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Abstract—The combination of radar-derived features extracted
from a dataset formed by multi-temporal polarimetric images
and interferometric products acquired at various frequency
bands has been evaluated for crop classification in this work.
Fully polarimetric images acquired by the F-SAR airborne sensor
at three frequency bands (L, C and X) and at three separate
dates during the CROPEX14 campaign are exploited for this
purpose. The images include consistent repeat-pass acquisitions
with different baselines. Results show that all data dimensions
contribute to improve the classification accuracy. The main
novelty of this work is the joint use of different frequency bands
(in groups of two and three) and specific interferometric data
suitable for crops (short temporal baselines and large spatial
baselines). The achieved performance with different combinations
of input features is analysed both globally and for specific
crops. Among other conclusions, L- and X-band show the best
performance of all band pairs. Since they are the most extreme,
their complementary sensitivity is maximised when used together.

Index terms— Synthetic Aperture Radar (SAR), Crop clas-
sification, Polarimetry, Interferometry, Multi-frequency, Multi-
temporal

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) sensors provide images
that are not limited to intensity or gray-level values, but

incorporate additional features which can be exploited in many
applications. In general, these features are grouped into four
dimensions or axes: polarimetry, time series, interferometry,
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and multi-frequency. These axes of SAR data diversity can be
combined for image classification, since they provide comple-
mentary sensitivity to different aspects of the scene. This helps
the classification principle (i.e. the identification of different
land covers) and, hence, improves the performance of the
classifiers. Among all applications of image classification, this
study is focused on crop-type mapping or crop classification.

Existing examples of combination of polarimetry, time se-
ries, interferometry and multi-frequency for crop classification
are reviewed in this Introduction. Table I lists the combina-
tions found in the literature. Particular focus is set on the
combination of the different data axes with multi-frequency
information. Multispectral radar data are potentially useful for
classification because different wavelengths provide diversity
in penetration depth (e.g. over vegetation) and in the scale or
size of the elements of the scene to which the radar is sensitive.

Polarimetry [1] is sensitive to the shape and orientation
of the elements that constitute the scene. Therefore, it helps
distinguishing crop covers characterised by distinct morphol-
ogy or geometry. Regarding the use of SAR polarimetry
(PolSAR) at multiple frequency bands, [2]–[4] provide ex-
amples comparing the classification performance of various
polarimetric modes at different bands. However, only a few
studies effectively combined multi-frequency data to enhance
the classification result. The combination of L-, C- and X-
band was successfully tested in [5] for general land cover
classification using one polarimetric image at each band. In the
context of crop-type mapping, L-, C- and X-band were also
used in [6], whereas P-, L- and C-band were combined in [7]
and [8], L- and C-band in [9]–[13], and C- and X-band in [14].
In all cases, the classification performance improved when
multiple bands were employed with respect to single bands,
thus corroborating the commented complementary sensitivity
as a function of the wavelength.

Time series of satellite images constitute the major source
of information for land cover classification nowadays [15]. Re-
garding crop classification, the crop calendar (sowing-growth-
harvest dates) is usually specific of each crop type in the same
geographical region, so time series allow separating classes by
their temporal patterns. This makes this data axis especially
useful in this application domain [16]. The exploitation of time
series of polarimetric features for crop classification is also
well documented in the literature [9]–[20]. Notably, the combi-
nation of time series of polarimetric observables acquired at L-
and C-band was evaluated for crop-type mapping in [9]–[10],
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TABLE I
BIBLIOGRAPHY EXAMPLES OF COMBINATIONS OF POLARIMETRY, TIME SERIES, INTERFEROMETRY, AND MULTI-FREQUENCY FOR CROP-TYPE MAPPING.

Polarimetry Time series Interferometry Multi-frequency Publications
X X [9], [10], [16], [17], [18]
X X [28]

X X [27]
X X X [30]
X X [6], [7], [8], [9], [10], [13]
X X X [9], [10], [16], [19], [20]
X X X X [31]

at L-, C- and X-band in [19], and at C- and X-band in [20].
Tillage mapping was also addressed by combining time series
of L-, C- and X-band images in [21]. The main conclusion
of these studies was that the most relevant axis for this
application is time. Crops exhibit specific cultivation calendars
and, therefore, their radar responses change with time and
differently for each crop species. As a consequence, there are
specific dates which serve to separate sets of crops, and this
situation changes along time and among crops. In fact, when
the observation period covered by the time series includes
images acquired before sowing and after harvest, results are
usually better than when they are all comprised within the
growing season. In addition, the inclusion of two frequency
bands was also beneficial for the classification performance.

SAR interferometry (InSAR) [22] is potentially suited for
classification of land covers in which there is a vertical distri-
bution of elements, e.g. urban areas and vegetation (forests and
crops). The information provided by interferometry takes the
form of coherence and phase, both related to the scene proper-
ties. In particular, repeat-pass coherence is the interferometric
feature most applied in crop classification. Vegetation covers
show different decorrelation rates over time, to which the
repeat-pass coherence is sensitive. It is therefore sensitive to
cultivation practices and to the crop calendar. InSAR products
derived from ERS-1 and ERS-2 data were first employed
for land cover classification in [23], [24]. These pioneering
works showed clearly that there is more information content
in the time series of the interferometric coherence than in
the backscatter intensity. Much more recently, thanks to the
availability of long time series of Sentinel-1 images, more
complete results have been obtained by [25] and [26]. They
demonstrate the contribution of repeat-pass coherence for land
cover mapping, its complementarity with respect to backscatter
intensity, and, moreover, the independence of this contribution
with respect to the classifier. In addition, the two available
polarimetric channels (VV and VH) provide different infor-
mation, also complementing the potential of this information
source for classification. In the same line, the usefulness of
time series of 6-day Sentinel-1 interferometric coherence for
crop-type mapping was demonstrated in [27].

Single-pass interferometry, which is sensitive to the vertical
distribution of the elements in the scene, has been recently
exploited for crop-type mapping in [28] using TanDEM-X
data. Volume decorrelation makes tall crops produce lower
coherence levels than short crops, so this feature was found
very helpful in this application. Moreover, when time series
of single-pass acquisitions are available, one can also generate

repeat-pass interferograms with images of different dates,
hence increasing the sensitivity to scene properties.

As for the combination of polarimetry and interferometry
(i.e. PolInSAR [29]) for crop-type mapping, the TanDEM-X
data employed in [28] were acquired in dual-pol mode. Thus,
time series of single-pass coherences at HH and VV channels
were used and combined. Later on, additional PolInSAR
features derived from the same dataset were employed for crop
classification in [30]. The results proved the complementarity
between PolSAR and PolInSAR observables, which provide
the highest classification accuracy when exploited jointly.

Finally, time series of dual-pol satellite images acquired
at L-, C- and X-bands have been recently combined in [31]
for crop-type mapping. Different scenarios were evaluated,
including combinations of two or three bands, using either the
whole time series or a subset limited to the number of images
for the band with the fewest observations. However, the lack
of overlapping polarimetric combinations across frequencies
limited the study to the use of only repeat-pass interferometric
coherences and backscattering coefficients of individual chan-
nels as input features.

From this review, one concludes that the use of multiple
frequency bands has not been fully explored yet, especially
when considering its combination with interferometry and
PolInSAR, and only in a limited way with time series. In
addition, the exploitation of PolInSAR data for crop classifi-
cation, even at a single frequency, and both at single dates or
in time series, is clearly not sufficiently studied. In this work,
these two aspects are analysed in detail through the following
questions:

• Do all SAR data axes (time, polarimetry, interferometry,
and multi-frequency) contribute to crop classification,
both alone and in combination?

• Is the combination of multiple frequency bands beneficial
for crop classification using polarimetric and interfero-
metric features? If yes, which sets of frequency bands
perform best?

• Which specific configurations contribute most to crop
classification? and how could they be exploited with
current or future satellite systems?

To answer these questions, an exhaustive analysis of the
results obtained with a well-known machine learning classifier
(random forest) is carried out by using different sets of input
features and measuring the performance at overall and crop-
specific levels. Other state-of-the-art classification methods
could have been employed too, like deep learning models such
as convolutional neural networks and transformers. However,
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the focus of this work is placed on the feature sets used as
inputs for the classifier, not on the classifier itself, and the
relative performance of the selected feature sets would be
roughly the same regardless of the classifier (with different
absolute accuracy values).

This work introduces a unique dataset that enables, for
the first time, single-pass interferometric coherence analysis
with full polarimetric capabilities across multiple simultaneous
frequencies. Such a configuration is not available in any
current SAR satellite, making this study a novel contribution
towards defining the technical requirements for future SAR
missions that combine multiple data dimensions for advanced
crop classification.

Building on this setup, the experimental design ensures a
balanced contribution from all explored data dimensions: po-
larimetry, interferometry, multi-temporal, and multi-frequency.
Since the the multi-frequency dimension includes only three
bands, the remaining dimensions are similarly constrained
to three or four features each. This prevents individual di-
mensions, such as polarimetry and time series, which in-
dependently achieve high classification performance, from
dominating over others. A more exhaustive exploration of each
individual dimension by adding more features lies beyond the
scope of this study and is reserved for future work.

In summary, the novelty of this work lies in the com-
prehensive assessment of crop-type classification using com-
bined polarimetric and interferometric features across multiple
dates and frequencies. It demonstrates the complementarity
between frequency bands driven by crop-specific responses at
different growth stages and highlights the strong performance
of PolInSAR features, both individually and in combination
across temporal and spectral dimensions. Thus, this work is
not aimed at improving the classification results over previous
studies because there are no examples covering the same data
dimensions. Instead, it is focused on understanding the role of
all data dimensions considered in this combined framework.

II. MATERIALS AND METHODS

A. Study area and reference data

The study site, shown in Fig. 1, is located in the proximity
of Wallerfing, Germany (48.70 N, 12.87 E). This is an agricul-
tural area covering a relatively flat surface of about 4×6 km2.

The reference data are composed of a geographical database
that specifies the polygons which define the agricultural fields
and the corresponding crop types cultivated in each of them.
The reference dataset consists of 10 crop classes. Table II
provides the information of the number of fields and the total
area for each crop type.

Winter wheat is clearly the most dominant crop type,
followed by sugar beet and maize. In contrast, crop types such
as winter rape, grasslands or peas are the least represented.
Overall, the study area comprises a variety of crop types with
different distributions, which presents a suitable scenario for
crop type mapping applications.

Vegetation height and in-situ photographs of some fields of
selected crop types are presented in Table III. The images show
that the crop calendars of maize, winter wheat, winter barley,

Fig. 1. Map of the study area in Wallerfing (Germany) with all fields and
crop types employed in the experiments.

TABLE II
CROP TYPES PRESENT IN THE STUDY AREA.

Crop type Number of fields Total surface (ha)
Secluded arable land 22 16.60

Grasslands 9 8.05
Maize 54 111.03
Peas 2 8.73

Potatoes 11 37.82
Sugar beet 53 156.32
Vegetables 13 28.94

Winter barley 14 25.21
Winter rape 4 18.23

Winter wheat 93 195.30

and winter rape are different. These four crop types were the
only classes subject to dedicated in-situ measurements along
the CROPEX14 campaign.

Regarding class denoted as “vegetables”, it corresponds to
a very general term, so the class may be quite heterogeneous
and represent a variety of crops, like carrots, cucumbers, etc.
Unfortunately, there is no additional information about the
precise plant species present in the fields included in the
experiment.

All the fields assigned to “grassland” class are concentrated
around a small part of the test site (see magenta fields in
Fig. 1). However, this class denotes three different subclasses,
i.e. grasslands including orchards, mowed pastures, and pas-
tures. Consequently, this class is very heterogeneous, and we
may expect bad classification results due to its spatial and
temporal heterogeneity.

B. SAR data and pre-processing

The dataset employed in this study was obtained in the
framework of the CROPEX14 campaign carried out in 2014 by
the German Aerospace Center (DLR). The SAR data were ac-
quired by the DLR’s airborne F-SAR [32] system. This system
has fully polarimetric and interferometric capabilities at differ-
ent frequency bands, which make it unique to assess the joint
exploitation of time series of PolSAR, InSAR and PolInSAR
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TABLE III
GROUND MEASURED HEIGHT AND PHOTOGRAPHS PRESENTING THE GROWTH STAGE OF MAIZE, WINTER WHEAT, WINTER BARLEY, AND WINTER RAPE

CROPS AT THE DATES OF THE RADAR DATA ACQUISITIONS.

May 22 June 18 July 24

Maize

15 cm
Leaf Development

118-125 cm
Stem elongation

288-320 cm
Development of fruit

Winter wheat

62-67 cm
Stem elongation

85-90 cm
Development of fruit

80-86 cm
Ripening

Winter barley

90-92 cm
Flowering

80 cm
Ripening

Harvested

Winter rape

130-150 cm
Development of fruit

140-150 cm
Ripening

Harvested

features for crop classification. The dataset comprises images
collected on May 22, June 18, and July 24, for which SAR
measurements at L-(1.3 GHz), C-(5.4 GHz), and X-(9.6 GHz)
bands are available. The X- and C-band acquisitions were
carried out simultaneously, resulting in identical incidence
angles and spatial resolutions, i.e. 0.5m×0.5m in azimuth
and range directions. On the other hand, L-band data exhibit
a coarser spatial resolution of 1.3m×0.5m. Multiple spatial
baseline measurements were acquired. In this experiment, only
one interferometric pair for each frequency band at each date
is used. The three selected interferograms (at L-, C- and X-
band) at each date present a similar height of ambiguity (HoA),
around 3m at the scene centre, for which different spatial
baselines were chosen for each band.

From the available Single-Look Complex (SLC) images
gathered over the research area during the selected dates, a
series of preprocessing steps are performed. They include the
coregistration with respect to a reference image at each band
and radiometric calibration.

In the construction of polarimetric and interferometric prod-
ucts, a spatial filtering is carried out with a boxcar filter of a
kernel size of 23×23 at L-band, and 17×17 at C- and X-bands.
With a pixel spacing of 0.19m×0.6m in azimuth and range
directions in L-band, and 0.3m in both directions in C- and X-
bands, the equivalent number of looks (ENL) is 94 in L-band
and 104 in the latter ones. This corresponds to a final output
resolution of 4.37m×13.8m for L-band, and 5.1m×5.1m
for the higher frequency bands, respectively. The final ENL
and output resolution remain different from L- to C- and X-
bands to avoid degrading the resolution of the higher frequency
bands. Finally, a geocoding step is performed to transform the
data to a geographic coordinate system. The input features
exploited for classification are extracted from the geocoded
data.

C. Definition of SAR features

Starting from the SLC images provided by the SAR data
for each polarimetric channel available, the following target
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scattering vectors at pixel level are formed:

kn = [Sn
HH, S

n
HV, S

n
VV]

T ,∀n = 1, 2. (1)

Superscript T denotes matrix transpose, and Sn
PP is the com-

plex backscattering amplitude measured by transmitting and
receiving vertical and horizontal polarizations, with P =
(H,V), at the n-th end of the interferometric spatial baseline.
The power of the complex backscattering amplitude is known
as the backscattering coefficient, commonly denoted as σ0 and
expressed in logarithmic scale (dB).

To form interferograms, the scattering vectors kn in (1) can
be projected on a complex unitary vector w, which indicates
the selected polarization [29]. With that projection, each image
of the interferometric pair is expressed as follows:

in = w† · kn, (2)

in which the polarization is assumed to be the same in both
images, i.e. w1 = w2 = w, and the operator † represents
the complex conjugate transpose. From (2), the PolInSAR
coherence [29] is defined as the normalised complex cross-
correlation between the two images in that form the interfer-
ometric pair at a selected polarization w:

γ(w) =
w†Ω12w√

(w†T11w) (w†T22w)
. (3)

As a normalised magnitude, the PolInSAR coherence varies in
0 ≤ |γ| ≤ 1. Considering fully polarimetric data, the matrix
Ω12 in the numerator is a 3×3 matrix which contains the
interferometric information, and the matrices T11 and T22 are
3×3 real positive semi-definite Hermitian matrices containing
the polarimetric information of the primary and secondary
images, respectively.

The variation of the PolInSAR coherence in (3) across the
possible polarizations by means of w defines a region in the
complex plane known as the Coherence Region (CoRe) [33],
i.e. {γ(w),w ∈ C2, ∥w∥ = 1}. The CoRe contains the
complex coherences at the measured polarimetric channels, i.e.
γHH, γHV, γVV, as well as all the coherences for any projected
polarization. In this sense, the coherences at the polarization
states with maximum and minimum ground contribution, i.e.
γ(wmax), γ(wmin), are of particular interest due to their
physical meaning. They correspond to the coherences located
closest to the ground and to the canopy top, respectively.
Another relevant coherence is the so-called Trace Coherence
γtr [34], which represents the centre of mass of the CoRe of
the scene (pixel) evaluated and is defined as follows:

γtr =
Trace (Ω12)√

Trace (T11)Trace (T22)
. (4)

All these coherence measurements and derived parameters
(e.g. the phase difference between them ∆ϕ), are evaluated
as input features for classification.

D. Inspection of the input SAR data

With the purpose of inspecting the input dataset and under-
standing the complementarity between the different SAR data

axes, polarimetric Pauli RGB composite images are presented
in Fig. 2, and the Trace Coherence γtr is shown in Fig. 3.

Figure 2 corroborates the polarimetric diversity of the
data across time and frequency. Polarimetry [1] allows to
distinguish between different types of scattering mechanisms,
each associated with a specific physical interpretation. Thus,
a dominant red colour in a field (i.e. R=|HH-VV|) indicates a
dominant dihedral type of scattering mechanism. Conversely, a
dominant blue colour (i.e. B=|HH+VV|) implies that surface
scattering dominates the scene, while the green colour (i.e.
G=|HV+VH|) is mostly characteristic of dipoles and other type
of scatterers typically observed in vegetation volumes.

According to the phenological stage of each crop and their
structure, the different colours in the image show how different
dominant scattering mechanisms vary with time and across
frequencies. Longer wavelengths, e.g. L-band (24 cm) in the
top row, penetrate into and through the vegetated canopy. In
consequence, they allow to see a clearer dominant dihedral
contribution located at ground level, which results from the
interaction of the SAR signal with the ground and the stem of
the plants. This translates into dominant red and pink colours,
which evolve into greener ones as the season advances (second
and third columns) and the plants grow. At the same time,
such clear dihedral contributions are less pronounced as we
move towards shorter wavelengths. This is observed at C-band
(5 cm) in the middle row, and at X-band (3 cm) in the bottom
row, for which the dihedral contribution is even less notable.
The reason for this is that shorter wavelengths, such as X-band
with its 3 cm, are not able to penetrate through dense canopies
and are more sensitive to smaller scatterers. Hence, purple and
blue colours, characteristic of surface type of scatterers, are
more dominant over the majority of crops.

Analogously, Figure 3 corroborates the interferometric di-
versity of the data across time and frequency. At L-band (first
row), with its capability of penetration through the leaves and
stems of the plants until the ground, an overall high coherence
is observed at the evaluated dates for most crops. Only at the
last day, July 24, low coherence levels appear in specific fields.
By looking at the crop-type, one can identify that most of these
fields correspond to maize crops. By that date, they were fully
developed with an average height of above 3m (see Table III),
leading to the observed low coherence values. In contrast, C-
and X-bands (middle and bottom rows) show overall lower
coherence levels than L-band, being the lowest at X-band.
This is a result of the sensitivity of these smaller wavelengths
to small scatterers, such as leaves and branches of the plants,
which make the SAR signal to decorrelate faster. Only on the
first date in May, most of the fields are in the early vegetative
stages with very short or no plants, thus present high coherence
levels.

Regarding the specific polarimetric and interferometric re-
sponses of each crop type, and their dependence on date and
frequency band, they can be initially interpreted from Figs. 2
and 3 by observing the colour-coded polygons. For maize
(dark blue polygons), the fields are blue on May 22, corre-
sponding to the leaf development stage as reported in Table III,
characterized by very short plants and a dominant surface
scattering contribution. The maize fields are darker at L-band
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Fig. 2. Pauli RGB composites corresponding to the three dates (Left: May 22, Centre: June 18, Right: July 24) and three frequency bands (Top: L-band,
Centre: C-band, Bottom: X-band). The Pauli RGB channels correspond to R=|HH-VV|, G=|HV+VH|, B=|HH+VV|.
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Fig. 3. Trace coherence amplitude (0-black, 1-white) images corresponding to the three dates (Left: May 22, Centre: June 18, Right: July 24) and three
frequency bands (Top: L-band, Centre: C-band, Bottom: X-band).
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than at higher frequencies due to a weaker response from the
soil rough surface at longer wavelengths. By June 18, as the
plants enter the stem elongation stage, an increased dihedral
response is observed, causing the blue tone to fade. On July 24,
the L-band image exhibits a reddish tone over the maize fields,
indicating strong dihedral interactions between the ground and
stems. In contrast, X- and C-band representations remain in
gray colour, similar to those from June 18, due to their limited
penetration capabilities. In Fig. 3, the coherence of the maize
fields is very high (white in the images) at the first date for all
bands, in accordance with the almost bare soil situation. Then,
it decreases progressively across all bands as the crop height
increases as a result of an increasing temporal decorrelation
due to the increased amount of vegetation. At L-band, the
coherence in the last date is higher than at the other two bands
due to the stronger response from the ground, which is less
affected by temporal decorrelation than the canopy.

Wheat (denoted with lime green polygons) presents a strong
dihedral signature on May 22 at L-band, resulting in dominant
purplish-red tones in the Pauli RGB representation (Fig. 2). At
June 18, as stem elongation is completed during this period,
an increased extinction makes the response to be lower, and
hence the image is much darker. Notably, this effect is visible
at all three bands. By July 24, as the crop dries and enters the
ripening phase, surface scattering becomes dominant, shifting
the visual appearance towards blue. In Fig. 3, wheat shows
relatively high coherence on May 22 due to its shorter canopy
and lower structural complexity. In particular, the coherence is
very high at L-band, but the presence of the plants which are
already in the elongation stage is evident at C- and, more
significantly, at X-band, for which, even if still high, the
coherence is lower than at the larger wavelengths. As the crop
height increases by June 18, coherence decreases even more,
especially at shorter wavelengths. As wheat transitions into
the ripening stage, coherence gradually increases again, which
indicates a reduction in volume scattering from the canopy and
a stronger contribution from surface scattering. This results
from dryer plants and bent stems at this later stage.

Winter barley (marked with pink-salmon polygons) exhibits
a temporal evolution similar to wheat but matures earlier. It is
harvested by July 24, leading to pronounced surface scattering
and consequently very high coherence values in the last date.
Both wheat and barley show vertically structured canopies
during early stages, resulting in observable dihedral and sur-
face scattering responses depending on the phenological phase.
Notably, in the RGB images of Fig. 2, the response at X-band
is very similar at all three dates, whereas the L- and C-band
images show different values, hence being more sensitive to
the changes in the crop associated with its development and
its harvest.

Unlike these cereals, winter rape (cyan polygons) exhibits
strong volume scattering (bright green colour) on May 22 at all
frequency bands, consistent with the fruit development stage.
As the crop matures, volume scattering weakens, and after
harvest, the fields appear bluish-purple due to the dominance
of the surface component. The coherence trend for winter rape
is similar across all three bands: initially decreasing due to
canopy growth, and increasing again after harvest.

TABLE IV
POLARIMETRIC AND INTERFEROMETRIC SAR FEATURES FOR

CLASSIFICATION.

Feature set SAR observables
Set 1 PolSAR σ0HH , σ0VH , σ0VV , ρHH,VV
Set 2 PolInSAR 1 γtr, γ(wmax), γ(wmin), ∆ϕmax,min
Set 3 PolSAR + PolInSAR 1 Previous two sets together.
Set 4 PolInSAR 2 γHH, γHV, γVV, ∆ϕHH,VV

This diversity in the polarimetric and interferometric be-
haviour of the SAR signal at different frequencies and through-
out time for the different crop types establishes the basis of
exactly what is exploited by the classifier.

E. Classification strategy
1) Sets of SAR features for classification: This study is

mainly focused on the performance of multi-frequency PolIn-
SAR data for crop classification. Therefore, to understand
the contribution of the multi-frequency data axis relative to
all available data axes, different feature sets from each axis
are evaluated both individually and in combination during the
classification process. The analysis includes a detailed exam-
ination of the contribution of each frequency band and their
performance in pairs and all together. Similarly, the impact
of using individual acquisition dates versus all three dates
simultaneously is evaluated. Finally, PolSAR and PolInSAR
features are as well tested separately and in combination
to determine their respective and joint contributions to the
classification.

The input feature sets used are defined in Table IV. Four
PolSAR features are employed: backscattering coefficient of
HH, VH and VV channels (in dB), and the normalised correla-
tion between the copolar channels (HH and VV). Time series
of such PolSAR features have already proven successful for
crop classification applications, e.g. [10], [18]. In addition, the
following four PolInSAR features are selected: absolute value
of the Trace Coherence [34], absolute value of the two extreme
coherences with maximum and minimum ground contribution,
and the height difference between the extreme coherences. As
described in Section II-C, both the extreme phase coherence
values and the Trace Coherence, have shown a strong physical
interpretation useful for the classifier to distinguish between
crop types [30]. Finally, a third set of input features is as well
tested to compare the contribution of individual interferometric
coherences at different polarimetric channels (i.e. HH, HV,
VV) with respect to the previously described PolInSAR ones.

2) Classification method: single- vs multi-frequency: The
combination of different data sources in classification is usu-
ally carried out using the stacked-vector (SV) method [35], in
which all individual features are used at once as input features
of the classifier. Alternatively, fusion at the decision level using
multiple classifiers can enhance results, as shown in Sentinel-1
and Sentinel-2 data fusion for crop-type mapping [36], [37].
This second approach is preferred in this work to establish
a common framework for measuring the contribution of each
data dimension. Nevertheless, one comparative example with
the SV approach is as well included for completeness (see
Section III-C).
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For individual frequency bands, the Random Forest (RF)
algorithm [38] is employed, following the flowchart depicted
in Fig. 4. RF provides explicit outputs (likelihood vectors)
which enable the later use of the product of experts (PoE) [39]
for the fusion of frequency bands (see description below).

The implementation employed in this work is provided by
the scikit-learn package in Python [40] and was run mainly
with default parameters. The number of trees was set to 500 to
ensure a good performance and moderate computation time.
The number of features considered when looking for the best
split was left to the default value.

In order to prevent the classifier from having correlated
pixels in both training and evaluation sets, we perform an
initial field-level splitting: 50% of the fields for each class
inside the reference data are assigned to the training dataset
and the remaining ones to the testing dataset. Then, an extra
step, called equitable random sampling in Fig. 4, is carried
out to avoid the effect of the strong imbalance present in the
number of pixels selected for each class inside the training
dataset. It consists in choosing for every class the same number
of pixels as the smallest class has. By doing so, all pixels of the
smallest class are selected in the training dataset, whereas the
pixels of the other classes are selected in the same amount but
in a random way. After training the classifier, the prediction
stage is carried out with all the pixels of the initial testing
set. These are the pixels in 50% of the fields of each class
resulting from the initial field-level splitting. For illustration
purposes, Figure 5 presents the fields selected for training and
testing in one of the runs of the classification, resulting from
the 50% field-level splitting.

As displayed in Fig. 4, the output of the algorithm consists
in a probability vector, for each testing pixel, indicating its
likelihood to pertain to any possible class. For the classification
with an individual frequency band, the highest probability
found in each vector defines the final predicted class chosen for
each pixel. For the classification with combinations of bands,
the likelihood vectors are exploited as described next.

In the fusion methodology, illustrated in Fig. 6, probability
vectors from individual band classifiers are combined using
the PoE approach [39]:

PSens1,Sens2,...SensN
ci (x) =

=
PSens1
ci (x)PSens2

ci (x) · · · PSensN
ci (x)∑N

i=1 P
Sens1
ci (x)PSens2

ci (x) · · · PSensN
ci (x)

(5)

where P y
ci(x) stands for the likelihood of pixel x to belong to

class ci in classifier y for each of the corresponding sensors
or available bands (i.e. L-, C- or X-band). The fused vector
determines the final class for each pixel. Here, it is important
to note that the same field-level splitting and equitable random
sampling is applied to all bands to guarantee consistency
across classifiers.

Finally, the RF algorithm is run ten times with different
field splits. In each run, different training and testing datasets
are employed in order to ensure unbiased accuracy metrics.
The final accuracy metrics used to assess the classification
performance are then computed from the confusion matrix

resulting from the accumulation of the confusion matrices of
the ten iterations.

The time required for running each one of the iterations of
the classification (training, prediction, and evaluation) when
all features are considered (frequency bands, dates, and feature
sets) is 9 seconds in a conventional personal computer with 32
GB RAM. This is very short because the study area is small
in extent. Therefore, computational cost is not a relevant issue
in this work.

It is important to clarify that, despite the field-level splitting
and the equitable random sampling, some residual spatial
correlation may be present in the data used for classification.
However, this would impact all experiments to the same
degree and, consequently, it does not affect the comparison
of classification results obtained using different sets of radar
features, which is the main purpose of this manuscript.

3) Evaluation of classification results: The metrics selected
for the evaluation of the classification results include the over-
all accuracy (OA), producer’s accuracy (PA), user’s accuracy
(UA) and F1-score. They are computed from the confusion
matrices from the reference set [41], and they are known to
provide detailed insights into the contribution of each input
dataset to specific classes.

OA indicates the global performance of the classifier, i.e.
how well the classifier performed across all classes, whereas
the other three metrics (PA, UA, and F1-score) are computed
for each class. For a given class, PA is the probability that
a pixel that is truly in that class was correctly labelled by
the classifier. Therefore, PA is focused on errors of omission,
since a low PA means the classifier missed a lot of the actual
class, i.e., it underpredicted the class. As for UA, it is the
probability that a pixel labelled as a class on the resulting
map is actually of that class on the ground. UA is focused
on errors of commission because a low UA means there
are many false positives, i.e. the classifier overpredicted the
class. Consequently, PA and UA are complementary, and, for
each class, they assess the classifier detection power and the
reliability of the result for a user, respectively. Finally, the
F1-score is the harmonic mean of PA and UA, and hence it
provides a single score that balances the trade-off between
these two metrics. In this sense, the F1-score is useful for
comparing the performance on different classes.

III. RESULTS

A. Classification results and performance analysis

1) Overall performance: First, as a general measure of the
overall classification performance for all crop types, the OA
is presented in Table V.

The first block of this table shows the results obtained
using only polarimetric features (PolSAR set). When a single
frequency band at a single date is used, i.e. as in a conventional
fully polarimetric SAR acquisition, the best band depends on
the date. This demonstrates the importance of the wavelength
in polarimetry. The polarimetric signature of the elements in
a vegetated scene depends strongly on the vegetation element
size and the wavelength, as well on the microwave penetration
depth. The different growth status of the crop types present in
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Fig. 4. Algorithm flowchart for the classification with individual frequency bands.

Field boundaries of training fields (one run)

Field boundaries of testing fields (one run)

Fig. 5. Field boundaries of the training and testing fields for one of the ten
realisations.

this test site at the three observation dates makes the three
bands to perform differently at different dates.

Regarding the combination of two bands, the pair formed by
L- and X-band is generally the best, which can be explained
by the largest difference of their wavelengths, and hence their
greatest complementarity as sources of physical information.
Using two bands at a single date improves always more
than 10% the OA with respect to one band alone, which is

Fusion

Likelihood vectors from sensor 1

Predicted map from fusionLikelihood vectors from sensor 2

Likelihood vectors from sensor N

Fig. 6. Algorithm flowchart when merging the classification results coming
from different frequency bands.

quite remarkable. Finally, the combination of the three bands
outperforms by 2–4% all band pairs when single dates are
exploited.

The analysis of the results obtained by PolInSAR features
alone (PolInSAR 1 and PolInSAR 2 sets) evidences that this
data dimension is much worse for crop classification than
polarimetry, providing OA values between 5% and 40% worse
than the PolSAR set. Using a single band at a single date, L-
and C-band are better than X-band.

Notably, as it happened with polarimetry alone, combining
the PolInSAR features of two bands at one date improves more
than 10% the OA with respect of single bands, and the three
bands together further improve by 2–4% the OA provided by
band pairs.

Although PolInSAR performs worse than PolSAR, it is sen-
sitive to different properties of the crops and, therefore, their
combination clearly improves the OA provided by PolSAR
alone in all cases, i.e. for one band, for pairs of bands, and
for the three bands together. In fact, the worst OA at a single
band and one date is just below 70%, and the results provided
by the PolSAR and PolInSAR 1 sets are the best ones in the
table.

The complementarity of polarimetry and interferometry
makes also the performance of pairs of bands to improve
clearly. The joint use of L- and X-band at single dates provides
OA values very close to the OA achieved with all three bands,
hence showing again the relevance of combining long and
short wavelengths to maximise the information content in the
data. For instance, OA levels of around 90% are obtained
on June 18, when most of the crops, even if at different
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phenological stages, have plants almost or fully developed with
an already defined structure.

The combination of polarimetry and interferometry could
be evaluated also by combining the PolSAR set with the
PolInSAR 2 set instead of the PolInSAR 1 set, and the
results would be equivalent. In this case, the PolInSAR 1
set is selected because it is formed by features derived from
the geometry of the loci of the PolInSAR data on the complex
plane, and they provide representative physical information of
the scene (pixel) evaluated (see Section II-C). Instead of just
using features (coherences and phase differences) derived from
the data expressed in the linear basis as with the PolInSAR
2 set, the PolInSAR 1 set departs from a direct application
of interferometry in the linear channels. Still, the results of
the combination with PolSAR data do not depend on the
PolInSAR set selected.

Results show that, for any of the input feature sets employed
for the classification, high levels of accuracy are always
obtained when exploiting time series of multi-frequency data.
In particular, the highest OA levels are obtained when all three
dates (last column) and, at least, two frequency bands, are used
in the classification. Again, for most of the feature sets, em-
ploying the two frequency bands with the shortest and longest
wavelength possible (i.e. X- and L-band) provides results as
accurate as when using the three wavelengths available.

TABLE V
OVERALL ACCURACY FOR ALL THE EVALUATED CASES.

OA (%)
Features Bands May 22 June 18 Jul 24 All 3

PolSAR

L 58.61 65.72 61.89 88.46
C 69.01 58.37 50.36 87.83
X 64.60 73.48 51.34 89.60

L, C 80.57 78.58 70.69 93.12
L, X 79.05 84.10 73.36 94.15
C, X 75.50 78.01 62.03 91.87

L, C, X 82.81 85.88 75.29 94.30

PolInSAR 1

L 37.49 47.34 43.17 77.05
C 44.78 31.26 45.82 72.92
X 41.81 32.48 32.10 73.66

L, C 56.38 58.15 56.27 87.54
L, X 60.16 58.63 50.47 88.58
C, X 54.98 40.22 49.14 79.50

L, C, X 64.23 62.36 58.37 88.98

PolSAR
+

PolInSAR 1

L 72.37 77.54 75.91 90.85
C 75.96 69.98 68.24 90.46
X 76.76 80.13 71.47 92.47

L, C 83.06 86.09 79.84 94.63
L, X 83.92 89.30 82.60 95.73
C, X 80.80 85.36 76.36 93.62

L, C, X 84.79 90.07 82.58 95.64

PolInSAR 2

L 34.74 50.29 42.74 77.58
C 50.06 39.55 46.87 76.23
X 45.00 35.79 33.65 74.45

L, C 59.53 64.70 57.04 88.17
L, X 59.93 62.67 51.49 88.72
C, X 59.57 48.28 50.17 81.23

L, C, X 66.96 68.50 59.23 89.53

2) Performance for different classes: To further provide
insights into specific crop classes the PA, UA and the F1-score
metrics obtained when the three dates are used are presented
in Tables VI, VII, and VIII, respectively.

Evaluating the PA results in Table VI for all crops globally,
one can observe clear differences between crop types which
are mostly correctly identified by the model, and others for
which many true instances are missed, resulting in a high
number of false negatives. Those which are best classified are
winter rape and peas, followed by maize and winter wheat. In
all cases, the highest PA scores (above 99% in the case of the
winter rape) are obtained when exploiting both polarimetric
and interferometric features for classification, as well as more
than one frequency band.

Using PolSAR and PolInSAR information at a single fre-
quency band, crops like winter rape and peas achieve PA val-
ues close to 99% as they did when using the same combination
of features but with more than one band. Instead, using only
PolSAR features the PA achieves similar values (around 99%)
independently from how many bands are used for winter rape,
whereas there is a slightly improvement with two or three
bands for peas with respect to a single band.

However, multi-frequency information helps avoiding false
negatives when the specific crop type is not that perfectly
identified by the model. This is the case of crops such as winter
wheat, maize or even sugar beet. There are as well other crops
for which the difference of introducing multi-frequency data
in order to be correctly identified is even more pronounced.
For instance, vegetables achieve a maximum PA score of
98% when using multi-frequency PolSAR and PolInSAR data.
Nevertheless, they barely reach 94% if only one frequency
band is used.

On the other hand, examples of crops for which many
instances are missed by the model, even when exploiting
multispectral input features, are arable land or potatoes. These
crops are poorly detected by the model when exploiting single
PolInSAR datasets for inversion, with PA scores of around
65%. Even if they improve when including PolSAR and
PolInSAR features together, the sensitivity of the model to
them is still not optimum, reaching a maximum PA of 84%
for arable land and 73% for potatoes, respectively. This is
somehow an expected behaviour for such classes, given that
arable land has no plants and those of the potato crops are
very short (less than one metre) at any point of their growing
cycle.

In general, the PolInSAR datasets alone at a single fre-
quency do not provide a sufficient level of sensitivity of the
model to any crop type. In addition, although most crops are
better detected when using multi-frequency PolInSAR data
than with single-frequency PolInSAR, higher PA values are
generally obtained when exploiting PolSAR data than using
only PolInSAR data.

An interesting case is that of the winter barley, which is
the one most benefited from incorporating PolInSAR features
as input for classification. While using polarimetric features
alone the PA reached is 91%, this crop is much better detected,
with an accuracy of up to 97%, when adding PolInSAR
information. As observed in Table III, this can be explained
by the fact that during the observation period, the barley crop
transitions from an early vegetative stage, i.e. dense plants
around 1m with high water content, to a late reproductive
one with fully dried plants around 80 cm and even bent and
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TABLE VI
PRODUCER’S ACCURACY FOR ALL THE EVALUATED DATES.

PA (%)

Features Bands Arable
land

Grasslands Maize Peas Potatoes Sugar
beet

Vegetables Winter
barley

Winter
rape

Winter
wheat

PolSAR

L 66.52 91.41 96.11 95.78 68.79 89.98 82.74 51.17 98.93 92.65
C 68.86 84.95 88.48 96.37 57.84 85.20 87.57 81.56 99.29 95.45
X 74.60 72.30 87.49 97.85 62.21 92.14 93.07 79.99 99.71 94.30

L, C 73.10 94.24 96.85 97.86 67.43 94.29 93.49 79.66 99.67 97.26
L, X 76.32 90.05 96.92 98.17 73.19 96.29 94.62 83.63 99.78 96.85
C, X 73.88 83.10 90.68 98.47 66.43 92.57 94.96 89.02 99.72 96.83

L, C, X 74.97 90.70 96.49 98.36 71.09 95.51 96.40 90.72 99.76 97.53

PolInSAR 1

L 38.96 69.06 89.47 66.61 62.26 67.26 86.41 70.94 96.14 80.96
C 63.09 57.22 85.36 78.58 35.33 79.46 46.94 84.73 86.70 69.10
X 59.48 61.77 80.06 87.39 39.77 80.78 51.20 75.90 87.84 73.05

L, C 60.05 74.61 92.31 90.91 60.60 87.72 80.79 86.17 98.63 90.98
L, X 59.21 82.30 92.27 96.15 66.57 88.76 82.61 81.57 98.88 92.25
C, X 65.28 68.22 87.32 86.30 44.37 85.56 54.30 84.07 93.90 79.02

L, C, X 64.55 80.33 92.49 93.45 61.56 90.60 77.62 87.75 98.97 92.38

PolSAR
+

PolInSAR 1

L 62.98 91.52 97.59 97.99 63.89 91.85 88.38 68.39 99.63 94.94
C 77.09 93.18 92.57 98.85 52.55 89.45 90.21 97.12 99.76 95.43
X 83.35 86.78 91.38 98.68 65.05 96.14 94.05 85.67 99.86 95.30

L, C 76.90 96.81 97.25 98.98 68.12 94.91 96.79 95.74 99.89 97.97
L, X 83.63 95.84 97.39 98.94 72.75 97.71 97.41 92.52 99.93 98.00
C, X 83.00 92.27 93.11 98.84 66.25 95.30 95.88 96.00 99.89 96.80

L, C, X 83.16 96.12 96.94 98.95 72.58 96.87 97.54 97.21 99.92 98.15

PolInSAR 2

L 44.61 81.90 89.16 73.18 54.72 68.61 74.95 73.56 97.19 84.24
C 61.48 64.14 84.77 88.04 56.88 81.63 54.27 84.32 87.71 74.20
X 57.38 66.25 79.84 90.89 48.87 82.13 56.75 81.73 85.32 72.86

L, C 65.07 84.67 92.02 94.99 66.31 87.64 81.78 92.93 98.85 92.02
L, X 66.87 89.34 91.39 97.80 65.09 88.25 81.66 89.54 98.95 93.50
C, X 67.09 71.95 86.49 92.46 61.69 86.38 61.01 85.45 93.08 81.27

L, C, X 71.97 87.00 91.75 96.48 69.34 89.93 83.43 94.21 98.94 92.71

flat. In addition, it is already harvested when observed at the
last date available, i.e. July 24. This entails a strong coherence
change which goes from low to high values at the end of the
season. Hence making them suitable features for classification.

A more detailed analysis of the PA score is provided in
Fig. 7 for two specific classes that are characterised by a
different plant morphology, i.e. grasslands and maize. They
present a very different physical structure and are also rep-
resentative of other crops, so they serve to illustrate how the
plant structure plays a key role in detecting and identifying
different crop classes accurately.

Grasslands are a semi-natural type of vegetation class
characterised by very short (in the order of centimetres) and
elongated soft green leaves, which remain with a similar
structure throughout the observation period. In consequence,
features sensitive to height (and its changes), as those in-
cluding interferometric information (i.e. PolInSAR 1 and
PolInSAR 2 datasets) do not provide the model with the
sensitivity required to properly distinguish them. PA levels
remain below 90% even when using multi-frequency data.
In this case, polarimetric features sensitive to the dominant
type of scattering mechanism present, yield better PA results.
Values of 90% accuracy are reached even with L-band alone,
in which a clear surface component is expected to be dominant
for this crop at such a low frequency.

Maize plants, on the other hand, are observed throughout
their whole growing cycle. From the early vegetative stages
in May 22 with small and distanced plants of around 15 cm,

to the late reproductive ones in July 24 with dense plants that
overpass the 3m (as seen in Table III). The observation of
such changes in height makes the PolInSAR features more
suitable for the identification of this crop type than in the case
of grasslands. PA levels of almost 90% are already reached at
L-band using either the PolInSAR 1 or PolInSAR 2 datasets.
Using polarimetric observables alone, also yields high PA
levels. Those obtained at L-band are even in the order of the
ones reached when using multi-frequency data. Such levels,
above 96%, are not possible to obtain with single frequency C-
or X-band data. The explanation for this lies on the dominant
vertical orientation of the stalks of the maize plants, which
appears as a dominant dihedral contribution at ground level at
L-band.

The reliability of the RF model to precisely classify each
crop type is summarised in the UA results presented in
Table VII. Different to the PA results which showed the winter
rape as the best identified crop by the model, the UA results
indicate that winter wheat is the most accurately predicted
crop, with the least number of false positives. Crops such
as winter rape, winter barley and maize follow in confidence
levels. All of them reach UA values above 99% when using
PolSAR and PolInSAR features at different frequency bands
simultaneously for classification. Similar accuracy values are
also retrieved when employing the individual polarimetric
or interferometric feature sets and multiple frequencies, with
values over 97% for maize and around 99% for winter barley,
among others. For both crop types, the UA levels decrease
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(a) (b)

Fig. 7. Bar plots representing the PA scores at pixel level for the crop types (a) grasslands and (b) maize considering different input feature sets. For simplicity,
Set 1 refers to PolSAR features, Set 2 to PolInSAR 1, Set 3 to PolSAR + PolInSAR 1, and Set 4 to PolInSAR 2, respectively.

TABLE VII
USER’S ACCURACY FOR ALL THE EVALUATED DATES.

UA (%)

Features Bands Arable
land

Grasslands Maize Peas Potatoes Sugar
beet

Vegetables Winter
barley

Winter
rape

Winter
wheat

PolSAR

L 50.24 48.61 96.59 73.57 64.09 92.60 81.00 67.79 92.78 95.94
C 48.86 43.22 93.26 81.70 56.22 91.47 63.50 96.57 93.97 98.76
X 52.17 29.12 92.53 96.54 62.50 96.34 73.97 90.87 98.92 98.89

L, C 64.47 50.19 97.16 82.83 87.16 94.11 75.56 95.44 95.12 99.45
L, X 65.69 42.97 96.33 95.23 90.16 96.72 84.53 94.51 99.63 99.23
C, X 58.28 39.79 94.08 94.07 69.18 96.21 74.44 99.07 99.73 99.39

L, C, X 65.14 45.57 96.42 97.17 90.20 96.58 79.51 97.22 99.80 99.59

PolInSAR 1

L 12.51 28.65 93.32 41.90 55.69 80.53 88.34 79.14 94.25 91.82
C 41.45 14.32 88.92 56.09 35.52 86.93 35.90 89.62 42.44 91.05
X 35.67 21.99 84.80 64.47 29.68 89.95 46.97 76.92 42.35 93.11

L, C 34.57 36.53 96.67 95.19 58.03 91.26 82.85 96.77 89.72 96.76
L, X 35.55 40.50 96.30 94.81 60.65 93.32 85.51 95.29 91.75 96.91
C, X 50.19 25.53 90.96 68.20 43.61 89.55 48.96 90.11 47.39 95.66

L, C, X 45.51 39.94 96.65 95.20 58.15 92.35 79.69 97.13 86.68 97.88

PolSAR
+

PolInSAR 1

L 50.08 53.94 97.74 96.79 74.09 93.30 74.39 90.79 98.35 95.38
C 60.76 56.92 97.24 97.66 61.85 92.60 60.23 98.45 97.95 98.48
X 71.36 40.02 94.19 96.75 70.37 97.03 75.34 97.26 99.30 99.41

L, C 67.25 59.90 99.05 98.55 91.00 95.20 72.09 98.52 98.12 99.34
L, X 77.71 54.67 98.00 98.23 92.64 97.22 78.84 98.58 99.39 99.42
C, X 71.33 53.25 97.81 97.95 76.73 95.92 69.53 99.08 99.44 99.44

L, C, X 74.45 57.66 98.91 98.33 93.40 96.73 75.14 98.87 99.59 99.66

PolInSAR 2

L 17.50 35.90 94.64 34.81 50.13 80.97 70.58 83.79 95.06 94.40
C 36.48 15.36 94.43 58.85 42.68 89.47 62.92 90.50 44.80 95.47
X 32.28 23.27 90.44 49.74 32.32 91.10 64.35 81.23 37.18 95.16

L, C 38.69 39.18 97.51 94.21 61.72 90.99 80.75 98.62 91.61 98.33
L, X 41.65 43.33 97.45 94.13 59.51 91.38 84.34 97.77 92.33 98.08
C, X 46.68 25.85 95.71 63.37 46.74 92.04 70.67 91.35 48.37 97.46

L, C, X 50.27 41.72 97.95 96.93 62.39 92.68 85.01 98.05 88.62 98.64

considerably (up to a 10% decrease) in absence of multi-
frequency data.

A case worth highlighting is the winter rape crop. Very
high UA levels are obtained when using polarimetric data
alone (i.e. >99%), yet very low ones are reached when using
only the interferometric coherences, as seen with either the
PolInSAR 1 or 2 datasets. For this specific crop, it is important
to highlight the strong dependency of the accuracy on the
frequency. While UA levels above 90% are observed whenever
L-band data is employed, the accuracy reached with higher
frequency bands, i.e. C- and X-band, remains below 50%.
Within the observation period, from May to July, this crop is
fully developed with plants above 1m. This is as well observed

in Table III. The characteristic randomness in the structure
of the rape plants yields similar coherence levels, which are
likely to be low, especially at higher frequency bands for fully
developed plants.

On the other side, arable land, grasslands, vegetables and
even potatoes cannot be taken as reliable estimates of the
model. Regardless of the use of both polarimetric and in-
terferometric information, together with multispectral data,
maximum UA values below 80% are obtained for arable land
and grasslands. In the case of the vegetables, even if the
instances of this crop seem to be accurately retrieved according
to the PA values, a number of false positive decreases the
reliability of its classification, with UA values also below 80%.
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UA values slightly above 90% are reached for the potato crops
only when all input features at the different bands available
are used. Such relatively low accuracy values for these crops
can be explained by the similarity in their plant structure. For
instance, between potatoes and vegetables, or even between
arable land and grasslands. Hence yielding a lower precision in
the classification with a considerable number of false positives.

Similarly to the analysis performed over the PA score, Fig. 8
displays a detailed focus on the UA performance on grasslands
and maize crops. While the PA results showed that grasslands
can be properly identified, especially when using PolSAR data
and low frequencies as input for classification, the UA results
manifest a different situation. Their constant structure of short
thin leaves observed across the growing season leads to the
inability of the model to produce reliable grassland estimates,
amounting to a large number of false positives.

Maize crops exhibit the opposite behaviour. The confidence
of their correct classification remains high with UA levels con-
sistently above 90% even when using only single-frequency
data for almost all individual datasets evaluated. And it in-
creases to above 95% whenever making use of multi-frequency
information. The advantage of the multi-frequency information
is particularly evident when exploiting PolInSAR data. Since
the full growing of this crop is observed, from a couple of
centimetres up to 3m tall plants, the interferometric coherence
evolves from very high values to low decorrelated ones. In
addition, this sensitivity of the interferometric coherence to
changes in the phase centre height according to the growing of
the maize plants is strongly frequency dependent. A dominant
dihedral contribution coming from the interaction of the SAR
signal between the ground and the stalks is visible at L-band,
but not at C- or X-bands. For these last bands, the scattering
phase centre is located at higher parts of the plants, where the
signal decorrelates when interacting with the leaves, fruits, and
remaining scatterers that are not transparent enough to short
wavelengths.

To finish the analysis of the RF model performance on crop
classification, the F1-score results are presented in Table VIII.
In a single metric, the F1-score summarises the reliability and
accuracy of the classification by equally weighting both types
of errors: false negatives (i.e. PA) and false positives (i.e. UA).

Examples of crop types which are consistently correctly
classified are wheat and maize. Classification results are
optimum regardless of the input feature set used, including
those without exploiting multi-frequency data. Both are rela-
tively well detected through high PA values, and confidently
estimated with even higher UA percentages. This results in
maximum F1-scores that overpass the 98% accuracy, with
minimum values that oscillate around 80% when exploiting
single-frequency data alone. As observed in Table III, these
crops have in common that the observation period encom-
passes different phenological stages. The already grown wheat
plants undergo a drying out period, with heights from around
1m to 80 cm. While for the maize, we observe the full growth
from almost bare soil up to 3m tall plants.

Peas and winter rape are also examples of crops that are
properly classified, reaching overall F1-scores of 98% and

even above 99%, respectively. However, differently to the
commented wheat and maize crops, peas and winter rape are
characterised by relatively short plants in which the individual
scatterers within the canopy are randomly oriented. In con-
sequence, the performance when exploiting single-frequency
PolInSAR data for classification is reduced. Accuracy levels
below 70% are retrieved in these cases, with the exception of
L-band data for winter rape classification.

Another set of crops that are, even if not so accurately,
also fairly well classified, are sugar beet and winter barley.
The contribution of multi-frequency data proves to be key
in achieving here high classification scores. Accuracy levels
of around 80% when using single-frequency PolInSAR data,
increase in more than 10% when exploiting multi-frequency
information. F1-scores up to 91% are reached for sugar beet,
and even up to 96% for winter barley.

The performance of the classification for the remaining crop
types is not optimum. On the one hand, potatoes and the crops
classified as arable land, present consistent low classification
accuracy. F1-score values oscillate, in the best case, around
80% for both crops. In the case of arable land, the lack of
plants suppresses the information content of the input feature
sets evaluated. A similar situation arises for the potatoes,
characterised by plants of a couple of tens of centimetres.

At last, crops such as vegetables and grasslands, even
though they are correctly detected, the reliability of their
classification is rather poor. Thus, their low rate of false
negatives (i.e. PA of 95% for multi-frequency PolInSAR data)
comes at the expense of a high rate of false positives (i.e. UA
below 80% for vegetables, and lower than 60% for grasslands).
The result is final F1-score levels below 90% for vegetables
and under 75% for grasslands, respectively.

The final classification results for grasslands, as well as
for maize crops, can be corroborated in detail in the graphs
shown in Fig. 9. As advanced by the UA levels, contrasting
classification accuracy is retrieved for each of these two crops.
The low level of confidence when classifying grasslands yields
F1-score levels below 80% for any feature set evaluated. This
diverges from that of the maize, which maintains scores higher
than 80% even in the worst cases, and up to 98% in the best
ones with the use of multi-frequency data.

B. Classification map
A visual evaluation of the classification results following

the PoE fusion methodology together with a RF classifier is
presented in Fig. 10. It includes the predicted map and the
assessment (i.e. correct vs incorrect) map. The result shown
in this figure corresponds to the joint use of PolSAR and
PolInSAR features at all three bands and all three dates.
Instead of showing the classification maps of each one of
the 10 realisations, which are predicted over only half of the
fields (due to the 50% field split carried out explained in
Section II-E2), here we have computed a global map in which
the class assigned to each pixel corresponds to the class that
has been most assigned in the set of all 10 realisations. Since
the OA reached with this set of features is higher than 95%,
the predicted map (shown in Fig. 10a) is visually very similar
to the reference crop-type map (Fig. 1).
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(a) (b)

Fig. 8. Bar plots representing the UA scores at pixel level for the crop types (a) grasslands and (b) maize considering different input feature sets. For
simplicity, Set 1 refers to PolSAR features, Set 2 to PolInSAR 1, Set 3 to PolSAR + PolInSAR 1, and Set 4 to PolInSAR 2, respectively.

TABLE VIII
F1-SCORE FOR ALL THE EVALUATED DATES.

F1-score (%)

Features Bands Arable
land

Grasslands Maize Peas Potatoes Sugar
beet

Vegetables Winter
barley

Winter
rape

Winter
wheat

PolSAR

L 55.95 62.96 96.34 82.12 64.40 91.15 81.08 57.04 95.74 94.26
C 55.32 57.07 90.79 87.09 54.60 88.02 72.89 88.06 96.48 97.07
X 60.78 40.66 89.91 97.18 60.03 94.10 81.85 84.59 99.31 96.52

L, C 66.93 65.12 97.00 88.85 74.30 94.11 83.06 86.48 97.27 98.34
L, X 69.36 57.30 96.61 96.63 79.46 96.45 88.87 88.53 99.71 98.02
C, X 64.25 53.19 92.33 96.06 65.59 94.26 82.97 93.56 99.72 98.08

L, C, X 68.39 60.08 96.44 97.75 77.92 95.97 86.72 93.78 99.78 98.54

PolInSAR 1

L 18.56 39.28 91.28 50.81 57.00 72.78 87.13 73.92 95.11 85.94
C 48.93 22.33 86.94 63.10 32.81 82.83 38.99 86.61 56.28 78.45
X 43.31 31.38 82.27 71.72 31.90 84.95 46.57 74.56 55.72 81.64

L, C 42.45 47.89 94.34 92.95 57.51 89.23 81.42 91.01 93.83 93.75
L, X 42.82 53.39 94.17 95.40 61.66 90.75 83.91 87.70 95.13 94.50
C, X 55.08 36.31 88.95 74.21 41.00 87.33 49.41 85.97 61.54 86.40

L, C, X 51.47 52.20 94.44 94.26 57.57 91.27 78.17 91.88 92.31 95.03

PolSAR
+

PolInSAR 1

L 54.34 67.51 97.66 97.35 67.37 92.41 79.87 77.66 98.97 95.12
C 66.56 70.36 94.74 98.25 52.59 90.83 71.72 97.77 98.84 96.89
X 76.50 53.20 92.67 97.70 64.44 96.53 83.14 90.45 99.58 97.29

L, C 71.06 73.74 98.13 98.76 76.35 94.96 81.87 97.09 98.99 98.65
L, X 80.31 69.13 97.69 98.58 79.89 97.42 86.46 95.32 99.66 98.70
C, X 76.17 67.04 95.29 98.39 67.45 95.53 80.11 97.43 99.66 98.09

L, C, X 78.15 71.76 97.91 98.64 80.17 96.75 84.14 98.03 99.75 98.90

PolInSAR 2

L 24.54 48.94 91.69 46.60 51.48 73.97 70.86 76.86 96.11 88.99
C 44.82 24.02 89.28 68.52 46.75 85.05 57.23 86.81 58.31 83.36
X 40.82 33.61 84.75 61.68 37.82 86.00 59.45 80.93 51.10 82.43

L, C 47.28 52.18 94.61 94.52 62.57 89.14 80.69 95.67 95.06 95.06
L, X 50.69 57.19 94.26 95.82 60.61 89.60 82.60 93.43 95.52 95.73
C, X 53.98 36.77 90.82 73.39 50.99 88.77 64.74 87.77 62.24 88.46

L, C, X 58.17 54.39 94.68 96.65 63.76 91.07 83.96 96.06 93.43 95.54

(a) (b)

Fig. 9. Bar plots representing the F1-score at pixel level for the crop types (a) grasslands and (b) maize considering different input feature sets. For simplicity,
Set 1 refers to PolSAR features, Set 2 to PolInSAR 1, Set 3 to PolSAR + PolInSAR 1, and Set 4 to PolInSAR 2, respectively.
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From the inspection of the associated assessment map
(shown in Fig. 10b), one can identify three types of errors. In
first place, there are some fields with a proportion of erroneous
pixels randomly distributed over them. For instance, there is
a big sugar beet field in the centre of the image in which
some pixels are wrongly classified as potatoes, and contrarily
in another field located to the left. This type of error is present
wherever the two classes share similar radar features and
the images exhibit fine spatial resolution. In many practical
applications, if field boundaries are known and each field is
cultivated with a single crop type, an additional processing
step can be implemented. This step involves assigning the most
frequent class to the whole field, thus minimising the impact
of these errors.

The second type of error corresponds to edge effects either
due to fences (covered or formed by plants, i.e. bushes) or
produced by small geo-referencing errors. In such situations,
pixels located in the edge of a field may be misclassified. In
our experiment, this happens in the top left part of the test site
for a group of fields of wheat, maize and sugar beet that are
adjacent to a curved line of trees (along a small river or a path).
The edge of these fields is wrongly classified as grasslands.
Similar to the previous error type, if the classification product
is to be provided at field scale rather than at pixel scale, it
could be solved by assigning the most frequent class (i.e. the
mode) within the field as the class of the whole field.

The third type of error happens when a whole field, or
almost its entirety, is classified as another class. In our
experiment, this happens for two big fields of potatoes in
the centre of the scene which are classified as vegetables and
sugar beet, respectively, and for a narrow field of sugar beet
in the top left part which is classified as vegetables. In the
assessment map they appear as polygons fully coloured in red.
The most plausible cause of this type of classification error is
a mislabelling, i.e. fields for which the class indicated in the
reference data set is wrong. Unfortunately, such a situation is
very common and inherently reduces the achievable accuracy.
Some strategies have been recently developed to tackle the im-
pact of mislabelled crop fields in crop type classification [42],
[43].

C. Comparison with the Stacked-Vector approach

With the purpose of completing the analysis of the clas-
sification performance provided by the combination of po-
larimetric, interferometric, multi-temporal and multi-frequency
data, this section presents the results of the crop classification
following a stacked-vector (SV) approach [35]. To this end,
analogous metrics to those presented in the previous sections,
including OA, PA, UA and F1-score are computed and pre-
sented in Tables IX, X, XI and XII, respectively. In this case,
for the sake of brevity the results are constrained to the case in
which all available frequency bands (i.e. L-, C- and X-band)
are exploited jointly as input.

The accuracy results given by the OA, i.e. Table V for the
PoE approach and Table IX for the SV methodology, indicate
very similar performances. Even if slightly higher OA levels
are observed in the PoE when exploiting multi-temporal data

(a)

(b)

Fig. 10. Map of the classification result obtained by using the Set 3 of features
at all frequency bands and dates. (a) Classification map (predicted classes).
(b) Assessment map.

TABLE IX
OVERALL ACCURACY FROM THE STACKED-VECTOR APPROACH FOR ALL

THE EVALUATED DATES.

OA (%)
Features Bands May 22 June 18 Jul 24 All 3
PolSAR

L, C, X

85.44 88.85 80.60 94.44
PolInSAR 1 64.79 66.63 60.63 87.32

PolSAR + PolInSAR 85.85 91.52 83.47 95.28
PolInSAR 2 65.83 71.29 60.99 87.75

(last column), the difference with respect to those in the SV
is minimum.

In general, when the different data sources (i.e. different fre-
quency bands) provide complementary information, a fusion
performed at feature level, as in the SV approach, is expected
to provide optimum results. This is confirmed in this case,
since the OA values obtained are very similar to those obtained
in the case of the PoE methodology.

Regarding the rest of metrics (PA, UA, and F1-score), the
same trends as those commented in Section III-A following
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TABLE X
PRODUCER’S ACCURACY FROM THE STACKED-VECTOR APPROACH FOR ALL THE EVALUATED DATES.

PA (%)

Features Bands Arable
land

Grasslands Maize Peas Potatoes Sugar
beet

Vegetables Winter
barley

Winter
rape

Winter
wheat

PolSAR

L, C, X

75.99 95.91 96.08 97.90 70.04 96.19 96.37 95.56 99.83 97.31
PolInSAR 1 66.04 73.10 92.52 97.43 70.52 86.96 84.94 92.53 98.10 88.86

PolSAR + PolInSAR 1 81.59 95.39 97.48 98.91 71.16 96.97 96.97 97.64 99.91 97.45
PolInSAR 2 68.06 84.66 92.20 98.10 69.08 88.14 82.07 93.57 98.13 89.40

TABLE XI
USER’S ACCURACY FROM THE STACKED-VECTOR APPROACH FOR ALL THE EVALUATED DATES.

UA (%)

Features Bands Arable
land

Grasslands Maize Peas Potatoes Sugar
beet

Vegetables Winter
barley

Winter
rape

Winter
wheat

PolSAR

L, C, X

66.89 52.96 97.22 97.26 93.27 95.60 80.73 96.77 99.88 99.84
PolInSAR 1 39.92 32.45 95.94 94.80 62.92 91.95 82.89 95.00 94.49 97.91

PolSAR + PolInSAR 1 76.39 61.76 98.70 99.37 91.96 95.53 81.27 97.97 99.75 99.50
PolInSAR 2 44.02 32.35 96.24 93.97 62.81 91.98 82.68 96.73 95.66 98.63

TABLE XII
F1-SCORE FROM THE STACKED-VECTOR APPROACH FOR ALL THE EVALUATED DATES.

F1-score (%)

Features Bands Arable
land

Grasslands Maize Peas Potatoes Sugar
beet

Vegetables Winter
barley

Winter
rape

Winter
wheat

PolSAR

L, C, X

70.23 67.53 96.63 97.53 79.05 95.88 87.26 96.05 99.86 98.55
PolInSAR 1 48.80 42.07 94.09 96.02 64.88 89.21 83.20 93.69 96.03 93.03

PolSAR + PolInSAR 1 77.63 74.48 98.08 99.14 79.69 96.22 87.67 97.78 99.83 98.46
PolInSAR 2 52.43 44.10 94.09 95.83 64.39 89.85 81.85 95.06 96.87 93.65

the PoE method are observed with a classification based on
the SV approach. This corroborates the consistent contribution
of the different feature sets to classify the crops present in the
study site.

Focusing on crop-level performance, crops whose obser-
vation period spans distinct phases of their growth calendar,
which entail clear structural and water content changes, are
consistently identified and classified with high accuracy. This
is the case of winter wheat, winter rape, winter barley, maize,
or peas. Following either the PoE or the SV approaches, F1-
scores of around 98% and higher are reached when exploiting
multi-frequency PolInSAR information.

Conversely, classes representing semi-natural scenarios
rather than crop types exhibit poor classification perfor-
mance across all evaluated methods. For instance, arable
land achieves F1-scores below 80%, while grasslands fall
below 75%. Moreover, the presence of these classes increases
confusion among short crop types with a not very defined
structure. Examples of this are potatoes and vegetables, which
achieve F1-scores in the order of 80% and 85%, respectively,
using both methods.

With respect to the performance of the evaluated approaches
at feature level, the results from the PoE and SV methods
exhibit strong consistency. When the entire observation period
of the crop calendar is observed, the sensitivity of the scatter-
ing phase centre to plant height variations makes PolInSAR
data, particularly the interferometric coherence, a suitable
feature for classification. In contrast, classes with relatively
homogeneous structures from a radar perspective over time

benefit significantly from the joint use of both polarimetric
and interferometric parameters for classification. Hence, for
both methods, the highest classification scores are obtained
when the datasets PolSAR and PolInSAR 1 are employed as
input features.

Overall, the comparable accuracy and optimal classification
results retrieved from either the PoE or the SV fusion methods
can be attributed to the proposed methodology. As described
in Section II-E2, the initial dataset undergoes two key steps
prior to the classification: an initial split at field-level and an
equitable random sampling. This second step ensures that the
same number of pixels of each class is used in the training.
Thus avoiding a possible overfitting of predominant crop
classes. Without it, an unbalanced number of training data
potentially leads to overfitting when the fusion is performed
in the early stages.

D. Analysis of feature importance

The importance of all the features employed in the classi-
fication is analysed in this section by considering the feature
importance provided by the RF classifier. For this purpose, we
focus on the experiment with the stacked-vector approach in
which the whole set of features was employed, i.e. three dates,
three frequency bands, and PolSAR + PolInSAR data.

The importance of each one of the 72 features, averaged
over 10 iterations, is shown in Fig. 11. The features with
highest contribution correspond to the VH backscattering
coefficient measured on 22 May at C-band (4.5%), at X-
band (4.3%), and at L-band (3.4%), followed also by the
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22/05/2014 18/06/2014 24/07/2014

PolSAR L-band PolSAR C-band PolSAR X-band PolInSAR L-band PolInSAR C-band PolInSAR X-band

Fig. 11. Importance for all individual SAR features used in the stacked-vector approach with three dates, three frequency bands, and PolSAR + PolInSAR
data.

VH backscattering coefficient measured on July 24 at L-band
(3.3%), on June 18 at C-band (2.9%), and on June 18 at
X-band (2.9%). Then, the following most important features
correspond to the trace coherence measured at L-band on
June 18 (2.5%) and July 24 (2.5%). These eight features
come from different frequency bands and dates, and include
both backscatter (at VH channel) and interferometry (trace
coherence), demonstrating the contribution of all data dimen-
sions considered in this study. Moreover, the eight features
together only provide 26% of importance, hence proving also
the value of the rest of features to improve the classification
performance.

Fig. 12. Importance for the eight individual SAR features grouped by their
magnitude type.

The analysis of feature importance can be carried also by

grouping the importance values as a function of the feature
magnitude type, their acquisition date, and their frequency
band. Regarding their magnitude type, Figure 12 presents the
importance of the eight different radar features considered.
As previously mentioned, the backscattering coefficient of
the cross-polar channel (VH) contributes the most to the
classification (25.46%), followed by the HH backscattering
coefficient (15.57%) and the trace coherence (14.54%). At the
other extreme, the co-polar correlation contributes the least
(6.13%).

In the same vein, the importances of the features can be
grouped based on whether they belong to the PolInSAR 1
or PolSAR dataset (see Table IV). Figure 13 shows that the
PolSAR features, accounting for 59%, are more helpful to
the classifier than those from the PolInSAR features, which
account for 41%. However, the difference is not so high. which
reveals that the interferometric features also provide valuable
information for classification.

Following the same logic, we can group the features by date,
regardless of their nature (see Fig. 14). This graph shows that
features acquired on May 22 contribute the most (40%) to
distinguishing among classes, but the importance of the other
two dates is around 30% each, which is not much smaller than
the first date.

Finally, we can also group the features based on the
frequency used (L-, C-, or X-band). The result, shown in
Fig. 15, clearly demonstrates that all three bands contribute
in a balanced way to the classification performance. Although
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Fig. 13. Importance of the features grouped into PolInSAR and PolSAR.

Fig. 14. Importance of features depending on the date.

L-band appears to be predominant (35.65%), its importance is
very similar to the other two bands, i.e. 32.10% and 32.24%
at C- and X-band, respectively.

IV. DISCUSSION

The classification results previously exposed are discussed
here in comparison to observations from related works. There
are different aspects to consider attending to the data axes
evaluated: time series, polarimetry, interferometry and multi-
frequency. Special emphasis is placed on integrating all of

Fig. 15. Importance of features depending on the frequency band.

them with multi-frequency. In this sense, the literature is
mostly limited to their separated results, rather than to their
effective combination.

The relevance of time series for crop classification is clear.
Time series is related to the crop calendar, and the crop
calendar defines the main temporal pattern of the structure
and water content of the plants. The fact that a dense time
series yields better accuracy results had already been proven
in several works, e.g. [9]–[10], [28]. However, the findings in
this paper highlight that, rather than a dense time series, what
is even more critical is that the selected dates cover different
crop growing stages. This was also found in [44]. Regardless
of the density of a time series, if only a part of the growing
cycle in which the plants do not undergo important structural
and water changes is covered, it will not provide the most
optimum results.

In this regard, the current dataset is limited to three months
of observation, from which only three dates have been anal-
ysed. With it, we find proof of the relationship between having
specific dates of different growing phases versus amount of
dates. At the dates evaluated, i.e. May 22, June 18 and July
24, the maize crops go from an average height of 15 cm, to
1m and over 3m, respectively. Such a change, from almost
bare soil to a very large biomass content with 3m plants, is
key for the high classification accuracy reached with this crop.

The lack of observation of such changes results in a poor
performance for certain classes. For instance, those which are
not really cultivated crops but rather semi-natural vegetation,
e.g. arable land and grasslands. This goes in line with the
findings of other experiments, as those presented in [37]. F1-
scores of around 62% for grasslands and 41% for fallow were
obtained in [37] with dual-pol Sentinel-1 C-band data. In the
same order of accuracy, 57% and 55% F1-score are obtained
for the equivalent grasslands and arable land classes exploiting
only polarimetric observables at C-band in our results. Mask-
ing out these semi-natural classes would potentially improve
the final overall accuracy. Nevertheless, we have maintained
them with the purpose of designing a methodology as general
as possible, without the need of prior knowledge of which
crops are kept fallow, or from which ones we expect to obtain
agricultural products.

Another evidence of the impact of the temporal pattern of
plant structure and water content is found in the winter wheat
and winter barley crops. The very similar structure of these two
cereals makes them prone to be confused. This was observed
in [45], as well as in [16], for which a large error for the winter
barley crop was highlighted when using cross-polarization
backscatter. However, despite their resembling plant structure,
the confusion level between them in the present experiment
is not strong. UA levels (cf. Table VII) over 97% for winter
barley and 98% for winter wheat are obtained when exploiting
full-pol interferometric data at either C- or X-bands alone,
and around 99% when exploiting several bands together. The
reason for this is their different crop calendar. As shown in
Table III, the crop development of winter barley is faster than
that of winter wheat.

In both [10] and [31], among the frequency bands evaluated
(L- and C-band in the first case, and L-, C- and X-band
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in the second case), C-band seemed to be preferred one for
crop classification. The results obtained here differ from this
observation, since L-band provides better results than C-band
in many cases. The longer wavelength at L-band allows it to
penetrate into and through the vegetation, and this impacts
the sensitivity of this band to the whole plant. Hence, L-band
is able to interact with the plant from top to bottom, and is
not just limited to the upper layers, as are C-band and, in
greater measure, X-band. Such a better performance of L-
band is clearer when exploiting PolInSAR features in crops
like winter rape, maize, and winter wheat. A crop that seems
to perform worse at L-band than at higher bands is winter
barley. This could be explained by the frequent confusion
between barley and winter wheat, as they are two crops with
very similar structure and physical features [16]. Shorter crops,
like peas and sugar beet, are better classified at X-band than at
other lower bands because the X-band wavelength is enough
to penetrate the whole volume and, at the same time, provide
a response not so affected by the soil.

Regarding the use of multi-frequency data, the results found
in this work go in accordance to those in [10] and [31]. In all
cases, the joint exploitation of multiple frequencies improves
the overall accuracy with respect to a single band. For instance,
an improvement of up to 13% in [10] was observed when
exploiting C- and L-band data together. However, there are
additional observations that can be extracted from this work.
It is correct that the best results are consistently obtained
with multi-frequency data over single-frequency. Nonetheless,
results here suggest that the use of two frequencies (L- and
X-band) with wavelengths which are the furthest away from
each other provide already the same level of accuracy as when
including a third band (C-band) with similar wavelength to one
of them.

It is worth noting that the acquisition of SAR data at dif-
ferent frequencies (i.e. with different sensors and/or configu-
rations) entails normally that the resulting spatial resolution in
the images at each band is different. In our case, this happens
at L-band, which has a different resolution with respect to
C- and X-band (see Section II-B). A resolution difference
is expected to impact the generation of high resolution final
products with a pixel size similar to the resolution of the
SLC images. Each pixel on ground may correspond to one
image pixel at some bands and more pixels at other bands.
However, in our experiment, the data were spatially filtered
in the estimation of the PolSAR and PolInSAR variables to
ensure a high equivalent number of looks. They present a much
degraded resolution with respect to the original images and, as
a result, no impact on the classification results coming from
this difference in spatial resolution is expected.

V. CONCLUSIONS

The performance of crop classification based on multispec-
tral radar data formed by multitemporal polarimetric and in-
terferometric features has been evaluated. This work is unique
in providing, for the first time, an evaluation of the multi-
frequency contribution to crop classification isolated from
other factors, such as polarimetric channels, incidence angle,

spatial resolution, and acquisition dates. These factors are
primarily determined by the sensor and acquisition geometry.
Notably, fully polarimetric and interferometric data acquired
with the same sensor (F-SAR) at the same dates within the
context of the CROPEX14 campaign were exploited. There-
fore, the only parameter that changes notably across the data
is the frequency band, i.e. with data available at L-, C- and
X-bands. Such an evaluation covering all SAR data axes has
never been done before.

The first overall conclusion is that all the dimensions of the
data contribute to improving classification performance when
they are jointly exploited. For instance, using only PolSAR
data from one band at one date, the OA ranges between
50% and 73%. When a second band is added, the OA ranges
between 62% and 84%, and with all three bands it is between
75% and 86%, depending on the date. Similarly, using PolSAR
features at a single band but including the three dates, the OA
is between 87% and 90%. This further improves with two
bands (91–94%) and three bands (94.3%). Similarly, jointly
using PolSAR and PolInSAR features at a single band and
one date improves between 7% and 20% the OA of PolSAR
alone.

The main improvements provided by the different data
dimensions are summarised next, together with the charac-
teristics that make them relevant:

• Multi-temporal: Crops are well separated if dates cover
different phenological stages of the crops along their
growing season and also out of that time frame. A few
dates could suffice if the calendar of the crops present
are different enough.

• Polarimetry contributes when the morphology of the
crops present is diverse, for which sensing at different
dates clearly helps.

• Interferometry seems to perform as the worst information
source, but its contribution is unique. This is demon-
strated by the improvement of performance when it is
used in conjunction with polarimetry and/or time series.

• Multi-frequency improves classification in all cases as a
result of the strongly different response of crops at differ-
ent frequency bands. In fact, the best results from pairs
of frequency bands are provided by the most extreme
wavelengths (L- and X-band).

The experimental setup of this work is quite unique because
it comes from a dedicated airborne campaign. Therefore,
the transfer of our conclusions to satellite data gathered by
operational sensors presents some limitations.

Single-pass interferometry (or repeat-pass with very short
temporal baseline) is limited to satellite constellations formed
by two or more satellites with coincident orbital config-
urations. Currently, this is only the case for TanDEM-X.
Moreover, the spatial baseline required for offering sensitivity
to crops (i.e. short vegetation) is much longer than for other
applications (e.g. forestry).

Polarimetry is usually restricted to dual-pol systems (e.g.
Sentinel-1), with only a few sensor offering quad-pol data (e.g.
Radarsat-2 at C-band and ALOS-2 PALSAR-2 at L-band).
In addition, quad-pol acquisitions are not routinely gathered,
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favouring the dual-pol mode because of its larger spatial cov-
erage (swath). In this context, compact-pol (as provided by the
Radarsat Constellation Mission) offers enhanced polarimetric
information with respect to dual-pol.

Regarding the use of multi-frequency data, to date we need
to rely on different satellite sensors, normally operated inde-
pendently by different agencies. This situation may improve
with the launch of ROSE-L (an L-band radar part of the
Sentinel expansion missions), which is foreseen to operate in
a coordinated way with Sentinel-1.

In the meantime, there are other L-band satellites (either
launched or that will be launched in the next future) that
should be tested for crop monitoring (e.g. SAOCOM, ALOS-3
PALSAR-4, NISAR) in combination with X-band sensors (e.g.
TerraSAR-X, TanDEM-X, PAZ, COSMO Sky-Med, etc.).

The experimental setup presented in this study was deliber-
ately designed to ensure a balanced assessment of all evaluated
data dimensions (polarimetry, interferometry, multi-temporal,
and multi-frequency). To this end, each dimension was con-
strained to three or four representative features, reflecting the
most restrictive case. This controlled configuration allowed
meaningful comparisons without biasing the classifier towards
any single dimension, while still delivering strong classifica-
tion performance. Future work may extend this analysis by
incorporating a broader set of features, including additional
polarimetric descriptors (e.g. decomposition-based features),
more acquisitions dates to form time series, and further
interferometric variables such as diverse spatial baselines and
features derived from the complex coherence region.

Due to the required data acquisition scheme, so far only
possible with airborne systems, the study was carried out over
a small agricultural region. However, under comparable SAR
system capabilities, our conclusions could be directly trans-
ferred to different landscapes and larger regions. In such cases,
variations in classification performance are primarily driven by
weather and climate conditions. Accordingly, certain features
may present different values due to factors such as plant
water content, with fluctuations between rainy and dry seasons,
or soil moisture differences resulting from varying irrigation
practices, among others. Even so, how these variations reflect
in the input features would be used by the classifier to discern
between crop types, and the classification and fusion strategy
for the different frequency bands would remain unchanged.
With regard to larger regions, they would require data gathered
by satellites, but the size of the evaluated region is not expected
to severely affect the overall classification performance.
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