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Computational B
{ Fluid Dynamics -—u CFD
. . . (RANS to LES)
Validation of aero-elastic codes
Motivation 5
»  Wind turbine design calculation require > 1M aerodynamic iterations %
S
« Accuracy of these drive design in terms of power performance, loads, stability and noise W= T
Model accuracy becomes more critical for large hence flexible rotors B/Eﬁ

£ .
Blade Element Momentum Physics ——
(currently used for design)

« Large nr of iterations necessitates usage of low fidelity models

« How to improve and calibrate wind turbine aerodynamic models remains a research question until we can
design wind turbines with Direct Navier Stokes

» Aerodynamics is a Millenium Prize Problem (http://www.claymath.org/millennium/)

« Need measurements for a large range of conditions and turbine types to improve and calibrate current
aerodynamic models and to assess their general validity

Nowadays there isn’t a single designer to find who would dare to design a wind turbine with the aerodynamic modelling from the 1980’s !)
1 J.G. Schepers Engineering models in aerodynamics, TUDelft PhD thesis, November 2012

2 Grol van, H.J,, Snel, H., Schepers, J.G., Wind Turbine Benchmark Exercise on Mechanical Loads, A State of the Art Report ECN-C-91-030/31, 1991,
(a description of state of the art design models at the end of the 1980’s)
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IEA Wind and aero-elastic model validation

® [ J
 Since 80s there have been joint efforts to validate and improve rotor aerodynamic models 'e a Wl nd

 Field experiments, wind tunnel test, benchmarking against high fidelity models (CFD)

Are we not be finished by now???
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Outline

e Introduction

« Summary previous rounds

«  Wind tunnel to field
 DanAero
*  Sheared inflow

«  Cyclic pitching

* Conclusions and recommendations
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Pressure [Pa]

EU MEXICO and New MEXICO

Connecting loads and velocities: Momentum theory

« Induced velocity around rotor plane (PIV)

 Sectional and rotor axial force (integrated pressures)
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IEA Wind Task 29: From wind tunnel to field

Code comparsion against DanAero field rotor aerodynamics (NM80 turbine)

* Axial, constant, uniform inflow

(low TI)

pressure [Pa] at 19.06 m, U_=6.1 m/s, rigid

DanAero test set-up (€80m)
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power [KW]
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DanAero turbulent inflow: statistics (standard deviation)

rotor speed [rpm]
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« Large differences in standard deviation, systematic difference between BEM and vortex type codes
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Modeling non-uniform conditions

DanAero vertical wind shear case
* More systematic case to study modeling of non-uniformity in controlled manner

* No measurement data, but with CFD as ‘numerical wind tunnel’

Fn [N/m], r/R=0.92, Pitch=3.00deg, U=6.1 m/s, Shearexp=0.35 Fn amplitudes [N/m], Pitch=3.00deg, U=6.1 m/s, Shearexp=0.35
1200-
— DNV_Bladed_BEM :
1100- -- DNV_Bladed_FVW 300 = BE&E{Z;’E&’-ES%
I ’ DLR_Tau = DLR Tau
o) - DTU_EllipSys3D = B DTU_EllipSys3D
D — DTU_HAWGC2 = B DTU_HAWC?2
o4 -~ DTU_HAWC2NW 0 B DTU_HAWC2NW
= 1000- -~ DTU_HAWC2NWVC 3 200- B DTU_HAWC2NWVC
—= — IFPEN_BEM 3 M IFPEN_BEM
E -- IFPEN_VL 3 M IFPEN_VL
Z, NREL_BEM £ NREL_BEM
p= NREL_OLAF © NREL_OLAF
L — PoliMi_Cp-Lambda c B PoliMi_Cp-Lambda
900- — TNOAero-BEM % 100- I TNOAero-BEM
-~ TNOAero-BEM-sector B TNOAero-BEM-sector
-~ TNOAero-AWSM Ii I B TNOAero-AWSM
800- 0-
0 100 200 300 - - - -
Azimuth [deg] r1 r2 r3 r4
Chord normal force variation at 92% span radial station Chord normal force amplitudes at 4 radial stations

- Apparent difference between BEM and vortex code types, where CFD agrees with.the latter o TINQ [17oy2t0n



Modeling non-uniform conditions

DanAero vertical wind shear case: Induced velocities and momentum theory

 Large differences in underlying induced velocities

» Are these models in agreement with momentum theory???

Ui [m/s], /R=0.76, Pitch=3.00deg, U=6.1 m/s, Shearexp=0.35
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Axial induced velocity variation at 76% span radial station

Reprocess lifting line results
and compare to C, = 4a (1-a)

From forces to C;:

Ci =Fu/(0.5rhoU "2 A),
F.x = F,*cos(phi) - F,*sin(phi),
phi = pitch + twist

From axial induced velocity to
a-factor:

Ui * I:Promdtl =a* Uref
Local BEM option:

Urer = Uying(azi), Ui=U;(azi),
Fox = Fox(azi)

Momentum, r/R=0.76 (local), Pitch=3.00deg, U=6.1 m/s, Shearexp=0.35
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al
Post-processed momentum curve (Thrust coefficient Ct
versus axial induction factor a) at 76% span radial station
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Modeling non-uniform conditions

DanAero vertical wind shear case vs load variation due to cyclic pitch

«  What happens if we create a similar force variation by means of harmonic pitch variation instead of vertical shear?

Fn [N/m], r/R=0.76, Pitch=3.00 +/- 1.25 deg, U=6.1 n Fn amplitudes [N/m], Pitch=3.00 +/- 1.25 deg, U=6.1 m/s Momentum, r/R=0.76 (local), Pitch=3.00 +/- 1.25 deg, U=6.1 m/s
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http://wiki.windpower.org/images/e/ed/Pitchmo.gif

Modeling non-uniform conditions

DanAero vertical wind shear case + load variation due to cyclic pitch

- What happens if we create a force variation by means of harmonic pitch variation to cancel out vertical shear?

Fn [N/m], r/R=0.76, Pitch=3.00deg, U=6.1 m/s, Shearexp=0.35 Momentum, r/R=0.76 (local), Pitch=3.00 +/- 1.25 deg, U=6.1 m/s, Shearexp=0.35
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2a(1 — c'z),oUE]Q:-n'dr = Z("O.Sp ch.'g(a)cos(qb)dr,
B

Modeling non-uniform conditions "

¢ =atan2 (Us(1 —a),Qr), a = ¢ — € and

Discussion: Applicability of local momentum theory W = \/ U2(1 —a)* +(Qr)?
« Inlocal BEM, we balance blade force against local momentum

» A variation of blade element force with azimuth (e.g. by cyclic pitching) does
not pose violations to BEM theory besides possible unsteady effects

» Azimuthal non-uniformity in inflow (e.g. by vertical wind shear or an
incoherent gust) also leads to a violation

« How valid is the local BEM implementation taking the local ‘element’ wind as
reference wind speed?

« In CFD all streamtube velocities are considered instead of a single reference
wind speed

 Playing with this idea has led to various implementation changes with
potential for improvement ?

1 K. Boorsma et al, Challenges in Rotor Aerodynamic Modeling for Non-Uniform Inflow Conditions, J. Phys.: innovation
Conf. Ser. 2767 022006 TNO i




Summary

What have we learned from this exercise?

* Load prediction in non-uniform inflow (which is increasingly important for large rotors) problematic for most BEM
codes

« Large implementation differences between BEM codes
« FVW and CFD codes are mostly in agreement

« However, if we create a similar non-uniform force variation by means of cyclic pitch variation, good agreement exists
between all code types

« Explanation for differences between blade- and inflow induced non-uniformity lies in violation of BEM assumptions
» By doing so, did we remove physics without being able to repair it??
« Further analysis of results is pending® plus suggestions for improvement are under development

TNO i
1 G. Pirrung et al, A polar grid BEM implementation suited for individual pitch and dynamic pitching, WESC2025, Friday 26t June 0840h-1020h
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