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A B S T R A C T

Biofilms formed by Bacillus subtilis confer protection against environmental stressors through extracellular 
polysaccharides (EPS) and sporulation. This study investigates the roles of these biofilm components in resistance 
to hydrogen peroxide, a common reactive oxygen species source and disinfectant. Using wild-type and mutant 
strains deficient in EPS or sporulation, biofilm colonies were cultivated at various maturation stages and exposed 
to hydrogen peroxide. EPS-deficient biofilms exhibited reduced resilience, particularly in early stages, high
lighting the structural and protective importance of the matrix. Mature biofilms demonstrated additional pro
tective mechanisms, potentially involving TasA protein fibers and/or the biofilm surface layer (BslA). In contrast, 
sporulation showed limited contribution to hydrogen peroxide resistance, as survival was primarily matrix- 
dependent. These findings underscore the necessity of targeting EPS and other matrix components in anti- 
biofilm strategies, suggesting that hydrogen peroxide-based disinfection could be enhanced by combining it 
with complementary sporicidal treatments. This study advances our understanding of biofilm resilience, 
contributing to the development of more effective sterilization protocols.

1. Introduction

The ability of microorganisms to grow either as swarming cells or 
sessile biofilms on surfaces offers numerous benefits compared with 
planktonic growth in a liquid medium. Transitioning from the single cell 
motility through coordinated swarming to the immobilized lifestyle 
provides a flexible approach for nutrient utilization, a uniform prolif
eration, and increased resilience to environmental stressors [1–3]. Thus, 
living in multicellular and multispecies communities is the most com
mon form of microbial life, which is highlighted by their ubiquitous 
occurrence in medical, environmental and industrial settings [4,5]. The 
high impact of biofilms in these fields, notably within clinical environ
ments, is underscored by statistics released by the National Institute of 
Health (NIH), revealing that biofilm-associated bacteria are responsible 
for 60 % of all bacterial infections in humans. Furthermore, biofilms 
account for 80 % of chronic and 65 % of all nosocomial infections [6,7]. 
Besides the health aspect, biofilms have a high economic relevance. 
According to a comparative study from 2022, it is estimated that bio
films have an economic impact about USD 5000 billion per year. The 
values refer to data from 2019, whereby the majority of the costs were 
caused by corrosive biofilms in industrial facilities [8]. These findings 

clearly illustrate the seriousness of biofilms as a health threat and the 
considerable challenge in inactivating them and developing anti-biofilm 
strategies. The increased resistance against eradication agents can be 
attributed to at least four categories [9]: 

(I) Slow growth: Similar to the stationary phase in unicellular life
styles, biofilms undergo physiological adaptations due to slower 
nutrient diffusion, resulting in reduced metabolic activity [4,10]. 
This adjusted growth kinetics produce more persistent cells with 
decreased susceptibility to sterilization regimes and antibiotics 
that target rapid cell growth [11,12].

(II) Communication: The capability to induce biofilm formation is 
highly dependent on an efficient cell-to-cell communication, 
termed quorum sensing (QS). QS systems differ between Gram- 
positive and negative bacteria and are based on the release of 
chemical signals [13]. Once these signals are recognized, they can 
be utilized for optimal environmental adaptation. Hence, QS fa
cilitates efficient nutrient utilization and storage, genetic mate
rial transfer, and division of labor. This division of labor triggers 
cell differentiation, encompassing motility, secondary metabolite 
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synthesis, and production of protective biofilm matrix compo
nents [14,15,16].

(III) Extracellular matrix (EM): A key factor in enhancing resistance in 
biofilms is the protective extracellular matrix produced by the 
inhabiting cells, which they produce autonomously and occupy 
[17]. This complex matrix comprises biopolymers, such as 
extracellular polysaccharides (exopolysaccharides = EPS), pro
teins, lipids, and nucleic acids [18]. The precise composition of 
the EM varies among species and is dependent on cultivation 
conditions, substrates and medium [4,19]. It is assumed that the 
EM is primarily responsible for the resistance to disinfectants and 
antibiotics, as it prevents penetration either by adsorption or by 
reacting with the polymers in the EM [20,21].

(IV) Unknown factors: In addition to I-III, there must be further pro
tective factors. For example, EPS are crucial but not essential for 
biofilm formation and survival [22,23]. Identifying these pro
tective factors could be challenging due to the dynamic nature of 
biofilms, which is influenced by various compounds and 
mechanisms.

To maintain hygienic standards which are necessary to enhance 
human health but also to reduce costs, effective interventions are 
necessary to minimize potential risks of infections [24–26]. Such in
terventions include the disinfection of contaminated surfaces with 
hydrogen peroxide-based chemicals, a registered disinfectant with 
bactericidal, viricidal, sporicidal and fungicidal properties [25,27]. 
Hydrogen peroxide (H2O2) is classified as one of the reactive oxygen 
species (ROS), which can arise from intracellular or extracellular 
oxidizing events, such as radiation exposure or mitochondrial phos
phorylation [28]. H2O2 is a robust oxidizing agent that in the presence of 
Fe2+ generates highly reactive hydroxyl radicals (̇OH) which are able to 
damage macromolecules, such as DNA, lipids of the cell membrane, and 
proteins [28–30]. The imbalance between ROS and protective endoge
nous compartments results in oxidative stress which subsequently cause 
cell death [31].

Bacillus subtilis, a Gram-positive facultative anaerobic soil bacterium, 
forms complex biofilm consortia and exhibits remarkable resistance 
owing to its ability of sporulation [32]. Thus, this species is commonly 
utilized as a biological indicator in decontamination studies [33]. In 
addition to endospore (hereafter referred to as spores) formation, the 
multicellular lifestyle offers numerous potential protective properties. 
The EM primarily consists of exopolysaccharides (EPS) and the protein 
TasA, which forms amyloid fibers essential for the biofilm scaffold. 
Moreover, B. subtilis biofilms produce a hydrophobin protein coat, 
formed by BslA, crucial for overall protection against desiccation and 
selective permeability [34–36]. The organization of this biofilm as
sembly relies on nutrient availability and extracellular signals [37–39]. 
Upon signal recognition and adequate environmental conditions, part of 
the population start to express biofilm-related genes leading to pheno
typic heterogeneity that allows coexistence of motile and 
matrix-producing cells, as well as development of highly resistant spores 
at the later stage that are assumed to contribute to dispersal [40–42]. 
This division of labor is tightly regulated and dynamic, with gene 
expression profiles adapting to environmental conditions [4,43]. These 
properties demonstrate the remarkable adaptation of biofilms to envi
ronmental stressors, making them challenging to inactivate once 
formed. B. subtilis biofilms have been utilized to dissect the influence of 
various treatment strategies, including disinfection agents, nano
particles, and laser irradiation [44–48].

This study seeks to elucidate the impact of hydrogen peroxide on 
bacterial biofilms lacking EPS and spores, thus contributing to the 
development of targeted strategies for biofilm control and disinfection. 
Here, we used the architecturally complex colonies of B. subtilis to 
evaluate the role of these protective structures.

2. Material and methods

The biofilm cultivation was initiated with spores due to their con
sistency and stability and the inoculant. Their metabolic inactivity en
sures a uniform starting point, preventing variations in metabolic states.

2.1. Spore production and purification

For spore production, 200 μL of an overnight culture were inoculated 
onto solidified Schaeffer sporulation medium (SSM) [49]. The strains 
used in this study are listed in Table 1. Plates were incubated for 5–7 
days at 37 ◦C to achieve optimal spore quality and quantity. Spores were 
harvested from the plate using an inoculation loop and resuspended in 
40 mL ddH2O containing sterile glass beads with a size of 3 mm in 
diameter. This facilitated resuspension using vortexing (2 min) and 
aided in dispersing cell debris released from the lysed mother cells. To 
achieve high spore quality and purity, the suspension was repeatedly 
washed until purity of >99 % spores was confirmed using phase contrast 
microscopy. The pure spore solution was then stored in glass tubes at 
4 ◦C until utilized.

2.2. Bacterial biofilm cultivation

To obtain biofilms which are standardized and reproducible, a 
cultivation method according to Fuchs et al. was conducted [52]. 
Briefly, an inoculum of spores with 108 Colony Forming Units (CFU) 
mL− 1 was utilized and pipetted in the middle of a hydrophilized PTFE 
filter (polytetrafluoroethylene, Merck Millipore®, pore size 0.4 μM, 
Merck KGaA, Darmstadt, Germany) with a diameter of 30 mm. This 
PTFE filter separates the growing biofilm physically from the medium, 
while enabling water and nutrient diffusion. The inoculated filter ma
terial was air dried under sterile conditions for 10 min and placed on 
solidified minimal medium (MSgg), adapted after Branda et al. [38,53]. 
As B. subtilis biofilms are highly heterogenous populations with chang
ing cell and EM profile over time, differently matured biofilms were 
tested here, ranging from 24 h to 72 h. For 0 h, pure inoculum of spores 
was pipetted onto the filter material. Here, the treatment was performed 
directly after the drying process. For the sporulation deficient strain of 
B. subtilis (ΔsigG) an overnight culture with planktonic cells from sta
tionary phase with 108 CFU mL− 1 was used as inoculum and 0 h control.

2.3. Sample treatment and CFU determination

Biofilms were grown to distinct development stages and exposed to 
H2O2. PTFE filters carrying the biofilms were placed into sterile six-well 
plates. ROS stress was induced by adding 910 μL of 3 % H2O2, diluted in 
PBS, to each biofilm. After treatment durations of 0, 10, 20, 40, and 60 
min, the reaction was stopped by adding 10 mg mL− 1 catalase solution. 
The treated biofilms were transferred into 2 mL reaction tubes con
taining glass beads (3 mm diameter). To ensure a reliable yield of viable 
cells, the reaction mixture suspension was also transferred to the 2 mL 
tube containing the biofilm. Each tube was vortexed for 2 min and 
survivability was assessed by calculating total CFU (compromises 
vegetative cells and spores) and the number of spores. To quantify the 

Table 1 
B. subtilis strains tested in survival ability to hydrogen peroxide. TetR-tetracy
cline resistance, CatR-chloramphenicol resistance.

Strain Genotype Deficiency Reference

NCIB3610 Wild type None (38)
ZK3660 ΔepsA-O:: 

TetR
No production of exopolysaccharides 
within the EM. Remaining matrix 
components are accomplished by TasA 
and BslA.

(50)

F-030 comIQ12L 

sigG::CatR
Deficiency in sporulation (inhibition of 
late forespore polymerase activities)

(51)
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spores count, an aliquot of the sample was treated at 80 ◦C for 10 min to 
inactivate vegetative cells.

2.4. Statistical analysis

The CFU of the total cell mass and spores within the biofilm were 
calculated at each treatment point of the stress assays as well as the 
untreated control. Therefore, a dilution series was prepared and plated 
on LB agar. The average CFU was determined while all data are pre
sented as the average of three biological replicates (n = 3) with ac
cording standard deviations. The statistical analysis has been performed 
by using Tukey’s test with SigmaPlot (version 14.5) and OriginLab 
(version 2023).

3. Results

Hydrogen peroxide is known to be an efficient antimicrobial agent 
and is commercially used as a disinfectant. Numerous studies have 
demonstrated its efficacy in combating biofilms formed by Pseudomonas 
aeruginosa and Staphylococcus aureus, targeting both the matrix and the 
cells [25,54,55]. In this study, our objective was to assess the 
anti-biofilm activity of hydrogen peroxide against B. subtilis biofilms and 
the contribution of EPS and spores on survivability. Hence, macrocolony 
biofilms were cultivated at various growth stages, exposed to hydrogen 
peroxide and quantified via CFU determination. The cell count within 
wild-type biofilms consistently rises as maturity progresses, while total 
CFU comprises a mixture of vegetative cells and spores (Fig. 1). The 
inoculum (0 h) includes around 105 spores per ml, resulting in little 
difference in cell count between total CFU and spores at this time point. 
Spore count peaks in mature (72 h) biofilms, contributing to a notably 

reduced ratio of vegetative cells. The morphology of wt biofilms varies 
also with age. In the 24 h stage, the characteristic concentric rings 
develop. Matured biofilms exhibit increased wrinkling and size. Overall, 
particularly at 48 and 72 h, biofilms appear as highly heterogenous 
3-dimensional structures.

B. subtilis biofilms lacking extracellular polysaccharides within the 
matrix demonstrate variations in cell count when compared to the wt. 
Initially, at the 0 h timepoint, CFU total and spores exhibit similarity, 
approximately 104 CFU ml− 1. However, after 24 h, this pattern reverses, 
with spore count lower than the inoculum and maintaining consistency 
over time. Meanwhile, the number of vegetative cells experiences a 
remarkable increase, approximately fivefold higher than the spore 
count. Additionally, the lack of EPS leads to a noticeably altered biofilm 
morphology (Fig. 2). The size of (matured) biofilms remains smaller and 
exhibits a more uniform structure without wrinkles, showing only one 
visible concentric ring. Overall, biofilms lacking eps appear less dense 
and thinner compared to wt.

B. subtilis cell aggregates devoid of spores can be attributed to a 
deletion in the gene encoding the sigma factor G (Table 1, [51]. Starting 
from 0 h, with approximately ~104 planktonic cells per ml, the biofilm 
expands to double this amount at mature levels. Once a certain threshold 
is reached, the cell count stabilizes with minimal further increase 
(Fig. 3).

Wt biofilms treated with hydrogen peroxide were recovered, and 
their survival was assessed via CFU determination (Fig. 4). The 0 h 
timepoint (Fig. 4 0 h) indicates the initial spore count and represents the 
inoculum reference. Regardless the incubation time, the CFU remains 
stable, with nearly identical quantities observed between spores and 
CFU total. Remarkably, even after a 60-min exposure, spore survival 
remained unaffected. 24 h old consortia showed slight impact in survival 

Fig. 1. The quantity of untreated wild-type (wt) biofilms is depicted according to each stage of biofilm maturation (in hours). The biofilms are composed of a mixture 
of vegetative cells and spores, termed as “CFU total” (dark grey bars). Additionally, the proportion of spores was quantified and is represented as light grey bars. The 
macroscopic morphology is illustrated below for each respective time point.
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and a significant decrease among CFU total, while the spore count was 
unaffected (Fig. 4 24 h).

However, the spore count remained nearly the same, while for 40 
and 60 min treated biofilms, the spore quantity was similar to those of 
CFU total. Mature wt biofilms, cultivated for 48 and 72 h, exhibited 
efficient resistance to hydrogen peroxide treatment, as the cell quantity 
was unchanged throughout incubation time. The only distinction be
tween these maturation stages lies in the higher spore count observed in 
the 72 h biofilms compared to those cultivated for 48 h.

The control inoculum of the eps deficient strain shows similar out
comes to those of the WT strain at 0 h and maintains a consistent cell 
count regardless of the exposure time (Fig. 5 0 h). Following biofilm 
formation, a mixture of vegetative cells and spores is present, with the 
spore count in this strain considerably lower than that in the WT strain, 
as observed in untreated samples. In early-stage biofilms (Fig. 524 h), 
the total CFU is roughly three times higher than the spore count at the 0- 
min mark.

However, for exposure durations between 20 and 60 min, the total 
CFU significantly declines, reaching levels comparable to those of 
spores.

The subsequent maturation stage, 48-h-old biofilms show a higher 
survival rate compared to those aged 24 h (Fig. 5 48 h). Nevertheless, a 
significant reduction in total CFU persists in comparison to the 0-min 
control. Additionally, there is a slight decrease in the spore count 
following a 60-min exposure to hydrogen peroxide. Biofilms grown for 
72 h show increased susceptibility to hydrogen peroxide after a 20-min 
treatment compared to those exposed for 40 and 60 min (Fig. 5 72 h). 
Moreover, the total CFU count slightly increases with longer treatment 
durations, reaching its peak spore count at the 60-min mark.

The final strain tested for resistance to hydrogen peroxide lacked 
SigG, making it incapable of producing spores (Fig. 6). Planktonic cells 
from the stationary phase were used as inoculum (0 h, Fig. 6 0 h) to 
evaluate the survival ability by determining the total CFU. After 20 min 
of treatment, no CFU could be detected and this remained consistent for 
longer incubation periods. Accordingly, the inoculum of this strain can 
be regarded as a positive control. Interestingly, once consortia are 
formed, the cells showed an improved resilience against hydrogen 
peroxide. Biofilms aged from 24 to 72 h, showed similar results and were 
only slightly affected (Fig. 6 24 h–72 h). Exposure for 20 min resulted in 
minimal reduction in CFU, which was constant for longer incubation 
time.

4. Discussion

Hydrogen peroxide serves as a widely used commercial disinfectant, 
capable of targeting a broad spectrum of microbes, including spores. 
Some studies even report about its effectiveness against biofilms. 
However, there is a lack of available data regarding B. subtilis biofilms 
and the contributions of EPS and spores to resistance. Moreover, many 
studies overlook the impact of varying biofilm ages, which could be 
pivotal in understanding resistance mechanisms. Before the survival 
assay was conducted, the biofilms in maturation stages ranging from 0 to 
72 h were cultivated and analyzed in their morphological phenotype as 
well as cell and spore quantity.

Fig. 2. The number of untreated biofilms lacking exopolysaccharides (ΔepsA-O) is illustrated for each stage of biofilm maturation (in hours). Dark grey bars represent 
the total colony-forming units (CFU), while light grey bars indicate the spore count. Statistical significance was determined using Tukey’s test with a sample size of n 
= 3 and indicated by p-values: * <0.05, **<0.01, *** <0.001.
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4.1. Comparison of the morphology and cell/spore quantity in wildtype 
biofilms versus EPS- and spore-lacking variants

The formation of architecturally complex structures as biofilms is 
attributed to a spatiotemporal cycle involving alternating phases of 
motile swarming and sessile matrix production [56,57]. This process 
results in the formation of concentric rings, as observed in wt biofilms, 
while being less abundant in eps-deficient and ΔsigG colony biofilms 
(Figs. 1–3 and [58]). Overall, biofilms lacking EPS show observable 
differences in texture and size. These consortia are impacted in their 
physical integrity and display a more homogenous appearance 
compared to wt. Although there are other matrix structures besides EPS, 
no wrinkles are visible. This effect strongly suggests that the formation 
of wrinkles is dependent on all matrix structures [59]. The vertical 
expansion, or the consolidation phase of biofilms is facilitated by 
matrix-producing cells, which are disrupted in the epsA-O-deficient 
strain, leading to the thin colony morphology [56]. Nevertheless, the 
preserved size in early-stage biofilms is maintained by swarming cells, 
which support two-dimensional expansion, or migration phase. Thus, 
the overexpression of the motile cell phenotype could compensate for 
the absence of EPS, thereby aiding in the growth of biofilms (57, Fig. 1 vs 
Fig. 3). The spatial arrangement of B. subtilis biofilms at specific time 
intervals prompts cell differentiation, including sporulation, at different 
stages and locations, culminating in characteristic colony morphology 
[60]. Sporulation seems to be associated with the development of 
complex architectural formations, as indicated by the diverse biofilm 
structure observed in our investigation. Furthermore, Aguilar et al. 
validated the correlation between sporulation and matrix production by 

the protein KinD [61]. Interestingly, Vlamakis et al. discovered that 
biofilms lacking spores due to sigF deletion do not undergo changes in 
biofilm structure but reduced spore quantity when matrix production is 
shut down [42,50].

In our study biofilms which lack EPS in the matrix show as well 
reduced levels of spores compared to wt (Fig. 2). The cell differentiation 
within biofilms is a highly regulated process, with matrix production 
and sporulation being connected through the activity of the bifunctional 
protein KinD. KinD mediates the phosphorylation (or dephosphoryla
tion) of the master transcription factor Spo0A. As low quantities of 
phosphorylated Spo0A induces expression of matrix genes, EPS- 
deficient mutants exhibit delayed sporulation, leading to low spore 
count [61].

Comparing the overall cell numbers between the investigated strains, 
wt biofilms tend to an exponential increase in cell number, while the cell 
quantity of mutant strains reaches a plateau in mature stages. Alter
ations in nutrient storage and requirements resulting from a disrupted or 
altered matrix could influence cell and spore numbers, as well as 
morphology [59,62,63]In addition to the storage and transport, EPS 
contributes to quorum sensing (QS), which regulates the cell density and 
expansion of biofilms. The polysaccharides facilitate the stability of 
signal molecules necessary for QS, enhancing biofilm functionality and 
maintenance [64].

4.2. Contribution of extracellular polysaccharides to survival to hydrogen 
peroxide

The resistance of cells in a biofilm to a variety of disinfectants and 

Fig. 3. The quantity of untreated biofilms lacking spores (ΔsigG) is depicted for each stage of biofilm maturation (in hours). The bars represent only vegetative cells 
and is termed as “CFU total”. Macroscopic variation among biofilm age is shown below.
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antibiotics is attributed to the protective EM [65]. The matrix of 
B. subtilis biofilms is mainly composed of polysaccharides and proteins 
and organized in a mobile framework, interspersed with rigid aggregates 
of cells, Extracellular polysaccharides are more abundant in the mobile 
section, while protein fibers maintain rigidity [19,66]. Because of the 
multiple functions of EPS within the matrix, its protective capability 
against hydrogen peroxide was tested. The eps mutants are more sus
ceptible to hydrogen peroxide than the wild type, especially in the early 
stages of maturation (24 h). Once a certain threshold of cell density is 
reached (at 72 h), survival is similar (Fig. 5B–D). Only spores (0 h) 
demonstrated a similar resistance and were not affected in terms of 
survival (Fig. 5). Interestingly, the resistance characteristics differ across 
the maturation stages tested. In young biofilms (24 h) only spores sur
vived the hydrogen peroxide exposure, whereas mature biofilms did not 
exhibit the same resistance. Treated 48 h and 72 h biofilms show a 
higher number of total CFU than CFU of spores, indicating the survival 
of vegetative cells. Thus, apart from EPS, additional components within 
the matrix must contribute to the protection. The structural integrity of 
biofilms is crucial for surviving harsh environmental stressors, such as 
reactive oxygen species induced by hydrogen peroxide. Although the 
exact composition of the matrix varies depending on numerous factors 
and differs even among species, EPS and proteins are crucial for this 
integrity and are therefore highly abundant [19,67]. Besides the struc
tural functionality, these compounds enhance the resistance to biocides. 
On one hand, the matrix acts as physical barrier against antimicrobial 
agents like hydrogen peroxide. On the other hand, they can react with 
them resulting in their depolymerization and thus disruption of 

aggressive hydroxyl radicals. In addition to polysaccharides, amyloid 
fibers formed by the TasA protein are known to contribute to the 
resistance [68]. Because of its characteristic beta-sheet structure, the 
interaction with antimicrobial agents that could lead to proteolysis is 
hindered, thereby TasA can be invoked in protection [68–71]. Thus, a 
potential factor contributing to the survival of EPS-deficient (particu
larly mature) biofilms could be the presence of TasA fibers, but also the 
BslA. Branda et al. describes TasA and EPS as the most important and 
abundant structures in the biofilm matrix [37]. Further testing of a TasA 
mutant is necessary to shed more light on the role of amyloid fibers in 
hydrogen peroxide resistance. Overall, EPS are crucial for surviving 
oxidative stress, although they play a minor role in mature biofilms, as 
indicated by the slight reduction in cell quantity of biofilms. Hydrogen 
peroxide serves as a major source of reactive oxygen species (ROS) by 
generating hydroxyl radicals, which can initiate the depolymerization of 
EPS through the cleavage of glycosidic bonds [72]. However, our results 
indicate that survival rates in young biofilms are lower than in mature 
biofilms (Fig. 4). This finding suggests a correlation between biofilm 
survival and EPS quantity. A higher EPS content likely enhances resis
tance by acting as a diffusion barrier, limiting ROS penetration into the 
biofilm matrix. Additionally, certain molecules or compounds within the 
EPS may function as radical scavengers, further hindering ROS from 
reaching deeper layers. Following this hypothesis, ROS would be unable 
to penetrate the biofilm core, thereby protecting embedded cells. This 
concept is supported by a study conducted by Stewart et al., which 
demonstrated that hydrogen peroxide neither effectively penetrates 
P. aeruginosa biofilms nor inactivates them [73].

Fig. 4. The quantity of wt biofilms treated with hydrogen peroxide is analyzed based on their maturation levels, represented as A: 0 h, B: 24 h, C: 48 h, and D: 72 h. 
Exposure durations to H2O2 include 0, 20, 40, and 60 min. Total colony-forming units (CFU) are represented by dark grey bars, while the count of spores is illustrated 
by light grey bars. Statistical significances were determined utilizing Tukey’s test with a sample size of n = 3 and indicated by p-values: * <0.05, **<0.01, 
*** <0.001.
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4.3. Role of sporulation in hydrogen peroxide resistance

Cell differentiation within B. subtilis biofilms is a crucial mechanism 
for adapting to dynamic environmental changes and stressors. This 
differentiation includes the formation of endospores, which allows the 
cells to persist under harsh conditions in a metabolically inactive (or 
reduced) state [74,75]. The transition into this dormant state is trig
gered by nutrient depletion and is accomplished by a range of different 
resistance mechanisms [76,77]. This is confirmed by the spore counts 
shown in Fig. 1 as biofilms mature and nutrient levels decrease. The 
survival of oxidative stress induced by hydrogen peroxide is ensured by 
enzymes such as catalases or superoxide dismutase localized in the spore 
coat [78]. For instance, spore-specific catalases like KatX are crucial for 
surviving hydrogen peroxide exposure during spore germination [79]. 
Additionally, we observed macroscopic differences in biofilm 
morphology appeared between sporulation-deficient populations and wt 
biofilms (Fig. 1 vs Fig. 3). This observation indicates that the differen
tiation into spores could contribute to the structural integrity and thus, 
to biofilm resilience against hydrogen peroxide [80,81]. Hu et al. 
investigated the resistance of spores and vegetative cells from biofilms of 
Clostridium perfringens to oxidative stress and confirmed that spores were 
more resistant than vegetative cells and the sessile lifestyle has an 
enhanced resilience [82]. However, numerous studies report the effi
cacy of hydrogen peroxide as sporicidal agent. Indeed, Sawale et al. 
determined D-values ranging from 0.08 to 0.95 min by using concen
trations from 22 to 33 %. In our study, wt spores were not reduced after 
60 min treatment, but the used concentration was more than ten times 
lower (Fig. 4 0 h). Using a similar concentration of H2O2, spores show 

decreased susceptibly and achieve “hardly any inactivation”,as 
confirmed by further studies [83,84]. Either increasing the incubation 
time or concentration of hydrogen peroxide could improve the spori
cidal efficacy. Looking on multicellular lifestyle it was expected that 
based on the spore-specific protection mechanisms, spores would 
contribute to overall resistance to hydrogen peroxide. Interestingly, our 
results in turn, showed that the formation of spores did not contribute to 
the survival rate of biofilms (Fig. 6). While spore formation may not be 
the primary protective mechanism of the biofilms used in our study, 
spore formation contributes to protection of B. subtilis from hydrogen 
peroxide in planktonic cultures. The quantity of cells was regardless the 
maturation or incubation time not affected in survival which emphasizes 
the importance of an intact and functional biofilm matrix.

5. Conclusion

This study has shown that EPS in the matrix play a major role in the 
protection against hydrogen peroxide whereas sporulation does not. A 
functional structural integrity with intact EPS are even more protective 
than the ability of forming spores in surviving oxidative stress. Although 
our experiments clearly demonstrated the protective role of EPS against 
H2O2 treatment, these results can only be indirectly compared to those 
of the sporulation mutant. The comparison is influenced by the use of 
different inocula for biofilm initiation and the non-isogenic background 
of the strains. Furthermore, our results have shown that besides the EPS, 
especially in mature biofilms, additional protective structures remain 
which could be given by other matrix components, such as TasA fibers or 
the surface layer protein BslA. This research has revealed that EPS are 

Fig. 5. The eps deficient biofilms’ quantity treated with hydrogen peroxide was assessed at various maturation stages labeled as A: 0 h, B: 24 h, C: 48 h, and D: 72 h. 
These biofilms underwent exposure to H2O2 for durations of 0, 20, 40, and 60 min. Total CFU is depicted by dark grey bars, while the number of spores is shown by 
light grey bars. Statistical significance was evaluated through Tukey’s test with a sample size of n = 3 and indicated by p-values: * <0.05, **<0.01, *** <0.001.
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crucial for surviving H2O2 exposure and need to be tackled. Newly 
developed sterilization approaches are often based on hydrogen 
peroxide and should be combined with additional sporicidal agents like 
UV or heat.
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[4] López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspect Biol 2010;2: 
a000398. https://doi.org/10.1101/cshperspect.a000398.

[5] Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol 2000;182:2675–9. 
https://doi.org/10.1128/jb.182.10.2675-2679.2000.

Fig. 6. Biofilms deficient in sigG were exposed to hydrogen peroxide and tested in survival across different maturation stages labeled as A: 0 h, B: 24 h, C: 48 h, and D: 
72 h. Exposure durations to H2O2 ranged from 0 to 60 min. Statistical significance was analyzed using Tukey’s test with a sample size of n = 3 and indicated by p- 
values: * <0.05, **<0.01, *** <0.001.

E. Muratov et al.                                                                                                                                                                                                                                Bioϧlm 9 (2025) 100274 

8 

https://doi.org/10.1016/j.bbrc.2013.11.012
https://doi.org/10.1016/j.bbrc.2013.11.012
https://doi.org/10.1590/0074-02760180212
https://doi.org/10.1590/0074-02760180212
https://doi.org/10.1186/s12934-016-0569-5
https://doi.org/10.1186/s12934-016-0569-5
https://doi.org/10.1101/cshperspect.a000398
https://doi.org/10.1128/jb.182.10.2675-2679.2000


[6] Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, 
Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J Chin Med Assoc 
2018;Jan;81(1):7–11. https://doi.org/10.1016/j.jcma.2017.07.012.

[7] Fleming D, Rumbaugh K. The consequences of biofilm dispersal on the host. Sci 
Rep 2018;8:10738. https://doi.org/10.1038/s41598-018-29121-2.
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