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Probabilistic imaginary-time evolution in state-vector-based and shot-based
simulations and on quantum devices
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Imaginary-time evolution, an important technique in tensor network and quantum Monte Carlo algorithms on
classical computers, has recently been adapted to quantum computing. In this study, we focus on probabilistic
imaginary-time evolution (PITE) algorithm and derive its formulation in the context of state-vector-based
simulations, where quantum state vectors are directly used to compute observables without statistical errors. We
compare the results with those of shot-based simulations, which estimate observables through repeated projective
measurements. Applying the PITE algorithm to the Heisenberg chain, we investigate optimal initial conditions
for convergence. We further demonstrate the method on the transverse-field Ising model using a state-of-the-art
trapped-ion quantum device. Finally, we explore the potential of error mitigation in this framework, highlighting
practical considerations for near-term digital quantum simulations.
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I. INTRODUCTION

As Feynman predicted in 1982 [1], quantum computers
can naturally encode quantum many-body states, making
them ideally suited for simulating quantum systems. The
system Hamiltonian # can be mapped onto a qubit-based
Hamiltonian to construct a quantum circuit, enabling
real-time evolution (RTE) via the corresponding unitary
dynamics. By applying Trotter decomposition, the real-time
(¢) propagator e~7' can be decomposed into a sequence of
single- and two-qubit gates, owing to its unitarity [2]. RTE
on digital quantum computers allows for the exploration of
various quantum phenomena, including statistical mechanical
properties of quantum many-body states at equilibrium [3—6]
and nonequilibrium phenomena [7,8]. For example, it has
enabled the study of discrete time crystals in periodically
driven (Floquet) systems, in both one [9-12] and two spatial
dimensions [13].

In materials science, simulating physical systems on quan-
tum computers often begins with the accurate determination
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of their ground states. One of the most widely used methods
for this task is the variational quantum eigensolver (VQE)
[14-17]. VQE uses the variational principle to approximate
the ground state by optimizing a parameterized quantum cir-
cuit to minimize the expectation value of the energy. This
hybrid quantum-classical algorithm combines classical opti-
mization techniques with quantum circuit evaluations, making
it particularly well suited for near-term quantum computers,
especially noisy intermediate-scale quantum (NISQ) devices
[18-21]. However, the difficulty of ground-state search in-
creases substantially with system size. A major obstacle is the
so-called barren plateau phenomenon, where the optimization
landscape becomes exponentially flat as the number of qubits
increases [22]. This leads to vanishing gradients, hindering
the convergence of classical optimizers and thus limiting the
scalability of VQE for large-scale simulations.

A promising alternative is imaginary-time evolution (ITE).
By introducing imaginary time v = it and applying the prop-
agator e~ ’'" to an initial state | (0)), the evolved state is
obtained as |/ (7)) = ye 7|y (0)), where y is a normal-
ization constant. In classical computation, ITE has proven
useful for various quantum problems, including ground-state
search and finite-temperature simulations. Established method
such as quantum Monte Carlo [23], time-evolving block dec-
imation [24], and density-matrix renormalization group [25]
techniques have successfully employed ITE in these contexts.
Unlike RTE, however, implementing ITE on a quantum com-

puter poses a challenge: The propagator e~ 7t* is nonunitary
and thus cannot be directly decomposed into a sequence of
quantum gates using conventional Trotterization techniques.

Published by the American Physical Society
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This limitation necessitates alternative strategies for realizing
ITE on quantum hardware.

Several ITE algorithms tailored for quantum computa-
tion have been proposed, including variational ITE [26-28],
quantum ITE [29-31], and probabilistic ITE (PITE) [32-36].
These methods have been mainly demonstrated on small-scale
systems, such as simple molecular systems (e.g., H, and LiH)
and quantum spin chains with system sizes L < 10. To ad-
vance digital quantum simulations beyond these benchmarks,
it is essential to explore the applicability of ITE to larger-
scale systems. This is particularly timely given recent progress
in hardware, such as trapped-ion quantum processor, which
feature high fidelities, all-to-all connectivity, and device size
exceeding 50 qubits. Furthermore, the choice of initial state as
well as the initial conditions—an important yet underexplored
aspect—play a crucial in the efficiency and accuracy of ITE
and are highly dependent on the target system, system size,
and Trotter time step At.

In this study, we apply the PITE algorithm, using only
a single ancilla qubit [34,35], to standard spin chains with
system sizes up to L = 20. Our aim is to identify potential bot-
tlenecks in scaling the method to larger systems. To this end,
we derive a state-vector-based formulation of the PITE algo-
rithm, which is particularly well suited for simulating larger
systems on classical computers. This formulation also allows
us to systematically determine optimal initial parameters,
leading to success probabilities approaching unity. The PITE
algorithm involves controlled RTE operations, which entangle
the ancilla qubit with all system qubits. Hence, implementing
the algorithm on NISQ devices remains challenging, espe-
cially in obtaining reliable outputs, even after applying error
mitigation techniques. To evaluate its practical feasibility, we
perform modified PITE simulations with up to 17 qubits on a
trapped-ion quantum computer. These experiments utilize the
optimized initial parameters obtained from our state-vector-
based analysis and employ multiple ancillary qubits—equal
to the number of imaginary-time steps—to reduce the number
of required reset operations.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the PITE algorithm. In Sec. III, we de-
rive a state-vector-based formulation of the PITE algorithm.
Section IV presents numerical results obtained from both
state-vector-based and shot-based simulations, demonstrating
perfect agreement between the two approaches, as expected.
Based on these results, we investigate the optimization of
the initial parameters to maximize success probabilities in
representative spin systems. In Sec. V, we present experi-
mental results obtained on a trapped-ion quantum computer,
employing the optimized initial parameters and discussing
potential error mitigation strategies. We conclude in Sec. VI
with a summary and outlook for future research. System-size
dependence is examined in the Appendix.

II. PITE ALGORITHM

In this study, we follow the PITE algorithm as formulated
in Refs. [34,35]. Let us consider a spin-1/2 system with L
sites, described by a Hamiltonian H. Starting from an initial
state |i,;), the goal is to implement ITE for a time increment
Art, i.e., to apply the operator e~ *A7. To this end, we define

Ancilla |0)

Input |1))

FIG. 1. Quantum circuit of the approximate PITE algorithm for
a single imaginary-time step [34]. H denotes the Hadamard gate and
R; = Rz(—26,) represents a single-qubit rotation about the Z axis.

a nonunitary Hermitian operator T = ye‘ﬁm, where y is a
tunable real parameter satisfying 0 <y < 1 and y # 1/+/2.
We embed the nonunitary operator 7 into a unitary matrix of

the form

Introducing an ancillary qubit initialized in the state |0), we
obtain

Urly) @ 10) =TIY) @ 10) +vVI-T?y) @ [1). (2

Thus, upon measuring the ancilla qubit in the |0) state, which
occurs with the probability Py = (/| 72|y), the postmeasure-
ment state of the system is given (up to normalization) by

1
NI
The quantum circuit representing the unitary U/ contains
ek® where k =sgn(y — 1/+/2) and © = arccos[(T +
VI=T2)/V/2].

Since directly implementing e in quantum circuits is

not feasible, we instead approximate ® using a first-order
Taylor expansion in AT:

K® = 90 —_ 7:ZS1AT + O(ATZ), (4)

0y = K arccos[(y ++/1 —y?)/v/2]  and
y/+/1 — y?. This approximation allows us to express e
in terms of RTE operators URTE(At) = ¢ 1HA

&© ®10)(0] + 7O @ [1)(1]
= (I ® R.(—260))([Urre(s1 AT) @ 0)(0]
+ O s (51A7) ® | 1) (1]). Q)

Using this decomposition, the PITE quantum circuit can be
constructed as illustrated in Fig. 1, where the single-qubit gate

W is defined as
/1 -
W= %(1 ) ) (©)

Obviously, the accuracy of the time evolution deteriorates
with increasing A7, necessitating the use of sufficiently small
time steps. Furthermore, the algorithm requires the projective
measurement of the ancillary qubit after each step and pro-
ceeds only when the |0) outcome (success state) is obtained.
Repeating this procedure filters out all excited-state compo-
nents of the target system, thereby projecting onto the ground
state. To minimize shot loss in shot-based simulations or on
actual quantum devices, it is essential to maximize the success
probability at each step. This can be achieved by carefully
choosing the optimal initial parameters, At and y, such that

ey

[W(r)) = T1). 3

+ik©®

where s =

+ik ®

as follows:
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FIG. 2. Quantum circuit for the Hadamard test.

the probability of measuring the ancilla in the success state
approaches unity. In the following section, we derive the PITE
formulation based on state-vector simulations, which enables
efficient evaluation of optimal parameter sets when the system
size is small enough to fit into the classical memory.

III. STATE-VECTOR SIMULATION METHOD

In general, it is highly advantageous to execute quantum
algorithms using state-vector simulators whenever feasible,
as they are significantly faster than shot-based simulators,
even in the absence of noise. This advantage arises from the
fact that state-vector simulators provide exact computations
of observables without statistical errors, whereas shot-based
simulators emulate the behavior of quantum devices through
repeated sampling. In this section, we begin by revisiting the
well-known Hadamard test, which is widely used to estimate
the expectation value of a unitary operator U on quantum
hardware. This serves as a simple illustrative example due to
its structural similarity to the state-vector-based simulations
of the PITE algorithm, which we discuss in the latter part of
this section.

A. Hadamard test

Before discussing the state-vector simulation of the PITE
algorithm, we briefly revisit the Hadamard test as a sim-
ple illustrative example. The quantum circuit for this test is
shown in Fig. 2. The first qubit is initialized to |0), while
the remaining qubits are initialized to the target state |¢). A
Hadamard gate is first applied to the ancillary qubit, followed
by a controlled unitary operator U, which applies U only if
the ancillary qubit is the state |1) and acts as the identity
otherwise:

71 N
10) ® |y) e S @ 1)+ 11 @0,

1 1
# |0>®L|w>+|1>®—|w> )

By measuring the ancillary qubit, we obtain probabilities pg
and p; of observing outcomes 0 and 1, respectively, from
which the real part of the expectation value of U can be
extracted as

=3(L+Re(y|01y), p1=350—Re|Uly)). (8)

Thus, the real part is obtained via Re(y|U|v¥) = po — p1.

In contrast, with a state-vector simulator, the expectation
value (¥ |U|y) can be computed directly, as the state [/ is
explicitly available. This eliminates the need for the ancillary
qubit and measurement operations, resulting in a significant
reduction in computational time.

B. State-vector PITE

In this subsection, we demonstrate that the approximate
PITE algorithm (Fig. 1) can be implemented as state-vector-
based simulation, analogous to the Hadamard test discussed
in the previous subsection. Let |1/;) denote the quantum
state after jth imaginary-time step. Applying the (j + 1)th
imaginary-time step to |v;), the circuit evolves the system as
follows:

=i 14
10) ® ;) s ( 10+ 2‘|1>)®|w,->,
180 1—14 1 N
2010y © ~— Ors ) + 1) ® —t +1 Ot 1)),

R, Wi

2 N
——0) ® \/T_((l —1)e® Urrg + H.c)|¥;),
2 N
+11)® JT_((I +1)e®Urrp + Hee)ly)).  (9)

By projecting onto the success state |0) of the ancillary qubit,
we obtain the (unnormalized) updated wavefunction after the
(j + Dth step as

+i)e OO,
(10)

1 16,
——((1 — )™ Urre + (1 +

| I/IHCW ) \/—

The normalized wavefunction is then given by [¢;4() =
[Vnew)/ IP’(j 1 where the success probability after the (j +

1)th step is IP’(’ +1) = (Ynew|Wnew)- It should be reminded that

IP’éJ ) is a conditional probability that represents the probability
of success at (j + 1)th imaginary-time step under the condi-
tion that the first, second, ..., and jth imaginary-time steps
were successful. Finally, the energy of the target system with
Hamiltonian A can be estimated as (Vg1 |H |y 1)

As is evident from Eq. (10), the state-vector-based PITE
does not require the use of an ancillary qubit, nor does it
involve the mid-circuit measurements or resets at the end or
beginning of each imaginary-time step. Moreover, executing
the algorithm in the state-vector framework is equivalent to
performing a shot-based simulation with an infinite number
of shots. This allows simulations with low success probabil-
ities to be carried out as many time steps as desired, without
incurring a loss of statistical precision. As a result, the optimal
choice of initial parameters y and At can be determined most
efficiently through state-vector simulations. In addition, the
cumulative survival rate after j time steps in a shot-based
simulation or real device implementation can be estimated as
NS =N IP’(I) where N'* _is the initial number of

shots ™ shols shots
shots and IP’ is the success probability at the ith time step.

It should be noted, however, that the state-vector simu-
lations become infeasible when the size of the Hamiltonian
for the target system exceeds the available classical memory
capacity. The number of qubits manageable with a state-vector
simulator on a classical supercomputer will be at most around
48 [37].

043182-3



EJIMA, SEKI, FAUSEWEH, AND YUNOKI

PHYSICAL REVIEW RESEARCH 7, 043182 (2025)
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FIG. 3. Ground-state energy per site Ey/L vs the number ng, of
imaginary-time steps obtained using the PITE algorithm for various
values of y in the Heisenberg chain with L = 4 under PBCs. Results
are from the noiseless shot-based simulations. The symbol sizes
for y = 0.7 and 0.9 are proportional to the number of successful
outcomes after each imaginary-time step. The dashed line indicates
the exact value of Ey/L, while the solid lines are guides to the eye.

IV. RESULTS OF NUMERICAL SIMULATIONS

In this section, we present results from both state-vector-
based and shot-based simulations, conducted using the IBM
Qiskit library [38].

A. Heisenberg model

We consider the isotropic spin-1/2 Heisenberg chain of L
sites. The Hamiltonian is given by

~ J I N A oA
Hrieisen = 7 2 XX + V¥ + 22500, (D)
J

where X;, ¥;, and Z; are the Pauli operators acting on site
Jj, and J > 0 denotes the antiferromagnetic exchange interac-
tion. Periodic boundary conditions (PBCs) are imposed such
that the index j + 1 is interpreted as 1 when j = L. Through-
out this study, we set J = 1 to define the energy unit.

Figure 3 shows noiseless shot-based PITE results for the
Heisenberg model with L = 4. The initial state |v,;) is cho-
sen to be the singlet state, which yields significantly faster
convergence and higher accuracy compared to starting from
the antiferromagnetic product state |1, |, 1, | ). For a fixed
imaginary-time step At = 0.2, when y is either too small
(y =0.7) or too large (y = 0.9), the number of successful
shots in each imaginary-time step decreases due to low suc-
cess probabilities, as indicated by the size of the symbols in
the figure. Starting Ns(t?gts = 50000 shots, only Nsl?(())l)s < 500
(1500) shots remain after 30 imaginary-time steps for y = 0.7
(0.9), resulting in unstable estimates beyond 10 (15) steps. In
contrast, for y = 0.8, more than 25000 shots survive even
after 30 steps, yielding stable results beyond 20 steps. These
observations highlight the critical importance of choosing an
optimal initial parameter set for At and y that maximizes the
success probability Py.

State-vector-based PITE simulations offer a valuable op-
portunity to optimize the initial parameters, as long as the
system size of the target Hamiltonian fits within the main
memory of the classical computer used. Figure 4(a) shows

- Py
[ = 2
1.0 |- mmmmmm s
| Ar=020
[ A7 =0.10
0.5 | A7=0.05"*
- (a)
0705 06
04— ‘ -
|
0 45 | —_— state-vector

—o—shot-based (10k shots)
—=—shot-based (50k shots)

Eo/L

15 20 25 30

nstcps

FIG. 4. (a) y dependence of the success probability P{gm()) (solid
lines) and |y? — ¢*27E0| (dotted lines) for various imaginary-time
steps At after 100 imaginary-time steps in the Heisenberg chain
with L = 4 under PBCs, computed using state-vector simulations.
(b) Estimated ground-state energy for At = 0.2 and y = 0.83 using
state-vector simulations and shot-based simulations with Ns(k?gts =

10000 and 50000. (c) Corresponding success probabilities Py for
each imaginary-time step in panel (b).

the y dependence of the success probability Py for different
values of At (solid lines). Clearly, Py(y) exhibits a peak
structure; for instance, at At = 0.2, the peak appears near
Ymax =~ 0.83, where Py >~ 1. A natural question arises: Does
this ymax yield a final state sufficiently close to the ground
state? To address this, let us first consider an idealized sit-
uation. Suppose that after several imaginary-time steps, the
system reaches the ground state |v), so that the success
probability becomes Py = (¥|72|¥) ~ y2e~227E0_ Imposing
the desired condition Py >~ 1 leads to the optimal choice
Yopt = 5027 However, the observed peak position Ymax in
Po(y) does not coincide with this yy, as shown by the de-
viation €(y) = |y? — ¢*027| [dotted lines in Fig. 4(a)]. For
example, at At = 0.2, €(y) becomes minimal at y =~ 0.67 (=
Yopt)» While Ymax > Vopt. To understand this discrepancy, let us
consider the correction to |W) and define a state |W') with
(W/|T2W') = y2e 2157 and E, = Ey + AE > E,. Because

2 —2E1ATt ~
of Y€ 1T 1,
E]A‘E
V2 e
JEE:-EZ;=eMMT>1. (12)
Yopt ero

This shows that ymax, Which satisfies Py(ymax) = 1, is always
strictly larger than y,p, corresponding to the ideal ground state.
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FIG. 5. (a) Ground-state energy per site Ey/L and (b) success
probability Py as functions of the number ny., of imaginary-time
steps, obtained using the PITE algorithm with y = 0.45 (squares)
and 0.51 (circles) for the Heisenberg chain with L = 20 under PBCs.
Solid lines represent the results from the state-vector simulations,
while the dotted line in panel (a) shows the classical ITE simula-
tion for comparison. Error bars in panel (a) indicate the statistical
uncertainty o due to sampling, estimated from the standard devi-
ations of the individual energy components Exy, Eyy, and Ez; as

_ 2 2 2
OF = /0xx + Oyy + 073

Moreover, as At decreases, ymax gradually approaches yop,
which is consistent with the trend observed in Fig. 4(a).

Figure 4(b) shows the estimation of the ground-state en-
ergy per site (Eg/L) at y = 0.83 (= Ymax) for At =0.2,
obtained from both state-vector and shot-based simulations.
After 30 imaginary-time steps, the results from the state-
vector simulation, E3¥ /L >~ 0.495 [solid line in Fig. 4(b)],
exhibit excellent agreement with the exact value E§*/L =
—0.5, obtained by the exact-diagonalization (ED) method.
The shot-based results (symbols) also show good agreement
with the state-vector simulation, especially as the number of
shots increases. This is expected, since the state-vector sim-
ulation is effectively equivalent to the shot-based simulation
in the limit of an infinite number of shots. The correspond-
ing success probabilities Py for each imaginary-time step are
shown in Fig. 4(c). For the finely tuned parameters y = 0.83
and At = 0.2, the success probability Py approaches unity
after approximately 10 imaginary-time steps in both the state-
vector and shot-based simulations.

Figure 5 presents the PITE results for the larger system size
of L = 20. Based on the state-vector simulations (not shown),
the optimal initial parameter set is estimated as yyax =~ 0.51
for the fixed imaginary-time step At = 0.2, consistent with
the trend observed in the L =4 case [see Fig. 4(a)]. As
the number of imaginary-time steps increases, the estimated
ground-state energy per site Ey/L gradually approaches the
exact value E5*/L ~ —0.445. However, the convergence is
slower and the deviation from the exact value is larger than
that in the L = 4 case, requiring more imaginary-time steps
to reach similar accuracy. This behavior can be understood
as follows. Let the quantum state of the target system be
expressed as |y) = >, _ cu|E,), where ’7’:[|E,,) = E,|E,) with

Ey<E <E<--
state becomes

and ¢y # 0. After applying the ITE, the

eﬂﬂllﬂ) = CoeTE°{|Eo) + 2ne’*f(E‘*E“)IEO + - } (13)
co

which shows that 7 > 1/(E| — Ey) is required to sufficiently
suppress the contributions from excited state. Therefore, for
larger systems, where the energy gap E| — Ey generally de-
creases with increasing L, a greater number of imaginary-time
steps (i.e., fgeps X AT > 1/(E| — Ep)) is needed to reach the
ground state with high accuracy.

Alternatively, instead of using the optimal parameter
Ymax(==0.51), one can start with a slightly smaller value,
such as y = 0.45. As shown in Fig. 5(a), this choice leads
to a faster approach to the ground-state energy in shorter
imaginary-time steps. However, this comes at the cost of a
lower success probability, resulting in a reduced number of
surviving shots, as shown in Fig. 5(b). More specifically,
starting with Ns(l(l)gts = 100 000 shots, only about Ns(l?(?t)s < 4000
survive after 50 imaginary-time steps when y = 0.50. In con-
trast, for y = 0.51, Ns(}fg[)s < 6000 survive even when Ns(l?gls
10000. Thus, while smaller y can accelerate convergence in
imaginary time, it significantly increases the sampling cost in
shot-based simulations.

In Fig. 5(a), we also show the numerical results of classical
ITE simulations performed under the same conditions—
starting from the singlet state with At = 0.2. These results
show reasonable agreement with those obtained from the
PITE simulations. An improved implementation could involve
adaptively tuning At and y, for example, by employing
optimized imaginary-time steps that minimize the energy ex-
pectation value for a fixed number of imaginary-time steps
[39-41]. However, in the case of PITE, a lower energy ex-
pectation value does not necessarily correspond to a higher
success probability, as evidenced in Fig. 5.

Finally, we discuss the required number of shots to estimate
an observable O within a certain statistical uncertainty e, i.e.,
80 < €. The effective number of shots at jth imaginary-time
step is given by NY) = NO T, P = NO P(j). As-

suming that 50 >~ 1/(N, ) )1/2_ the number of shots required

shots

can be estimated as Ns(k{o)rs > 1/(62P(j)) in the noiseless case.

B. Transverse-field Ising model

Even on state-of-the-art trapped-ion quantum computers,
the Heisenberg chain discussed above remains too complex
for practical implementation of the PITE algorithm on real
hardware. Therefore, we turn to a simpler model, namely, the
one-dimensional transverse-field Ising model (TFIM), whose
Hamiltonian is given by

L L
Hren ==Y 2,201 — Y _X;, (14)
j=1 j=1
where X ; and 7 ; are the Pauli operators acting on site j. As
the initial state, we use a superposition state in the XY plane
by applying a Hadamard gate to each qubit initialized in the
|0) state.

Figure 6 shows the PITE results for the ground-state en-
ergy of the TFIM with L =4 under PBCs, obtained using
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FIG. 6. (a) Ground-state energy per site Ey/L and (b) success
probability Py as functions of the number ny, of imaginary-time
steps, obtained using the PITE algorithm with y = 0.78 for the
TFIM with L = 4 under PBCs. Solid lines represent the results from
the state-vector simulations, while symbols denote those from the
shot-based simulations with NS(}?S‘S = 2000 shots (open blue circles)
and 50000 shots (solid red squares). Error bars in panel (a) indicate
the statistical uncertainty oz due to sampling, estimated from the
standard deviations of the individual energy components as o =

/2 2
oy +0;,.

both state-vector and shot-based simulations. For the fixed
imaginary-time step At = 0.1, we identify the optimal pa-
rameter ymax = 0.78, as in the case of the Heisenberg chain
discussed in Fig. 4(a). As the imaginary-time steps are it-
erated, the energy per site Ey/L steadily converges toward
the exact ground-state value E§*/L ~ —1.31 on both simu-
lations. Here, we include results obtained using only 2000
shots (blue symbols), to reflect the limited number of mea-
surements available on real devices, as will be discussed later.
As expected, the results with 2000 shots exhibit larger statis-
tical fluctuations compared to those using 50 000 shots (red
squares) or the state-vector simulation (black solid line). In
all cases, the success probability Py approaches unity after
approximately 15 imaginary-time steps [see Fig. 6(b)], as
intended by fine choosing the parameter y = 0.78 = ypax for
At =0.1.

V. RESULTS ON A QUANTUM DEVICE

In this section, we demonstrate the implementation of the
PITE algorithm for the TFIM with L = 4 under PBCs, using
a trapped-ion quantum device H1-1 provided by Quantinuum.
Our primary objective here is to showcase the feasibility and
practical behavior of the PITE algorithm on actual quantum
hardware, within the limitations of currently available quan-
tum resources. To this end, we fix the imaginary-time step
to At =0.1 and use the optimal parameter y = 0.78, as
determined in the previous section.

A. Hardware specifications

The experiments were conducted between early Novem-
ber and early December 2024. The specifications of the

Quantinuum H1-1 system at the time of experiments are sum-
marized below [42]. The H1-1 system comprises 20 qubits
and features all-to-all qubit connectivity. The average single-
qubit and two-qubit gate infidelities were approximately 2 x
107> and 1 x 1073, respectively. The average state prepa-
ration and measurement (SPAM) error rate was 3 x 1073,
The native two-qubit gate is the ZZPhase(«) gate, defined
as ZZPhase(x) := e~2m%2Z; which can be applied between
any pair of qubits (7, j) with an arbitrary rotation angle «. For
additional technical details, we refer the reader to Ref. [42].

B. Experimental setup

We perform the PITE algorithm up to ngeps = 13 steps.
Although the algorithm can be implemented with only L +
1 qubits by employing mid-circuit measurement and reset
(MCMR), we instead use L + ngeps qubits to avoid MCMR
and simplify the quantum operations. As an initial state |y),
we use the state polarized along the Pauli-X axis, i.e., |¥) =
|+) == (H|0)=".

The circuits are compiled with the pytket compiler [43].
The number of native two-qubit ZZPhase gates in the com-
plied circuit for the ngepsth imaginary-time step is found to
be 4 + 2Tngeps for ngeps = 1, and 0 for ngeps = 0. Thus, at
Ngeps = 13, our circuits contain up to 355 ZZPhase gates, and
we utilize a maximum of 17 qubits of the H1-1 system.

We evaluate the energy expectation value of the TFIM. To
this end, we measure the ngeps ancilla qubits in Z basis and
the L system qubits in both Z and X bases. We postselect
the successful application of the ITE step by identifying the
all-zero bit string 00---0 of length ngeps on the ancillary
qubits. Then, we evaluate the expectation values of the two
terms in Eq. (14) separately: the first term from the Z-basis
measurements and the second term from the X -basis measure-
ments of the system qubits. We perform 2000 shots for each
basis measurement, and the error bars represent the standard
deviation of the mean.

C. Results and error mitigation

The energy expectation value without any error mitiga-
tion decreases with increasing the imaginary-time steps up
to approximately ngeps = 11, but then begins to increase for
larger ngeps, as shown by the orange squares in Fig. 7. This
behavior contradicts with the state-vector results (magenta
line), which show a monotonic decrease as a function of 7geps.
Furthermore, the initial decrease in energy during the early
imaginary-time steps is less pronounced than that observed
in the state-vector simulations. These discrepancies highlight
the necessity of applying error mitigation techniques to obtain
better agreements with the exact state-vector results.

For error mitigation, we assume a global depolarizing
noise model on the system qubits at each imaginary-time
step, /(A)noisy = fbideal + (1 - f)i/zL’ where /(A)noisy is the den-
sity matrix of the system qubits obtained from the noisy PITE
circuit, Pjgear 1S the corresponding ideal (noise-free) density
matrix, /2" represents the maximally mixed state of the sys-
tem qubits, and f is an unknown circuit fidelity parameter.
Under this assumption, the noisy expectation value of the

043182-6



PROBABILISTIC IMAGINARY-TIME EVOLUTION IN ...

PHYSICAL REVIEW RESEARCH 7, 043182 (2025)

—0.81 —— state-vector

—0.91 —$— shot-based

1ole™ Hl-1 raw
—&— HI1-1ref
—f— HI-1 mitigated

Eo/L
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FIG. 7. Ground-state energy per site Ey/L as a function of the
number ng, of imaginary-time steps for the TFIM with L = 4 under
PBCs, using up to 17 qubits. The PITE results for the TFIM (orange
squares) and those for the reference system (green triangles) are
obtained using the H1-1 system with 2000 shots per imaginary-
time step without any error mitigation. The error-mitigated results,
evaluated via Eq. (18), are shown as red inverted triangles. For com-
parison, the results obtained from the noiseless shot-based simulation
with the same number of shots (blue circles) and the state-vector
simulation (magenta line) are also shown. The dashed horizontal line
indicates the exact ground-state energy per site.

Hamiltonian can be written as

(Hre)noisy = f (Flrrmv)ideal (15)

where (QTFIM)noisy = Tr[?-A[TFIM,bnoisy] corresponds to the ex-
perimentally measured energy expectation value (orange
squares in Fig. 7) and (H1rmv)ideat = Tr[HTrmM Pideal] denotes
the results from a noiseless shot-based or state-vector simu-
lations (blue circles or magenta line in Fig. 7). In deriving
Eq. (15), we used the fact that the Hamiltonian Hrew is
traceless. It should be noted that estimating the parameter f
is generally difficult, as it requires knowledge of <7'A[TFIM>ideals
which is precisely a quantity to be evaluated.

To approximate the circuit fidelity parameter f, we conduct
reference experiments in which the real-time evolution opera-
tors Urre (s1At) and Urte (s;AT) are replaced by alternative
reference operators, defined as

Uset (51 AT) = 91287 2 Kight AT X (16)

The operator Uref(slArf is similarly defined. Note that Ut
represents the first-order Suzuki-Trotter decomposition of the
time-evolution operator generated by the reference Hamil-
tonian Her = — Z§=1 XX — Z,L'=1 X, which is diagonal
in the Pauli-X basis. Analogous to Eq. (15), and assuming
a global depolarizing noise model in the form pPref noisy =
Sref Pref ideat + (1 — ﬁef)i /2L, we obtain the relation between
the noisy and ideal expectation values for the reference exper-
iments as

(FLrrmn ) et noisy = Sret (L TRV ref ideal a7

Here, fi.r denotes the circuit fidelity for the reference ex-
periments, and the other quantities are defined in direct
analogy with those in the original PITE setup. It is impor-
tant to note that Uref is chosen so that the ideal expectation

value (ﬁTFIM>ref,ideal is analytically known. Specifically, since
the initial state |y) = |+) is an eigenstate of Us, the
corresponding ideal energy expectation remains constant:
(ﬁTFIM)ref,ideal = —L, independently of ngeps. On the other
hand, the experimentally measured noisy expectation value
(ﬁTFIM)ref,noisy, which typically deviates from the ideal value,
is directly accessible from the reference experiments (see
green triangles in Fig. 7). This allows us to readily estimate
the circuit fidelity fier.

We approximate the circuit fidelity f for the original
PITE experiments by the corresponding value f,.s obtained
from the reference experiments. This leads to the following
error-mitigation scheme for estimating the energy expectation
value:

(HTFIM ) noisy
ﬁef

A similar error mitigation approach was recently used to
study quasi-time-crystalline dynamics of local magnetization,
as reported in Ref. [13]. Although fis and f may differ in
general, we note that the number of ZZPhase gates in the
compiled circuits for the reference and original experiments is
identical at each time step. This supports the assumption that
fref provides a reasonable approximation for f. Indeed, the
error-mitigated results show better agreement with the ideal
values than the uncorrected (raw) data, with the exception of
the point at ngep, = 11 (see red inverted triangles in Fig. 7).
This deviation arises from an outlier observed in the reference
data at nge, = 11, which directly affects the estimated value
of fi.t. We were unable to identify the cause of this anomaly.

Finally, we give three remarks on the error mitigation
method used here. First, the estimation of f.r based on
Egs. (16) and (17) is applicable only when the initial state |)
is chosen as the eigenstate of the reference operator U,es that
has the same number of the two-qubit gates as the original
Urte. Second, since the error mitigation method can violate
the variational principle, the lower energy estimate does not
necessarily mean the better approximation to the true ground-
state energy. Indeed, at ngeps = 11, we observe the lowest
energy estimate that is far smaller than the exact ground-state
energy. This overshooting of the energy estimate is due to the
outlier in the reference data, which underestimates the circuit
fidelity frr. Third, although we have assumed the global de-
polarizing noise model, there should be errors that cannot be
captured by this model. For example, the real device has the
SPAM error as mentioned above. Also, there exist coherent
errors such as unwanted single-qubit rotations. The global
depolarizing noise model should be considered as one of the
simplest models to mitigate noises.

(Frrv) mitigated 1= (18)

VI. SUMMARY

To conclude, we have derived a general description of
the PITE algorithm suitable for a state-vector simulation.
This provides a valuable tool for estimating optimal initial
parameters, which are strongly dependent on the target Hamil-
tonian and system size. Using these optimal parameters, we
demonstrated that the success probability rapidly approaches
unity after several imaginary-time steps in both Heisenberg
and transverse-field Ising models. Moreover, by iteratively
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applying the imaginary-time steps, the energy expectation
value reliably converges toward the true ground-state energy.
We also performed an experiment on the transverse-field
Ising model with L = 4 sites using the trapped-ion quantum
computer, Quantinuum H1-1 system. The raw experimental
results showed limited agreement with those obtained from
shot-based simulations. However, since the number of two-
qubit gates in the circuit was at most 355, well below the
inverse of the two-qubit gate infidelity (approximately 1000),
we expected that the fidelity of the raw experimental signal
relative to the ideal outcome would be at least 0.9993% ~ 0.7
for the largest circuit. This suggests that meaning signal recov-
ery should be possible through error mitigation. To this end,
we employed an error mitigation strategy based on a global
depolarizing noise model, in which the circuit fidelity was
approximated by that of a reference circuit. After applying this
method, the mitigated results showed significantly improved
agreement with the simulation results, except for a single
outlier point. These results demonstrate that, with appropri-
ately chosen initial parameters and a simple yet effective error
mitigation scheme, the PITE algorithm can be successfully
implemented on current quantum hardware, paving the way
for its application to larger and more complex quantum sys-
tems in the near future on larger quantum computers [44].
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APPENDIX: SYSTEM-SIZE DEPENDENCE

In this Appendix, we examine the system-size dependence
of the initial parameter y and the resulting energies obtained

02 03 04 05 06 07

FIG. 8. (a) Success probabilities Péloo) and (b) the energy dif-
ference between the PITE algorithm and those from the ED method
after 100 imaginary-time steps with the fixed value of At = 0.2 for
the system sizes L = 8, 16, and 24. The dotted lines indicate pmax
values for different system sizes L.
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S

\;\
0.4 -5 = yax (PS'* ~ 1.0) |
|| 7 =P8 > 0.95) T
48 12 16 20 24 28 32
L
-0.425+ |
2 -0.450 + |
=
N 0.475| |
-0.500 ) ]
L L L L L 1/L L !
4 8 12 16 20 24 28 32

L

FIG. 9. System-size dependence of (a) the initial parameter y,
which gives us the success probability after 100 imaginary-time steps
]P’émo) > 0.95 (triangles) and Pémo) ~ 1.0 corresponding tO Ymax, and
(b) the energy per site Ey/L obtained with these y values for a
fixed imaginary-time step At = (0.2 in the Heisenberg chain given
in Eq. (11). The insets of both panels display the 1/L dependence.
The lines are a guide to the eye.
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with the state-vector PITE simulations for system sizes up to
L =32.

As shown in Fig. 4(a), the success probability IP’SIOO) ex-
hibits maxima (yy.x) for fixed At and across different system
sizes L. This behavior persists for larger system sizes as
demonstrated in Fig. 8(a), which shows the peak structures
around ymax (dotted lines). With decreasing y, the success
probabilities drop rapidly, implying that the number of shots
required increases in shot-based simulations or on real de-
vices. In general, the energy difference (Ae = |Ey — E§*|/L)
between PITE simulations (Ey/L) and the ED method (E§*/L)
decreases as y is reduced beyond ymax, as shown in Fig. 8(b).
While Ae is smaller than 1072 for the small system size
(L = 8) with y = Ypmax = 0.72, it exceeds 1072 for the larger
system sizes L = 16 and 24. This is consistent also with the
large deviations in energy between the PITE and ED methods
for L = 20 in Fig. 5 with y = pax(=0.51).

Let us now discuss the system-size dependence of ymax and
the corresponding energy for a fixed L. Figure 9(a) shows

the system-size dependence of yy.x up to L = 32. As the
system size increases, ymax decreases systematically. Hence,
we expect that finite-size scaling can also be performed for
systems with L > 40, particularly in calculations on large-
scale quantum computers that are anticipated in the future.
In Fig. 9(b), the system-size dependence of the energy using
these y values is shown (blue squares) in comparison with
the ED results (black circles). For small system sizes (L < 8),
the PITE results agree very well with the ED data. On the
other hand, for L > 12, deviations become significant as men-
tioned before. These deviations can be immediately reduced
by slightly decreasing y. By choosing the smallest y such that
the success probability P(§100) > 0.95 after 100 imaginary-
time steps, the obtained energies [red triangles in Fig. 9(b)]
are very close to the exact ones for larger system sizes.

Obviously, adaptively tuning y and At during the PITE
process represents an important future challenge that could
further improve the efficiency and flexibility of PITE-based
simulations.
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