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Why Li-S batteries?
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K / - Carbonate electrolyte shows compatibility with SPAN electrode « High overpotentials for pure ether electrolyte, especially in charge
« Pure 1M LiTFSi in DOL/DME (standard electrolyte for Li/S) » Similar steady state potential for all systems
/ Approach and methods \ shows rapid capacity degradation « Overpotential stemming mostly from initial IR-drop > lowered
- Significant improvements with additives in both systems electrolyte conductivity due to polysultides

1. Cathode system
Sulfurized poly(acrylonitrile) SPAN compound (~38w%Y5)
with 5% binder and 5% conductive agent

Calendering to various compression grades (1x):
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SEl: Improved cycle life due to stabilization of Li anode

CEl: Improved capacity retention due to controlled polysulfide dissolution

DRT evaluation: Multiple contributions in high to mid frequency area
| Analogy to processes of mesoporous C/S composite cathodes with polysulfide-charge transfer reactions
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Pronounced spring-back behavior after calendering due
to dominating elastic deformation characteristics of SPAN
active material
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Porous features

* identifiable for low compaction rates (TML fitting)

* EIS measurement
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Regions of different electric conductivity due to 01
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onclusion

Importance of protective layer on both electrodes for capacity retention and cycle life: CEl and SEl

Although the SPAN cathode is highly compatible with carbonate electrolytes regardless of additive presence, the high overpotentials and
complex charge-transfer responses in ether electrolytes without additives suggest polysulfide formation despite the strong S—PAN covalent

bonding.

Highly elastic deformation behavior of SPAN active material and pronounced spring-back effect of cathode leads to destroyed percolative

network and irreversible conductivity degradation.

Inter-particle effects with larger time constants and higher resistance observed in the EIS of the calendered SPAN cathode corroborate the

presence of an inhomogeneous electronic network and calendering-induced defects.

Main impact and overpotential on charge mechanism: primarily due to the loss of a homogeneous
conduction limitations
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