
𝑇1 𝑇1
𝑇2 −𝑇2

)
, 𝑇−1 =

(
𝑇−1

1 𝑇−1
2

𝑇−1
1 −𝑇−1

2

)
.

Through this, we obtain the following expression for the eigenvalues of 𝐴 (see [12]):

𝚲 = 𝑇−1𝐴𝑇 with 𝚲 =

(
−Λ 0
0 Λ

)
,
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where Λ = Λ(𝑥) is a real, positive 6×6 diagonal matrix which shows that the balance
law is hyperbolic.

With the transformation matrix 𝑇 we can transform the system into characteristic
variables 𝑤(𝑥, 𝑡) := 𝑇−1 (𝑥)𝑢(𝑥, 𝑡) resulting in the following equivalent balance law
with a diagonal advection matrix:

𝑤𝑡 + 𝚲𝑤𝑥 = 𝑄char (𝑤) , with 𝑄char (𝑤) = 𝑇−1𝑄adv (𝑇𝑤) . (8)

This form is especially helpful for deriving boundary conditions as 𝚲 contains the
characteristic speeds at which information propagates through the domain.

2.4 Boundary Conditions

To derive the right boundary conditions, on the one hand we have to have the
mechanical setup of interest in mind, which is a clamped-free beam. For this setup,
we need to prescribe velocities at the clamped end, 𝑦(0, 𝑡) = 𝑦0 (𝑡), and internal
forces and moments at the free end, 𝑠(ℓ, 𝑡) = 𝑠ℓ (𝑡) [13]. On the other hand, not all
boundary conditions necessarily lead to a mathematically well-posed problem.

For characteristic variables associated with negative values on the diagonal of 𝚲,
boundary conditions have to be specified at the right boundary. Contrary, characteris-
tic variables associated with positive values of 𝚲 have to have boundary conditions at
the left boundary. From the previous section, we know that 𝚲 has a specific structure
with the first six diagonal entries being negative and the last six ones being positive.
In the following, we will denote the characteristic variables associated with positive
entries of 𝚲 as 𝑤+ and the ones associated with negative values as 𝑤− . Moreover,
we will refer to the variables for which we have to provide boundary conditions
as ingoing variables and to the other ones as outgoing variables at the respective
boundary.

Guided by [14, 15], we first choose a general class of boundary conditions,
allowing the ingoing variables to depend linearly on the outgoing ones and some
external data:

𝑤+ (0, 𝑡) = 𝑅0𝑤− (0, 𝑡) + 𝑔0 (𝑡) ,
𝑤− (ℓ, 𝑡) = 𝑅ℓ𝑤+ (ℓ, 𝑡) + 𝑔ℓ (𝑡) ,

(9)

for external boundary functions 𝑔0, 𝑔ℓ and matrices 𝑅0, 𝑅ℓ ∈ R6×6. Again, if misun-
derstandings are ruled out, we will omit the dependency on 𝑡 and 𝑥.

By definition, the vector of characteristic variables, 𝑤, can be written as

𝑤 =

(
𝑤−
𝑤+

)
= 𝑇−1𝑢 =

(
𝑇−1

1 𝑇−1
2

𝑇−1
1 −𝑇−1

2

) (
𝑠

𝑦

)
=

(
𝑇−1

1 𝑠 + 𝑇−1
2 𝑦

𝑇−1
1 𝑠 − 𝑇−1

2 𝑦

)
. (10)

Now choosing 𝑅0 = 𝐼, i.e. 𝑤+ (0, 𝑡) = 𝑤− (0, 𝑡) + 𝑔0 (𝑡), and tracing the above expres-
sion back to physical variables yields
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𝑢 |𝑥=0 = 𝑇

(
𝑇−1

1 𝑠 + 𝑇−1
2 𝑦

𝑇−1
1 𝑠 + 𝑇−1

2 𝑦 + 𝑔0

)����
𝑥=0

=
1
2

(
2𝑠 + 2𝑇1𝑇

−1
2 𝑦 + 𝑇1𝑔0

−𝑇2𝑔0

)����
𝑥=0

. (11)

With 𝑔0 = −2𝑇−1
2 𝑦0 the above expression reads

𝑢 |𝑥=0 =

(
𝑠 |𝑥=0
𝑦0

)
. (12)

This means that for this specific choice of 𝑅0 and 𝑔0, the correct boundary conditions
in characteristic variables are equivalent to Dirichlet boundary conditions for the
velocities at 𝑥 = 0. Analogously, choosing 𝑅ℓ = −𝐼 and 𝑔ℓ = 2𝑇−1

1 𝑠ℓ at the right
boundary, we obtain:

𝑢 |𝑥=ℓ =
(

𝑠ℓ
𝑦 |𝑥=ℓ

)
. (13)

So for this choice, the correct boundary conditions in characteristic variables are
equivalent to Dirichlet boundary conditions for the internal forces and moments at
𝑥 = ℓ.

Note that by switching the choice of 𝑅0 and 𝑅ℓ and setting 𝑔0 and 𝑔ℓ accordingly,
boundary conditions for characteristic variables can also be set in a way that for
physical variables we prescribe velocities at 𝑥 = ℓ and internal forces and moments
at 𝑥 = 0, so that the underlying beam is clamped at 𝑥 = ℓ.

By choosing an appropriate initial condition 𝑢0, we can finally formulate the
following initial boundary value problem (IBVP): Find 𝑢 = (𝑠𝑇 , 𝑦𝑇 )𝑇 , such that

Γ𝑢𝑡 + Π𝑢𝑥 = 𝑄(𝑢) for (𝑥, 𝑡) ∈ (0, ℓ) × (0, 𝑇) ,
𝑦(0, 𝑡) = 𝑦0 (𝑡) for 𝑡 ∈ (0, 𝑇) ,
𝑠(ℓ, 𝑡) = 𝑠ℓ (𝑡) for 𝑡 ∈ (0, 𝑇) ,
𝑢(𝑥, 0) = 𝑢0 (𝑥) for 𝑥 ∈ [0, ℓ] .

(14)

2.5 Continuous Energy Analysis

Before we actually analyse the solution of the system regarding its energy, we derive
a weak formulation of the balance law. Let ⟨·, ·⟩ be the inner product in the space of
square integrable R12-valued functions on [0, ℓ], i.e. L2 ( [0, ℓ])12. Let further ∥·∥Γ
be the norm induced by the inner product ⟨·, ·⟩Γ where ⟨𝑔, ℎ⟩Γ = ⟨𝑔, Γℎ⟩. We will
refer to ∥𝑔∥Γ as the energy norm of 𝑔 and to ∥𝑔∥2

Γ as the energy of 𝑔.
The weak formulation of the balance law in capacity form is obtained by multi-

plying the equation by an appropriate smooth test function 𝜑 and integrating over
the domain [0, ℓ] which yields

⟨Γ𝑢𝑡 , 𝜑⟩ + ⟨Π𝑢𝑥 , 𝜑⟩ = ⟨𝑄(𝑢), 𝜑⟩ . (15)
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Integration by parts for the second term of the above left hand side results in

⟨Γ𝑢𝑡 , 𝜑⟩ + (Π𝑢)𝑇𝜑
��ℓ
𝑥=0 − ⟨Π𝑢, 𝜑𝑥⟩ = ⟨𝑄(𝑢), 𝜑⟩ . (16)

For the analysis of the solution’s energy we make use of the energy method, similar
to [6, 14, 15], and choose 𝜑 = 𝑢 as a test function. Equation (16) then becomes

1
2

d
d𝑡

∥𝑢∥2
Γ + 𝑢𝑇Π𝑢

��ℓ
𝑥=0 − ⟨Π𝑢, 𝑢𝑥⟩ = ⟨𝑄(𝑢), 𝑢⟩ . (17)

So, there are three terms contributing to the change of the solution’s energy. A surface
term, a volume term and a term emerging from the source term 𝑄.

Recall the definition of 𝑄 from Sect. 2.3:

𝑄(𝑢) =
((

0 −𝐸𝑇

𝐸 0

)
+

(
0 −L𝑇 (C𝑠)

L(C𝑠) 0

)
−

(
0 0
0 L(𝑦)M

))
𝑢 + 𝑞ext .

The first two matrices are skew-symmetric, so that the corresponding terms in (17)
vanish. The integrand of the term resulting from the third matrix is 𝑦𝑇L(𝑦)M𝑦,
which again vanishes as 𝑦𝑇L(𝑦) = 0 due to the definition of L. So, only the
contribution of the external sources remains:

⟨𝑄(𝑢), 𝑢⟩ = ⟨𝑞ext, 𝑢⟩ . (18)

Note, that the vanishing terms vanish point wise and that this is independent of 𝑢
being a solution of the underlying system. It is a consequence of the special symmetry
of the source terms and the linear operator L. This important observation will also
be used for the discrete energy analysis in Sect. 3.3. The volume term in (17) can be
integrated by parts again:

⟨Π𝑢, 𝑢𝑥⟩ =
1
2
𝑢𝑇Π𝑢

��ℓ
𝑥=0 , (19)

as Π is constant and symmetric. Together, this results in the following energy equa-
tion:

1
2

d
d𝑡

∥𝑢∥2
Γ = −1

2
𝑢𝑇Π𝑢

��ℓ
𝑥=0 + ⟨𝑞ext, 𝑢⟩ . (20)

On the one hand, the above equation shows energy conservation in a mathematical
sense: The energy of the solution changes only through the boundaries or due to
actual external sources. On the other hand, the particular choice of mathematical
energy coincides with the total mechanical energy of the modeled beam [1]. The
right-hand side of (20) is the sum of work at the boundaries and work due to external
forces and moments. So, this reproduces the energy conservation result from [1] but
is based on the weak form of the problem.

To show that the IBVP (14) is well-posed, we further need to bound the right-hand
side of Eq. (20). We impose the boundary conditions for the surface term using the
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representation in characteristic variables and follow the argumentation of [14, 15].
This results in:

−1
2
𝑢𝑇Π𝑢

��ℓ
𝑥=0 = −1

2
𝑤𝑇𝑇𝑇Π𝑇𝑤

��ℓ
𝑥=0 = −1

4
𝑤𝑇𝚲𝑤

��ℓ
𝑥=0 .

For the general boundary conditions defined in Sect. 2.4, we obtain:

−1
2
𝑢𝑇Π𝑢

��ℓ
𝑥=0 =

1
4

( (
𝑤−
𝑔0

)𝑇 (
𝑅𝑇

0 Λ𝑅0 − Λ (Λ𝑅0)𝑇
Λ𝑅0 Λ

) (
𝑤−
𝑔0

)�����
𝑥=0

−
(
𝑤+
𝑔ℓ

)𝑇 (
−𝑅𝑇

ℓ
Λ𝑅ℓ + Λ −(Λ𝑅ℓ)𝑇
−Λ𝑅ℓ −Λ

) (
𝑤+
𝑔ℓ

)�����
𝑥=ℓ

)
.

(21)

As shown in [14], these terms are bounded if the matrices 𝑅𝑇
𝑖
Λ𝑅𝑖 − Λ are negative

definite:

𝑅𝑇
𝑖 Λ𝑅𝑖 − Λ < 0, for 𝑖 = 0, ℓ . (22)

Unfortunately, for our desired boundary conditions, we have 𝑅𝑖 = ±𝐼 and thus
𝑅𝑇
𝑖
Λ𝑅𝑖 − Λ = 0. In this case, we cannot apply the approach from [14]. This also

has a physical interpretation: the performed work depends on the product of the
velocities with forces and moments at the boundary. So, in general, for our choice
of boundary condition, the change in mechanical energy depends on the current
solution at the boundary for non-zero external boundary data.

To simplify the following discussion, we therefore assume zero external boundary
data: 𝑔0 = 𝑔ℓ = 0. Note that condition (22) is sufficient but not necessary for the
energy stability of a hyperbolic balance law. Experimental results indicate that the
derived scheme is stable for non-zero prescribed forces, moments and velocities.
This suggests that an upper-bound exists at least for a suitable class of cases.

We further assume that the external sources are bounded in the sense that
∥𝑞ext∥L2 < 𝑐 for some 𝑐 ∈ R+. By equivalence of norms (using, e.g., Rayleigh’s
min-max principle from [16]), we obtain:

⟨𝑞ext, 𝑢⟩ ≤ 𝑐 ∥𝑢∥Γ , for some 𝑐 ∈ R+.

Inserting this into (20) results in the differential inequality

1
2

d
d𝑡

∥𝑢∥2
Γ ≤ 𝑐 ∥𝑢∥Γ . (23)

Integration in time then yields:

∥𝑢(·, 𝑡)∥2
Γ ≤ (∥𝑢0∥Γ + 𝑐𝑡)2 . (24)
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To summarize, this provides an upper bound for the energy of the solution of the
intrinsic beam equation for zero external boundary data and bounded external forces
and moments. In particular, the energy grows at most quadratically in time.

3 Discretization

In the following, we discretize the intrinsic beam equations in space using a Discon-
tinuous Galerkin approach based on [6].

3.1 A Discontinuous Galerkin Approach for Discretization in Space

We subdivide the domain [0, ℓ] into non-overlapping elements {𝐶k}k=1,...,𝑁𝑐
:

𝐶k =

[
𝑥k −

Δ𝑥k
2

, 𝑥k +
Δ𝑥k

2

]
.

Each element can be mapped linearly onto the reference element R := [−1, 1] so that
𝑥 ∈ 𝐶k is mapped to 𝜉 (𝑥) = 2/Δ𝑥k (𝑥 − 𝑥k). By transforming the balance law (16)
for the element 𝐶k to the reference element, we obtain:

Δ𝑥k
2

⟨Γ𝑢𝑡 , 𝜑⟩ + (Π𝑢)𝑇𝜑
��1
𝜉=−1 −

〈
Π𝑢, 𝜑𝜉

〉
=
Δ𝑥k

2
⟨𝑄(𝑢), 𝜑⟩ . (25)

Here, we substituted the spatial variable 𝑥 by 𝜉 using, e.g., 𝑢(𝑥, 𝑡) |𝐶k = 𝑢(𝑥(𝜉), 𝑡) |R .
Let P𝑁𝑝

(R) denote the space of polynomials of degree ≤ 𝑁𝑝 on R. On each
element, the DG discretized approximation of (25) is constructed by approximating
the involved functions by polynomials in P𝑁𝑝

(R). As polynomial basis, we use the
Legendre polynomials with Gauss-Lobatto quadrature nodes on R as interpolation
nodes. The interpolation of a function 𝑔 is denoted by 𝐼𝑁𝑝 (𝑔). The involved quantities
are approximated as follows:

𝑢 |𝐶k ≈ 𝑈 (k) = 𝐼𝑁𝑝 (𝑢 |𝐶k ) ,
Γ|𝐶k ≈ Γ (k) = 𝐼𝑁𝑝 (Γ |𝐶k ) ,

𝑄(𝑢) |𝐶k ≈ 𝑄 (k) = 𝐼𝑁𝑝 (𝑄 |𝐶k ) .
(26)

Thus, the numerical solution is a piecewise polynomial. We use the same polynomial
space for the test functions 𝜙 ∈ P𝑁𝑝

(R). The integrals from the inner product terms
are replaced by Gauss-Lobatto quadratures resulting in the discrete inner product
denoted by ⟨·, ·⟩𝑁𝑝

and the discrete norm ∥ · ∥𝑁𝑝
. Similarly, the discrete energy norm

∥ · ∥𝑁𝑝 ,Γ
is induced by the inner product ⟨·, ·⟩𝑁𝑝 ,Γ, where ⟨𝐺, 𝐻⟩𝑁𝑝 ,Γ = ⟨𝐺, Γ𝐻⟩𝑁𝑝

.
Due to the collocation of quadrature and interpolation nodes, we have for any function
𝑔:
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𝐼𝑁𝑝 (𝑔), 𝜙

〉
𝑁𝑝

= ⟨𝑔, 𝜙⟩𝑁𝑝
.

The elements are coupled by replacing the flux, Π𝑈, at the element boundaries by
a numerical flux ℱ

∗. Where clear from the context, we omit the element index (k).
So Eq. (25) becomes

Δ𝑥k
2

⟨Γ𝑈𝑡 , 𝜙⟩𝑁𝑝
−

〈
Π𝑈, 𝜙𝜉

〉
𝑁𝑝

− Δ𝑥k
2

⟨𝑄(𝑈), 𝜙⟩𝑁𝑝
= − (ℱ∗)𝑇 𝜙

���1
𝜉=−1

. (27)

3.2 The Numerical Flux

We choose the Lax-Friedrichs flux, which is commonly employed for discretizing
balance laws, see [6]. In characteristic variables, it is defined as:

ℱ̄
∗ (𝑊𝐿 ,𝑊𝑅) :=

1
2
𝚲∗ (𝑊𝐿 +𝑊𝑅) −

𝜎

2
|𝚲∗ | (𝑊𝑅 −𝑊𝐿) . (28)

Here, 𝜎 ≥ 0 is an upwind parameter, (·)∗ denotes the evaluation of a quantity at an
element interface and (·)𝐿 and (·)𝑅 denote the left and right limits of the numerical
solution at the interface (𝑊𝐿 := 𝑊 (k) (1) and 𝑊𝑅 = 𝑊 (k+1) (−1)). For the diagonal
matrix 𝚲, the absolute value |𝚲| is taken element-wise. For 𝜎 = 0, this results in a
central flux, and for 𝜎 = 1 in an upwind flux.

As we discretize the system in the capacity form, we transform the flux into
physical variables using 𝑊 = 𝑇−1𝑈 and multiplying with Γ∗𝑇∗ from the left:

ℱ
∗ (𝑈𝐿 ,𝑈𝑅) :=

1
2
Π(𝑈𝐿 +𝑈𝑅) −

𝜎

2
(Γ |𝐴|)∗ (𝑈𝑅 −𝑈𝐿) . (29)

Here, |𝐴| := 𝑇 |𝚲|𝑇−1. Note that the numerical flux is consistent with the capacity
form as ℱ∗ (𝑈,𝑈) = Π𝑈.

At the inner element interfaces, we leave the particular choice for 𝜎 open. At the
physical domain boundaries (𝑥 = 0, ℓ), we prescribe the upwind flux 𝜎 = 1. The
boundary conditions for the IBVP (14) are then plugged in as outer states to compute
the boundary flux.

Using a similar notation as for the continuous case, we split the vector 𝑈 =

(𝑆𝑇 , 𝑌𝑇 )𝑇 into discrete internal forces and moments 𝑆 and velocities 𝑌 . Then, at the
boundary 𝑥 = 0, we choose:

𝑈𝐿 =

(
𝑆𝑅 + (C−1/4M1/2C−1/4)∗ (𝑌𝑅 − 𝑦0)

𝑦0

)
. (30)

At the boundary 𝑥 = ℓ, we chose:

𝑈𝑅 =

(
𝑠ℓ

𝑌𝐿 − (C1/4M−1/2C1/4)∗ (𝑆𝐿 − 𝑠ℓ)

)
. (31)
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These choices are consistent with the original boundary conditions as (𝑌𝑅 − 𝑦0) and
(𝑆𝐿 − 𝑠ℓ) converge to zero for a converging solution.

3.3 Discrete Energy Analysis

We consider the weak form in one element and, analogously to the continuous case,
replace 𝜙 by 𝑈. The energy rate in one element is then

Δ𝑥k
4

d
d𝑡

∥𝑈∥2
𝑁𝑝 ,Γ

−
〈
Π𝑈,𝑈𝜉

〉
𝑁𝑝

− Δ𝑥k
2

⟨𝑄(𝑈),𝑈⟩𝑁𝑝
= − (ℱ∗)𝑇 𝑈

���1
𝜉=−1

. (32)

The summation-by-parts property of the Gauss-Lobatto quadrature allows a ‘discrete
integration by parts’ similar to the continuous case in this context, see [6, 17]. So for
the volume term, we obtain:

−
〈
Π𝑈,𝑈𝜉

〉
𝑁𝑝

= −1
2
(Π𝑈)𝑇𝑈

��1
𝜉=−1 . (33)

Following the same argumentation as for the continuous case in Sect. 2.5, the con-
tribution of the source term vanishes except for the external sources. In total, we
obtain

Δ𝑥k
4

d
d𝑡

∥𝑈∥2
𝑁𝑝 ,Γ

=
Δ𝑥k

2
⟨𝑞ext,𝑈⟩𝑁𝑝

−
(
𝑈𝑇

ℱ
∗ − 1

2
𝑈𝑇Π𝑈

)����1
𝜉=−1

. (34)

This shows the discrete element-wise energy conservation.
Summing up the contributions of all elements, we obtain for the total discrete

energy ∥𝑈∥2
𝑁𝑝 ,Γ

:

1
2

d
d𝑡

∥𝑈∥2
𝑁𝑝 ,Γ

=

𝑁𝑐∑︁
k=1

Δ𝑥k
2

〈
𝑞ext,𝑈

(k) 〉
𝑁𝑝

−
((
𝑈 (k)

)𝑇
ℱ

∗ − 1
2

(
𝑈 (k)

)𝑇
Π𝑈 (k)

)����1
𝜉=−1

.

(35)

We additionally use [·] to express jumps at element interfaces:[
𝑈 (k) ] = 𝑈 (k) (1) −𝑈 (k+1) (−1) = 𝑈𝐿 −𝑈𝑅

and combine all terms on the left and right boundaries with 𝑏𝐿 and 𝑏𝑅, respectively:

𝑏𝐿 := −
((
𝑈 (1)

)𝑇
ℱ

∗ − 1
2

(
𝑈 (1)

)𝑇
Π𝑈 (1)

)����
𝜉=−1

,

𝑏𝑅 :=
((
𝑈 (Nc )

)𝑇
ℱ

∗ − 1
2

(
𝑈 (Nc )

)𝑇
Π𝑈 (Nc )

)����
𝜉=1

.
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Then, the total discrete energy equation becomes

1
2

d
d𝑡

∥𝑈∥2
𝑁𝑝 ,Γ

=

𝑁𝑐∑︁
k=1

Δ𝑥k
2

〈
𝑞ext,𝑈

(k) 〉
𝑁𝑝

−
𝑁𝑐−1∑︁
k=1

( [
𝑈 (k) ]𝑇

ℱ
∗ (𝑈𝐿 ,𝑈𝑅) −

1
2

[(
𝑈 (k)

)𝑇
Π𝑈 (k)

] )
− 𝑏𝐿 − 𝑏𝑅 .

(36)

So it contains contributions from external sources, from element interfaces, and from
physical boundary conditions, which are considered separately in the following.

3.3.1 Contribution of the Interface Terms

Using the definition of the numerical flux and the jump at the interface, the k–th
summand of the interface terms in (36) is:[

𝑈 (k) ]𝑇
ℱ

∗ (𝑈𝐿 ,𝑈𝑅) −
1
2

[(
𝑈 (k)

)𝑇
Π𝑈 (k)

]
=

𝜎

2
[
𝑈 (k) ]𝑇 (Γ |𝐴|)∗

[
𝑈 (k) ] ≥ 0 ,

(37)

as (Γ |𝐴|)∗ is positive definite [12]. So, we find zero as an upper bound for the
corresponding sum in (36) including the negative sign in front. The chosen numerical
flux is, therefore, dissipative for 𝜎 > 0. For 𝜎 = 0, there is no numerical dissipation
from the element interfaces.

3.3.2 Contribution of the Boundary Terms

Using the definition of the flux, of the boundary terms 𝑏𝐿 and 𝑏𝑅, and of the outer
boundary states 𝑈𝐿 and 𝑈𝑅 for zero boundary data, we obtain:

−𝑏𝐿 = −𝑌𝑇
𝑅

(
C−1/4M1/2C−1/4

)∗
𝑌𝑅 , −𝑏𝑅 = −𝑆𝑇𝐿

(
C1/4M−1/2C1/4

)∗
𝑆𝐿 .

The matrix (C−1/4M1/2C−1/4)∗ is positive definite, so that we have

−𝑏𝐿 − 𝑏𝑅 ≤ 0 . (38)
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3.3.3 Contribution of External Sources

For bounded 𝑞ext (as assumed in Sect. 2.5), we obtain for each element 𝐶k:〈
𝑞ext,𝑈

(k) 〉
𝑁𝑝

≤ 𝑑




𝑈 (k)




𝑁𝑝

for some 𝑑 ∈ R+ .

Using the equivalence of the norms ∥ · ∥𝑁𝑝
and ∥·∥𝑁𝑝 ,Γ

and of 𝑝-norms for 𝑝 = 1, 2
after summing up the contributions of all cells again, we get for some 𝑑 ∈ R+:

1
2

d
d𝑡

∥𝑈∥2
𝑁𝑝 ,Γ

≤ 𝑑

(
𝑁𝑐∑︁
k=1

Δ𝑥k
2




𝑈 (k)



2

𝑁𝑝 ,Γ

) 1/2

= 𝑑 ∥𝑈∥𝑁𝑝 ,Γ
. (39)

Thus, analogous to the continuous analysis, we obtain:

∥𝑈 (·, 𝑡)∥2
𝑁𝑝 ,Γ

≤
(
∥𝑈0∥𝑁𝑝 ,Γ

+ 𝑑𝑡

)2
. (40)

So, the energy of the numerical solution grows at most quadratically in time and the
chosen discretization is energy stable.

4 Numerical Results

In this section we illustrate the results from the previous sections. We use the
numerical simulation framework Trixi.jl [18, 19, 20] to discretize the intrinsic
beam equation. For the experiments, we choose constant material parameters:

C =

©­­­­­­­«

13 6 5 7 8 5
6 6 4 3 5 4
5 4 5 3 5 4
7 3 3 7 4 3
8 5 5 4 9 5
5 4 4 3 5 5

ª®®®®®®®¬
, M =

©­­­­­­­«

12 4 5 5 10 3
4 4 2 3 4 1
5 2 8 6 6 2
5 3 6 8 7 3

10 4 6 7 13 5
3 1 2 3 5 4

ª®®®®®®®¬
. (41)

These do not describe any realistic material properties as the goal is only to illustrate
the numerical behavior. For the discretization in time, we use the Low-Storage-Five-
Stage Fourth-Order Explicit Runge-Kutta Method (LSERK) from [21].

4.1 Convergence Tests

To analyse the convergence of the numerical solution, we use manufactured solutions
as in [22]: We use 𝑢 = 𝑢̄ := (𝑢̄𝑚)𝑚=1,...,12 with
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(a) Polynomial degree 3 (𝑁𝑝 = 3) (b) Polynomial degree 4 (𝑁𝑝 = 4)

Fig. 1: Plot of the average L2-error for different number of elements and 𝑁𝑝 = 3, 4

𝑢̄𝑚 (𝑥, 𝑡) :=

{
𝑡 sin(𝜋/2 (1 − 𝑥)) 𝑚 = 1, . . . , 6
𝑡 sin(𝜋/2 𝑥) 𝑚 = 7, . . . , 12 .

(42)

We insert this function into the homogeneous part of the capacity form, i.e., without
the source term. This results in a residual 𝑟 = Γ𝑢̄𝑡 + Π𝑢̄𝑥 and can be interpreted as:

Γ𝑢̄𝑡 + Π𝑢̄𝑥 = 𝑄(𝑢̄) + 𝑟 −𝑄(𝑢̄) . (43)

So 𝑢̄ satisfies the original problem with the additional source term 𝑟 −𝑄(𝑢̄). While
the original source term in Trixi.jl is evaluated at the numerical solution, we
evaluate the 𝑄 in the additional source term at the exact 𝑢̄. As the numerical solution
converges to the exact solution, the source terms cancel each other out. We further
set the external forces and moments and the initial curvature to zero, and choose the
length ℓ = 1 and the end time 𝑇 = 1.

In Fig. 1, we show resulting errors for different spatial resolutions, polynomial
degrees 3 and 4, and upwind, respectively central flux. For 𝑁𝑝 = 3, we observe an
optimal convergence order of (𝑁𝑝 +1) with the upwind flux. For the central flux, we
observe a convergence order of 𝑁𝑝 . This is the expected behavior for the scheme,
see [5]. For 𝑁𝑝 = 4, both solutions converge with the optimal convergence order of
(𝑁𝑝 + 1) and reach the machine accuracy for the highest spatial resolutions.

4.2 Energy Simulation

We showed that the discrete energy grows at most quadratically in time for zero
boundary condition and bounded external forces and moments. In case of zero
external forces, the discrete energy is non-increasing which we illustrate in another
numerical simulation.
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(a) Energy for 8 elements (𝑁𝑐 = 8) (b) Energy for 16 elements (𝑁𝑐 = 16)

Fig. 2: Total discrete energy of the solution

We use a similar setup as before but simulate the beam until 𝑇 = 4. As initial
condition, we choose 𝑢0 (𝑥) = 𝑢̄(𝑥, 1). The total discrete energy of the numerical
solution is depicted in Fig. 2.

In absence of external forces and moments, the energy of the exact solution is
constant. We observe that the discrete energy of the numerical solution decreases.
As expected, the simulations using the upwind flux show a higher dissipation than
the ones using the central flux. The dissipation for the cases using the central flux
results from the physical boundary conditions where we always use the upwind
flux. In a post-processing step, we evaluated the accumulated energy dissipation
resulting from fluxes at the boundaries which is shown for discrete points in time
in Fig. 2 We see that the amount of dissipation from the boundary approximately
matches the amount of total dissipation for the central flux. Due to the numerical
error of the discretization in time, there is no exact match between the accumulated
energy dissipation terms at the boundary and the dissipated total discrete energy.
The maximal difference is about 1.33 × 10−3 for 8 elements and 3.02 × 10−4 for 16
elements which is within the expected tolerance.

When increasing the spatial resolution (8 to 16 elements), we obtain less dissipa-
tion as the numerical solution converges to the exact solution.

5 Conclusion and Outlook

We showed that the energy stability of the continuous intrinsic beam equations
transfers to the discrete context for a Discontinuous Galerkin (DG) discretization
of a clamped-free beam with appropriate choices of numerical fluxes and boundary
conditions. We illustrated our results using numerical simulations with the DG
framework Trixi.jl .

For future work, we will investigate the discretization of the intrinsic beam equa-
tions with additional damping terms such as, e.g., the intrinsic beam model with
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Kelvin-Voigt damping introduced in [23]. Even though at first sight, the damping
seems to introduce only minor changes in the equations, it introduces additional
derivatives which need to be handled appropriately in the discretization and the en-
ergy stability analysis. The damping model is crucial to tackle real-world problems
from rotorcraft design.
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