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Abstract—To achieve higher automation levels in the rail-
way domain (GoA-3/4), especially focusing on branch lines, an
automated system must take over responsibilities which are
currently allocated to the train driver. While existing automation
technologies ensure operational safety at the macroscopic and
technical levels, addressing perception at the operational level
in open context remains a challenge. This paper describes key
aspects of future railway perception components, and identifies
challenges that they bring for verification and validation. It is
shown how existing technologies may be combined into a holistic
framework that finally enables scenario-driven simulative testing
of perception components.

Index Terms—perception, testing, simulation, scenario, au-
tomation

I. INTRODUCTION

To achieve higher grades of automation (GoA3/4) in the
railway domain, e.g. on branch lines, automation takes over
responsibilities currently allocated to train drivers, dispatchers,
or other personnel. Technologies like ATO over ETCS ensure
safety at the macroscopic and technical level. Operational-level
perception in open contexts remains a challenge [[1].

The scope of the proposed concept is testing of perception
components in the so called autonomy pipeline: sense —
perception — plan — prediction — control — actuation [2].

Railway domain literature shows that perception compo-
nents must support medium/long-term goals like maintaining
knowledge of the railway system, line-specific features, proto-
cols, train mechanics, as well as short-term goals like assessing
track conditions, interpreting signals, anticipating events, and
recognizing objects/obstacles within braking distance.

Existing work often tests isolated aspects, such as test case
generation or synthetic data creation. This paper advances the
field by proposing a concept for integrated, simulation-based
evaluation of railway perception components. It identifies
essential framework requirements and introduces a scenario-
driven assessment method based on real-world sensor data.

The paper is structured as follows: Section [[I| covers back-
ground and related work on validating highly automated
systems, focusing on perception and railway applications.
Section |[II] outlines challenges and derives framework require-
ments. Section presents our assessment method including
an architecture of our concept framework in Section [V]

II. BACKGROUND INFORMATION AND RELATED WORK

This section provides background on validation and testing
approaches for autonomous and highly automated systems

(IT-A), with an emphasis on the railway domain. Particular
focus is given to the perception component (II-B), covering
requirements, completeness, sensor needs, and machine learn-
ing methods such as object detection, including explainable Al
(xAI). Additional topics include maps and comparison

of world models (I-D).

A. Validation Approaches for Autonomous / Highly Automated
Systems

Dona et al. [3] identify two high-level validation strategies
for autonomous driving systems (ADS): integrated environ-
ment and subsystem-based solutions. Sifakis and Harel empha-
size that simulation and testing are the only feasible validation
approaches and propose an architecture for this [4]. Peleska
et al. examine evaluation strategies for autonomous train con-
trollers under ANSI/UL 4600, offering a reference architecture
with perception-reliant components like Obstacle Detection,
Train Signal Classification, and Refined Positioning, which
feed the situational awareness in the planning kernel [2].

B. Validation and Testing of the Perception Component

The “black box™ nature of machine learning in perception
makes testing essential for safety. Outputs must be explainable
to facilitate debugging and development. Ali et al. [S]] survey
explainability techniques at the data, model, and post-hoc
levels. Hoss et al. [6] survey testing of automotive perception
systems, focusing on test criteria, scenarios, and data.

1) From real-world testing to simulation: Real-world test-
ing is a standard method for evidence generation. Efficiency
can be improved by simulating elements of the railway sys-
tem, including tracks, signals, weather, objects, sensors, and
decision-making, while keeping the perception system intact.
Hybrid methods, known as X-in-the-Loop (XiL), cover the
spectrum between physical and simulated testing [3].

2) Sensor and perception requirements in railways: In
GoA1/2, train drivers oversee operations. In GoA3/4, auto-
mated systems must e.g. detect and respond to track hazards.
Sensor requirements for safe automated passenger train op-
eration should meet or exceed human capabilities [7]. EN
50126 and related standards define a V-process for system
development, starting with hazard analysis and safety require-
ment derivation. Perception systems must be trained and tested
across relevant conditions, with traceability from requirements
to test outcomes. For GoA3/4, functional requirements such as
obstacle, smoke, animal, or anomaly detection are specified



along with performance constraints [8]]. Interfaces to process-
ing modules and the physical environment are also defined.

GoA4 systems also require perception for passenger transfer
and vehicle health supervision [2]. Remote train operations
(RTO) need an independent, lower-fidelity perception system.
These topics, as well as security issues, e.g. adversary attacks
on the perception component, are out of scope in this work.

3) Operational Domain (OD) and Operational Design Do-
main (ODD): Safety validation requires a clear definition of
the operational domain (OD) and its subset, the operational
design domain (ODD) [9]]. In closed systems like metros, the
OD can be modeled comprehensively. In open contexts, full
OD coverage is unfeasible. Systems must detect ODD exits
and transition to safe states (halt, transfer control, ...) [10].

4) Sensors and sensor models: Schlager et al. [L1] review
state-of-the-art sensor models. Linhoff et al. [12]] propose a
cause-effect based modeling approach. Safe perception re-
quires redundant, independent sensor technologies. Sensor
data may be interpreted separately or fused. Gao et al. explore
challenges and propose a virtual testing framework for early
(raw data) or late (processed data) multi-sensor fusion[13]].

5) Object detection and relevant objects: Grossmann et al.
[14] introduce a framework for generating railway-specific
scenes for object detection. D’Amico et al. [15] develop a
simulation tool for LiDAR and camera data. Talwar et al.
[L6] evaluate neural networks trained on synthetic data, noting
realism and domain match issues. De Gordoa et al. [[17] assess
detection accuracy on synthetic images. Discher et al. [18§]]
identify use cases for train- and infrastructure-side detection.
Sifakis and Harel [4] highlight varying information relevance
across decision horizons. Rakow [19] offers a formal model
of relevance. Risti¢-Durrant et al. review vision-based distance
estimation for train-obstacle detection [20].

6) Explainability: Limited transparency of neural networks
complicates interpretation. De Graaff et al. [21] improve
explainability in time series classification for axle counter data.
RoBbach et al. [22] enhance trust in train signal classification
via runtime monitoring with verified vision algorithms.

C. Localization and maps

Perception updates a world model, including position, track
boundaries, obstacles, and signals. GNSS is unreliable in
forests, urban canyons, and tunnels. Since balises aren’t ubig-
uitous, Simultaneous localization and mapping (SLAM) can
be used. Cadena et al. [23|] stress task-driven perception in
SLAM, producing maps aligned with mission needs. Local
dynamic maps (LDMs) enrich static maps with dynamic
objects and semantic content, enabling real-time updates and
information sharing [24].

D. World model comparison and inference

To fulfill a function like Detect road vehicle that could
endanger the train [8]], the world model must include beliefs
about intentions. Nozari et al. [25] apply active inference [26]
to model agent responses. Friston et al. view the world as a
random dynamical system, where minimizing variational free
energy aligns internal models with sensory inputs [27]].

III. CHALLENGES FOR TESTING

While real-world testing of autonomous train systems is
possible,we focus on simulation due to lower cost, greater
safety, and the ability to systematically test rare or dangerous
edge cases [l1]. This section lists challenges and derives
requirements (Req) for a simulation framework focused on
testing and validating the perception component.

A. Realistic Environments

Talwar et al. show that the simulation precisely needs to
mimic the characteristics of the ODD/OD (behavior of the
environment, feature density, 3D models) [[16]. Using real and
synthetic data from German and US maps, they demonstrate
that object detection performance degrades significantly when
test and training data differ in localization (e.g., lane width)—a
factor more critical than visual realism. This underscores the
need to accurately simulate the system’s ODD/OD (cf. [6]).

Req 1. Test scenarios must completely cover the OD/ODD
of the perception system, with respect to traffic participants,
environmental conditions, and route-specific elements.

Train drivers must assess situations, anticipate object trajec-
tories, and infer intentions, which requires physical modeling
consistent with their belief formation. Perception systems
also exploit expected physical behavior in sensor fusion and
filtering, often using Kalman filters that iteratively refine state
estimates based on system dynamics. This extends to multi-
sensor setups [28].

Req 2. A simulation framework must implement realistic
physics.

B. Sensor Simulation

To maximize accuracy and robustness, perception systems
integrate multiple sensors. Sengupta [29] identifies typical
setups, while Gao et al. [30]], [13] emphasize the need for con-
sistent synthetic data across sensors for validation. Simulators
must use a shared ground truth if generating data for different
sensors. For instance, GNSS, radar, and accelerometers may
be combined for localization. E.g. in the European Rail Traffic
Management System (ERTMS), localization depends on sparse
but precise balises integrated with other sensors [31].

Req 3. A simulation framework must be able to create
consistent data emulating different sensors, including railway-
specific sensors such as balise antennas.

Perception systems tailored to specific routes may rely on
prior ODD knowledge such as high-resolution maps, which
are essential for techniques like SLAM [23].

Req 4. A simulation framework must be able to create sensor
data that is consistent with real-world map data.

Existing simulators typically cover only isolated aspects of
perception system testing, e.g., ego-train physics or vendor-
specific sensor models. Validating complex systems like col-
laborative train-infrastructure for shared world models and safe
operation [18] requires integrating diverse simulators.



Req 5. A simulation framework shall enable the co-simulation
of simulation models from different vendors (with a standard-
ized interface).

C. Comparison of World Models

Sensor data carries inherent uncertainty, systematic and
random, often amplified by environmental conditions. This
uncertainty propagates through the perception system to the
world model, making it non-deterministic [12]. Phillion et
al. introduce the Planning Kullback—Leibler divergence to
account for such uncertainties [32].

Req 6. A validation framework must support modeling, prop-
agation, and evaluation of uncertainty in sensor data and
perception outputs.

Most existing validation frameworks target specific stages
of perception. While object detection metrics like Intersection
over Union (IoU) [33]] exist, they must be adapted to compare
uncertain world models against ground truth (cf. [a]).

Req 7. A validation framework must provide metrics to com-
pare uncertain, perception-derived world models with ground
truth data.

Active perception [34] enables systems to enhance sensing
through actions like repositioning or activating sensors (e.g.,
LiDAR, active lighting).

Req 8. A validation framework must support active sensing
and allow the agent to enhance perception through interaction.

In deep artificial neural net (DNN) based classifiers, softmax
outputs are often misinterpreted as probabilities. Calibration,
necessary for interpreting these confidences as true probabili-
ties, is essential [6], as DNNs tend to be overconfident [35].

Req 9. A validation framework must support testing classifier
calibration, ensuring output confidence reflects true classifi-
cation probability.

IV. CONCEPT OF A TEST METHODOLOGY

This concept aims to bridge the gap between real-world and
virtual testing. Assume a novel highly automated (GoA3/4)
train to be the system under test (SUT), which shall be
certified for a specific (branch) line, which is its ODD. A
line is assumed to be an end-to-end sequence of operational
situations(e.g., open track, level crossings, stations, shunting)
in which the SUT has to perform specific tasks. Existing
work from the automotive domain identified that test cases
for these tasks need to be generated in a systematic manner in
order to achieve high coverage and confidence. Therefore, test
scenarios are used on different abstraction levels [36], [37].

Abstract scenarios focus on the relevant OD/ODD concepts
and their relations, allowing for potentially infinite many dif-
ferent evolutions. In contrast, concrete scenarios fix a concrete
setting and evolution, allowing for reproducible simulations.

Wild et al. [38] presented a scenario-based simulation
framework for testing of highly automated railway systems,
enabling creation and closed loop play-out of test-cases from

such operational situations. These are instances of abstract
scenarios modeled as Traffic Sequence Charts (TSC).

From abstract test cases, concrete test cases can be sampled
by means of constraint solving [39]], [40]. For TSCs, this is
described in detail by Becker [40]. Borchers et al. [39] evaluate
an exemplary solver setup and different sampling strategies.
This technique is applied for railway scenarios [L], [38]] and
goes beyond sampling from pre-defined behavior patterns,
exploring a larger part of the scenario space which is not
characterized by a predefined parameter set. In [14], [15], [17]
ontologies are used to sample test cases.

For satisfying Req. [1} we propose to use abstract scenarios
as they allow fine-grained control and integrate with scenario-
driven development methodology [36], [37]], [41].

A test scenario — both abstract and concrete — consists of
static and dynamic aspects. In order to satisfy Req. {4 the
actual route for which the system shall be certified is used
for instantiating the static parts of the environment in the
simulation. This also supports Req. [T} as the static parts are
complete wrt. the ODD match its individual characteristics.
Static aspects include the track layout, static objects like trees,
parked cars or trains, time of day, etc. Assume a sensor stream
of the route with different sensor-technologies exists, e.g.
camera, LiDAR, and radar. Objects, their position, orientation,
shape and texture can be extracted from this dataset and used
as the static part of the scenario. Rahman et al. demonstrate
a robot equipped with the needed sensors and technology to
create a precise model of a railway line [42]]. Ariyachandra
and Brilakis use LiDAR to build a digital model of railway
overhead wires [43]. A common approach in the automotive
domain (cf. [44]) is to generate 3D models from existing map
data using generic models of infrastructure and environment
objects (buildings, trees, ...). However, incomplete map data
leads to unsatisfactory results. For railway applications it is
more promising to accurately record and model the environ-
ment because the targeted railway line is usually fixed and
accessible at development time.

Since it is unlikely, that critical situations are encountered
in this dataset, e.g. a road user blocking an unprotected level-
crossing, our approach is to sample the dynamic aspects of
the test scenario from abstract test cases using the techniques
already present in the literature [40], [39], [38]. Dynamic
aspects of the scenario include the trajectory of road users
and other objects, as well as non-ego trains. Using the findings
from a preceding hazard analysis, they are governed in such a
way that the SUT is guaranteed to encounter the (potentially
critical) situations for which its behavior needs to be evaluated.
Moreover, in order to achieve a higher coverage of critical
scenarios, additional static / dynamic objects can be augmented
into test-cases, if considered critical to the SUT.

The proposed process is shown in and briefly de-
scribed below.

1) Record the route: A traditional train equipped with a
sensor suite with a train driver on board drives the route
and a dataset with sensor outputs is created.
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Fig. 2: Functional architecture of the testing framework. Bold
elements have existing solutions given as literature references.

2) Extract static parts: The path of the train could be
estimated from the dateset. If available, it can rather be
extracted from existing recordings, e.g. from open street
maps. Based on the path, sensor data is aggregated to a
semantic map with object labels and 3D mesh models
of the objects.

3) Split the track into operational situations. This may
be automated — e.g., map-based mapping of relevant
abstract scenarios on matching parts of the route — or
expert-driven.

4) Create test-cases for the occurring operational situ-
ations: For this purpose Wild et al. describe a process
and provided a framework to derive concrete test-cases
from abstract scenarios [1] [38].

5) Aggregate the results: The tests are collected and a
verdict for the SUT on the whole line is reached. Weak
spots can be identified.

V. PROPOSED TEST FRAMEWORK ARCHITECTURE

Based on the findings from the previous sections, we
propose the functional architecture shown in [Fig. 2] Test cases,
consisting of a concrete scenario and test criterion, are defined
based on system design, including hazard analysis and the
target OD/ODD. Putze and Bode [45] show how hazards can
systematically be identified in a scenario and keyword-driven
way. Following their approach, one could identify, e.g., a
hazard collision with a road user and specify a test scenario
with a blocked level crossing as done by Wild et al. [38]. By

linking identified hazards to test scenarios (c.f. [46]), an argu-
ment about test coverage can be made. Tests are executed via
simulation on the designated route. The simulation maintains
a ground truth world model, dynamically updated, containing
all relevant information (e.g., object positions, ego train state,
environment conditions) required for testing the perception
system. This model drives a synthetic stimuli generator, which
can generate physical/virtual sensor stimuli or simulate sensor
outputs directly (single or fused). The stimuli may be purely
synthetic, or previously recorded and augmented with sim-
ulated objects. The perception component under test derives
a constructed world model from this data. To support active
sensing (Req. [§), a feedback loop recalibrates virtual sensors
during runtime. The perceived and ground truth models are
compared to evaluate test criteria and generate reports.

Numerous simulators for railway applications produce syn-
thetic sensor data [[14], [[15]], [L7]], [38] and can take the role of
the stimuli generator in our proposed test framework. Many
of them are based on Unreal Engine, enabling realistic camera
imagery. Automotive-focused tools also exist, as surveyed by
Rosique et al. [47]], though most remain standalone and limited
to a subset of sensors (e.g., RGB, point cloud). For enabling
use of these simulators in the validation framework, we pro-
pose to develop standardized interfaces based on ASAM OSI.
The ASAM OSI standard [48], [49] provides an architecture
and data formats for building modular multi-sensor simula-
tions. OSI proposes to connect an environment simulation,
vehicle agents, and sensor models in a co-simulation. The
modular architecture allows to plug in simulators for specific
sensors and combine them with customized environment be-
havior and a SUT. Wrapping modules as Functional Mockup
Units, ASAM OSI also standardizes the technical interfaces
and packaging. Using OSI, the existing sensor simulations
could be modularized and combined with a scenario-based
environment and physics simulator (such as described, e.g., by
Wild et al. [38]], or dedicated standalone train physics engines
such as benchmarked by Wu et al. [50]]). This would then
satisfy Requirements [2] [3] and [5]

In OSI, ground truth (communicated from the environment
simulation) and perceived world models (communicated from
sensors/perception components) share the same data model.
For perceived world models, OSI extends this data model
with uncertainty information (Req. [6). Therefore, we see OSI
being beneficial in providing a basis for the evaluation of
test results (Req. [7). In accordance to classical metrics for
evaluating object recognition in 2D images [33]], Hartstern
et al. define some distance metrics that operate directly on
the world model [51]. Besides many different approaches for
calibrating object classifiers [52], only few works consider its
verification, for example, Kumar et al. [53]]. From our point
of view, it is an open research question how to integrate these
with comparison models for non-probabilistic world models,
yielding a test criteria for complex perception systems.

OSI has been designed for automotive applications and
therefore only automotive ODs can be represented in the world
model. We see several limitations with the current design.



For example, object classes for railway-specific infrastructure
are missing. Besides a description of the rail network (e.g.,
rails, sleepers, turnouts, switches) this would include at least
balises and signalin Furthermore, OSI does not consider
the exchange of mission dateﬂ — such as station stops, train
schedules, or train compositions — or other sensor types such
as odometry, GNSS, or sound sensors. Therefore, in order to
enable it for the railway domain, the OSI data model needs
to be extended. Although OSI’s co-simulation architecture is
predestined for the integration of white box models, these re-
quire sensor-specific and detailed environment models, which
cannot be expected to be provided out of the box [31]].

VI. CONCLUSION AND FUTURE WORK

In this paper we described key challenges for the simulative
testing of perception in the railway domain for GoA3/4 train
operation. We compiled a list of requirements for a simulation
framework capable of enabling this. Although current litera-
ture on the topic was considered and the list was carefully
derived, it does not claim to be complete, but can serve as
a starting point when deciding what tools to use to get a
step closer in the big task which is enabling highly automatic
railway operation in open context. Table [I] summarizes the
identified requirements, the bibliographic resources that lead
to their identification, and existing solutions that address most
of the requirements. To our knowledge, no complete solution
exists that addresses all of the requirements. A modular ap-
proach is needed that allows to integrate the existing solutions
into a holistic framework.

TABLE I: Overview of the requirements

Requirement Sources Solutions

R1 Cover OD/ODD [16] [, 1391

R2 Realistic Physics 1511 [38]], [50]

R3 Consistent data 1301, [13] [49]

R4 Map data 23] [42], [44], [143]
R5 Sensor co-simulation 1511, (18] [49]

R6 Handle uncertainty 121, 1321, (el  [491

R7 World model comparison  [6] (510, [33]

R8 Active perception [34] [25]

R9 Classifier calibration 135] [53]

As a first contribution towards a complete testing frame-
work, we provide an approach for creating realistic test cases,
which is based on recording real sensor streams from the
line for which the GoA3/4 system shall be certified. After
splitting the collected data into atomic operational situations,
information of the static components of a scenario are ex-
tracted. A test-case for the behavior of the SUT in the atomic
operational scenario is modeled as an abstract scenario and a
concrete scenario derived from it. The test evaluation of the
perception hinges on the comparison between the ground truth

lgeneric three-state traffic lights present in OSI cannot sufficiently de-
scribe railway signaling.

2The OSI ground truth can optionally contain map data, but the the
requirements for, e.g., ATO go far beyond that.

world model and the constructed world model. We hinted at
some methods that might be applicable, but the details depend
on the actual implementation / modeling choices.
Furthermore, we identified that the Open Simulation Inter-
face (OSI) [49] known from automotive industry provides a
viable approach for integrating the needed technology bricks.
Roadmap and Future Work: Although many building
blocks are already available, realizing the proposed framework
requires further research including the following steps:

e A detailed gap analysis of ASAM OSI towards the rail-
way domain, and development of the needed extensions

e Modularization of existing sensor simulations and pack-
aging them for use in an OSI-based co-simulation

« Integration of the extended OSI specification into existing
simulators and test execution frameworks

o Further development of test generation methods em-
phasizing achievement of test coverage; development of
methods for test aggregation

An evaluation of the approach further needs specification of
a test system (based on existing research [18]]) — including
performance requirements —, and recording and modeling of
a test track for evaluation.
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