Model Learning for Adjusting the Level of Automation in
HCPS

Mehrnoush Hajnorouzi Astrid Rakow Martin Frinzle
German Aerospace Center (DLR) e. V. Carl von Ossietzky Universitidt Oldenburg

Oldenburg, Germany Oldenburg, Germany
mehrnoush.hajnorouzi@dlr.de astrid.rakow@dlr.de martin.fraenzle@uni-oldenburg.de

The steadily increasing level of automation in human-centred systems demands rigorous design
methods for analysing and controlling interactions between humans and automated components, es-
pecially in safety-critical applications. The variability of human behaviour poses particular chal-
lenges for formal verification and synthesis. We present a model-based framework that enables
design-time exploration of safe shared-control strategies in human—automation systems. The ap-
proach combines active automata learning—to derive coarse, finite-state abstractions of human be-
haviour from simulations—with game-theoretic reactive synthesis to determine whether a controller
can guarantee safety when interacting with these models. If no such strategy exists, the framework
supports iterative refinement of the human model or adjustment of the automation’s controllable
actions. A driving case study, integrating automata learning with reactive synthesis in UPPAAL,
illustrates the applicability of the framework on a simplified driving scenario and its potential for
analysing shared-control strategies in human-centred cyber-physical systems.

1 Introduction

Formal verification and synthesis methods have achieved significant success for automated systems,
where the dynamics and control logic of the system can be precisely modelled. However, this paper fo-
cuses on human-centred cyber-physical systems (HCPS) that operate under a shared-control paradigm [46].
In such systems, humans and automation jointly contribute to task execution (e.g. in advanced driver-
assistance systems [33], robot-assisted surgery [45], or flight-control systems [21]), and the level of
automation must be dynamically adapted according to the evolving system state and the human’s be-
haviour. This poses a major modelling challenge, since the “human component” must also be represented
in a form that can be analysed by formal methods.

Many shared-control HCPS are safety-critical and must satisfy stringent safety and performance re-
quirements. A key challenge lies in managing the dynamic and bidirectional interaction between humans
and automation, ensuring coordinated actions that maintain safety and efficiency despite behavioural un-
certainty. This calls for control strategies that not only optimise the automation’s capabilities but also
account for the inherent unpredictability of human cognition and decision-making. Because human cog-
nition is variable, context-dependent, and only partially observable, constructing models that support
formal safety guarantees remains a major challenge [12, 13,49].

This work aims to support the design of safety-critical shared-control HCPS. In their design, two
central questions arise: (Q1) “What does the automation need to know about the human component to
interact appropriately?” and (Q2) “What must the automation do in order to interact appropriately?”.
Naturally, these questions are interrelated. Consider a driver-support system that intervenes only to
prevent collisions. If the automation can detect an inattentive driver early, a slight alert might suffice
to avoid an imminent collision; but if the driver fails to respond, emergency braking must be triggered

Matt Luckcuck, Maike Schwammberger & Mengwei Xu (Eds.):
Seventh International Workshop on Formal Methods

for Autonomous Systems (FMAS 2025)

EPTCS 436, 2025, pp. 96-113, doi:10.4204/EPTCS.436.10

© M. Hajnorouzi, A. Rakow & M. Frinzle
This work is licensed under the
Creative Commons Attribution License.

http://dx.doi.org/10.4204/EPTCS.436.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Hajnorouzi, A. Rakow & M. Frinzle 97

. Finite-state abstraction .
Active Automata " R Automation
1 automation's insight into

Learning " design variant
human
/ human component capabilities = actions
A F
Reactive Synthesis | .
ifno strategy, (safety strate ifno strategy,
insight can be refined Y)gy gutomatwn
in UPPAAL esign
can be changed
* strategy
—
. Validation
Human simulator .
> with full human
(here: ACT-R) (model)

Figure 1: Overview of the approach: Does the insight into the human and the automation capabilities
suffice to implement a safe shared-control HCPS?

to ensure safety. We provide a method that aligns the automation’s capabilities with the controller’s
knowledge of the human.

Our approach (cf. Fig. 1) supports this design process through a design-time analysis framework. A
human simulation engine—in this paper, the cognitive architecture ACT-R—generates observable human
behaviour, which is abstracted via active automata learning into a finite-state model representing the
automation’s operational view of the human. Given this abstraction and a specific automation design,
we apply game-theoretic reactive synthesis to determine whether the automation can guarantee safety
and fulfill its mission goals. If no winning strategy is found, we either refine the human model or
adjust the automation’s capabilities. Since the strategy is synthesised with respect to the learned human
abstraction and scenario mode, it is subsequently validated through co-simulation with the full cognitive
model. When synthesis and validation both succeed, the derived models specify the level of human state
observability and automation capability required for implementation.

Formal methods have been applied to human—automation interaction [12, 49], yet mostly rely on
static or normative human models, limiting applicability in dynamic or adaptive contexts. Our frame-
work addresses this limitation by integrating model learning and reactive synthesis to enable reasoning
about shared-control with behaviourally derived human abstractions. We demonstrate the approach in
a simplified driving scenario that combines active automata learning from a cognitive architecture with
reactive synthesis in UPPAAL, to analyse safety properties under varying human behaviour. Rather than
focusing on isolated control actions, this work addresses the formal analysis of continuous interaction
over unbounded time horizons [4], characterised by dynamically evolving event sequences arising from
the coupled dynamics of the human, automation, and environment.

The contributions of this paper are threefold: (1) a design-time framework that integrates model
learning and reactive synthesis for analysing shared-control in HCPS; (2) a method for deriving finite-s-
tate human abstractions through interaction with a cognitive simulation; and (3) a preliminary evaluation
in a driving scenario demonstrating the feasibility of synthesising safety-preserving automation strate-
gies.

Structure of the article. Section 2 introduces the key design considerations for HCPS, Section 3
details the proposed framework. Section 4 presents a brief case study. Related work is reviewed in
Section 5. Section 6 summarises the main findings, discusses limitations and outlines directions for
future research. Finally, Section 7 concludes the paper.

98 Adjusting level of automation in HCPS

2 Preliminaries

Figure 1 provides an overview of the proposed framework for analysing shared-control in HCPS. To
facilitate understanding of the subsequent sections, this section introduces the main concepts and nota-
tions required to comprehend the overall approach. We briefly recall the notions of human—automation
interaction, finite-state models, and reactive synthesis, as well as the concept of adjusting the level of
automation, which together constitute the methodological foundation of the framework.

2.1 Human-Automation Interaction

Designing HCPS requires explicit consideration of the bidirectional feedback between automation and
human operators: the automation’s actions influence user behaviour, and human actions in turn affect the
automation. To represent the human component of an HCPS, we employ computational models of human
decision-making based on cognitive architectures. Architectures such as ACT-R [5] and CASCaS [31]
provide general frameworks grounded in psychological theory [6,36] and have been validated empirically
across diverse human-factors domains (e.g. [30,43]). They generate discrete, time-stamped behavioural
traces that can serve as observable input—output data for learning and analysis.

The ACT-R architecture models human behaviour as a perception—cognition—action loop operating
over a sequence of cognitive cycles (typically 50 ms each). At every cycle, perceptual modules process
sensory input from the simulated environment; the central procedural system selects a production rule
that determines the next cognitive or motor action; and the resulting action updates both the environ-
ment and the internal state. Adjustable parameters such as memory decay, learning rate, and stochastic
noise govern inter-individual variability and non-deterministic decision patterns. Consequently, ACT-R
produces rich but discrete behavioural sequences that can be interpreted as a mapping between environ-
mental stimuli and human responses.

In the context of this work, the simulated interactions yield traces of human behaviour that serve as
the empirical basis for model inference. These traces are abstracted by the active automata-learning pro-
cedure into a finite-state representation of the behaviour that the automation assumes or expects from the
human component during interaction. We refer to this internal predictive model simply as the abstract
human model (HM). The HM thus embodies the automation’s working hypothesis about human responses
within the task context and forms the formal interface between cognitive simulation and reactive synthe-
sis, enabling systematic exploration of shared-control strategies.

2.2 Reactive Strategy Synthesis and Safety Games

The objective of reactive synthesis is to automatically construct strategies that ensure system objectives
while adapting to variations in human behaviour, rather than to pre-compute fixed action sequences.
The interaction between the automation and the human is modelled as a finite-state (timed) two-player
game, where the automation aims to maintain system safety and achieve mission goals despite uncertain
or variable human actions. Such games are commonly referred to as safety games, in which a winning
strategy [2] for the automation guarantees that no unsafe state can be reached under any admissible
human behaviour. Desired system properties are expressed in temporal logics such as LTL or TCTL.
In contrast to the traditional implement-then-verify workflow, reactive synthesis produces a correct-by-
construction controller directly from these formal specifications.

Formally, the system is regarded as a discrete-event system [15], whose behaviour is represented
as a temporally ordered sequence of events. Finite automata and their (®-)regular languages provide a

M. Hajnorouzi, A. Rakow & M. Frinzle 99

natural formalism for representing and analysing such behaviours. Cognitive architectures such as ACT-
R, however, are not expressed in an automata-based formalism. To obtain a representation suitable for
synthesis, we employ active automata learning.

Active learning techniques based on Angluin’s L* algorithm [7] iteratively query the system under
learning (SUL), construct hypotheses, and refine them using counterexamples until convergence to a finite
automaton that approximates the target behaviour. This approach is particularly suitable for modelling
human behaviour: data obtained through passive observation are typically incomplete due to behavioural
variability and context dependence, and rare yet safety-critical actions may be absent from logs. Active
learning mitigates these limitations by interactively exploring the behavioural space and refining the
hypothesis through counterexample analysis.

Active automata learning has seen numerous extensions in recent years, including optimised algo-
rithms such as TTT [25] and NL* [10] that reduce the number of required queries, as well as probabilis-
tic and non-deterministic variants [34,37,48] aimed at modelling uncertainty and variability in system
behaviour. The development of tools such as AALPY [34] and continued research on applying and ex-
tending active model learning [9, 35] underline its ongoing relevance in both theory and practice. Its
simplicity, transparency, and established convergence guarantees make it a natural choice for integra-
tion with cognitive simulations, while more efficient variants can be adopted within the same framework
without conceptual modification.

2.3 Levels of Automation and Shared-Control

The degree of automation in human—machine systems varies depending on how control authority and
decision-making are distributed between the human operator and the automated components. The widely
adopted taxonomy SAE [42], defines six levels of vehicle automation, ranging from level O (no automa-
tion) to level 5 (full automation). At lower levels, automation offers assistance functions such as adaptive
cruise control; intermediate levels enable partial automation that jointly controls acceleration and steer-
ing while requiring continuous human supervision; and higher levels allow conditional automation that
manages all driving tasks within defined scenarios, returning control to the human when intervention is
required. Across this spectrum, human involvement ranges from hands-on to mind-off interaction.

For such systems, particularly those operating at intermediate levels, the shared-control principle
becomes essential: both human and automation contribute to task execution, dynamically balancing
authority to ensure safety and performance. The automation must recognise when to intervene and when
to defer to the human operator, adapting its behaviour to the situational context and the human’s state. In
our framework, levels of automation are instantiated as design variants, each defined by its controllable
action set available to the automation. Through reactive synthesis, we evaluate whether a given variant
can satisfy the control objectives while maintaining safety and accommodating the human behaviour.
This enables systematic comparison of automation levels within a unified formal framework.

3 Iterative Model Learning and Control Synthesis

Our approach, illustrated in Fig. 1, integrates model learning with reactive strategy synthesis to enable
adaptive automation in HCPS. The interaction between automation and human is formalised as a two-
player game and control strategies are synthesised to guarantee mission objectives under all admissible
human behaviours.

This section presents the methodological core: the construction of finite-state human abstractions

100 Adjusting level of automation in HCPS

s N .
Cognitive <——inputs SUL Observation Learning
model ——outputs—y{ Interface table algorithm

A
counter example

Concrete
scenario

Y

Hypothesis
machine

Environment Simulation —‘ no

"

Sufficiently
accurate?

Y

Oracle <

Figure 2: Learning behaviour abstraction automaton (HM) from simulation of cognitive model.

and the subsequent synthesis of control strategies. Active automata learning derives a finite-state abstract
human model of the cognitive architecture, representing the information available to the automation about
the human. The learned model, composed with the environment and the formalised objectives, serves as
input to game-theoretic synthesis. The process proceeds in three main stages.

1. Model learning: construct a finite-state abstraction of the cognitive architecture within its opera-
tional context, capturing the information that the automation obtains about the human.

2. Game construction: combine the learned human abstraction with the environment and the control
objectives, encoding them as winning conditions.

3. Synthesis: compute a winning strategy for the automation that satisfies the objectives against
admissible human behaviours.

3.1 Generating the Abstract Human Model

Shared-control automation must adapt to variability and limitations of human cognition— intervening
when human state may lead into unsafe situations and remaining otherwise unobtrusive. To formalise
these conditions, we define abstractions of the human—-machine interaction at an appropriate level of
granularity and learn corresponding finite-state representations from cognitive-architecture simulations.
The resulting automaton represents the automation’s predictive model of human’s behaviour within the
task context.

The cognitive architectures are inherently state-based but structurally complex and concurrent. We
use finite game graphs [47] as the formal basis. The abstraction is obtained via active automata learning
based on Angluin’s L* algorithm [7]. Learning begins from a coarse abstraction——{formed over dis-
crete observation intervals—and is refined iteratively until sufficient behavioural insight is achieved for
the target scenario. Each iteration simulates the cognitive model within the task environment, records
input—output traces, and updates the learned automaton (HM). This process yields a simplified yet be-
haviourally representative depiction of the human component (see Fig. 2).

The selection of observable parameters follows a pragmatic principle that prioritises variables with
measurable correlation to the cognitive state. Typical examples include perceptual indicators such as
facial expressions or gaze direction, which can serve as estimators of mental workload or attention focus
(cf. [17,22]). This facilitates the integration of the approach within application-specific domains. The
key criteria are (i) observability of parameters and (ii) inference effectiveness for the underlying cognitive
state.

M. Hajnorouzi, A. Rakow & M. Frinzle 101

Active automata learning incrementally constructs a hypothesis automaton by querying a system un-
der learning (SUL) and refining the hypothesis based on counterexamples. The learner maintains an ob-
servation table comprising input prefixes and suffixes, and their observed outputs. For the table to define
a valid hypothesis, it must satisfy closure and consistency conditions, ensuring that equivalent prefixes
denote the same abstract state. Once these conditions are met, the learner constructs a hypothesis au-
tomaton whose states correspond to equivalence classes of prefixes exhibiting identical output behaviour
over all suffixes. Subsequently, the learner issues equivalence queries to assess behavioural conformance
with the SUL. In practice, equivalence is approximated through randomised testing, whereby a large set
of input sequences is applied to both the hypothesis and the SUL. Any divergence yields a counterex-
ample, which is incorporated into the observation table to refine the hypothesis. The iterative cycle of
construction, testing, and refinement continues until no counterexamples are identified within the defined
bounds.

We note that the expressive power of cognitive models generally exceeds that of regular languages;
exact learning is therefore infeasible. The resulting automaton approximates the behavioural language of
the cognitive model, analogous to abstractions learned for recurrent neural networks in related work [11].
Empirical validation across multiple cognitive architectures can be used to assess the adequacy of this
finite-state approximation for the intended synthesis tasks. The proposed framework is not restricted
to a specific cognitive architecture, such as ACT-R. Different architectures emphasise distinct aspects of
human cognition—for instance, emotional-behavioural interaction in MAMID [24]—and may be selec-
tively employed depending on the application focus. Combining or comparing multiple architectures
further supports cross-validation of the learned abstractions and enhances the robustness of the resulting
automation design. The learned abstraction HM thus serves as the finite-state human behaviour within
the subsequent game-theoretic synthesis stage.

3.2 Game Graph Construction and Synthesis

Let CPS be a design variant of the automation defined by its controllable action set. The learned hu-
man model HM is combined with the cyber-physical components (CPS) and the environment mod-
els to form the HCPS game arena. The arena is represented as a timed game automaton (TGA) [32]
o =(L,1y,X., Xy, X,Inv,E), where L denotes the set of locations, [y the initial location, X the set of clocks,
and Inv assigns invariants to locations. The transitions E are labelled with actions from the disjoint sets
of controllable actions X, (automation) and uncontrollable actions ¥, (human and environment). The
synchronous product &7 = HM || CPS defines the joint behaviour, interleaving independent actions and
synchronising on shared ones.

During execution, each player chooses an action and an associated delay ¢ € R>g. The opponent may
pre-empt by selecting an enabled action with a shorter delay ¢’ < 7. The resulting interleaving defines the
plays of the game. In the case study configuration, a fixed cognitive-cycle delay of 50 ms was adopted,
corresponding to the standard temporal resolution in cognitive modelling.

The synthesis problem is to construct a control strategy that selects actions in X, such that the control
objective C is satisfied for all behaviours in ¥,,. Control objectives are expressed as winning conditions
in a fragment of Timed Computation Tree Logic (TCTL) [14], typically including:

 Safety: undesirable states are never reached (V(—-bad);
* Reachability: desirable states are eventually reached (V0goal);

* Response: whenever a trigger holds, a response eventually follows (VO(trigger = Qresponse)).

102 Adjusting level of automation in HCPS

.

Formalized winning
conditions

I

Monitor
synthesis

Controller

Cognitive
model

-
CPS

models

Co-simulation

Y

satisfied

Synthesized
control violation
strategy

(for HM;)
\ J e . .
Violating simulated Learning algorithm HM.
traces (L. e

Figure 3: Framework to refine the learned human model AM.

These specifications are compiled into acceptance conditions and integrated into the game arena. Solving
the game amounts to computing the set of winning states—those from which the controller can enforce
the objective regardless of the uncontrolled system parts—via a fixed-point computation [32, 38]. If the
initial state gq lies in this set, a winning strategy exists; otherwise, the specification is unrealisable.

A winning strategy is a mapping 7 : Q — (£, x R>) assigning to each reachable state a controllable
action and delay such that the successors remain within the winning region. This strategy constitutes
a correct-by-construction controller that guarantees satisfaction of the specified objectives. In practice,
we employ the UPPAAL TIGA tool [8] for synthesis and validation. The strategy guarantees that if the
human behaves as captured by HM, the automation achieves its objectives. Since we coarsely abstracted
the human, we validate and adapt the automation, if necessary. A successful synthesis yields an adaptive
design [27] that explicitly accounts for the learned human model.

3.3 Refining the Human Model

Following synthesis, the correctness of the derived automation strategy is evaluated through co-simulation
with the full human model. As illustrated in Fig. 3 our framework systematically validates the synthe-
sised automation strategies: The full ACT-R model, the environment and the synthesised controller are
composed and monitored to verify whether the control objectives are satisfied. Failure to meet these
objectives indicates that the learned model HM may not yet capture sufficient behavioural fidelity. Since
HM is inferred from a finite set of coarse traces, its abstraction may omit behaviours relevant to the
satisfaction of the control objectives.

To address this limitation, the framework employs iterative refinement (Fig. 3), focusing on traces
that lead to specification violations. The traces are fed back into the learning process to yield an updated
model HM;,; and a revised strategy CS;.;. Each iteration thus extends the behavioural coverage of the
human model and enhances the robustness of the synthesised controller.

Although convergence of this loop is not formally guaranteed, termination can be enforced through
predefined criteria such as reaching a performance threshold or achieving stability across successive iter-
ations. Future work will address the formulation of formal termination conditions and the integration of

M. Hajnorouzi, A. Rakow & M. Frinzle 103

the full refinement loop into case study evaluations, as this mechanism was not yet applied in the present
study. As empirical behavioural data become available, additional refinement can be performed through
parameter adaptation, improving the generalisability of the learned model across operator profiles.

3.4 Adapting the Automation Design Variant

If no winning strategy exists for a given design variant, the automation design is revised—typically
by expanding the controllable action set—and synthesis is repeated. This iterative design exploration
continues until a feasible strategy is identified or all design variants have been exhausted. Each synthe-
sised strategy is validated through co-simulation as described above, completing the design-time loop of
model learning, synthesis, and refinement. This process supports the systematic development of robust
shared-control automation that explicitly accounts for human variability and task context.

4 Preliminary Evaluation through Case Study

We conducted a case study on a driving task to evaluate the feasibility of deriving reactive automation
strategies based on a learned human model and to assess whether the obtained behavioural abstraction
provide sufficient fidelity for safe shared-control. The study focuses on cognitive-band actions along
the activity continuum [36]—decisions unfolding over time scales of a few seconds. In the driving
context, these correspond to longitudinal control subtasks, such as adjusting acceleration to maintain a
safe headway to a lead vehicle. The simulation setup consists of a single-lane road with a lead vehicle
whose velocity varies over time and a following vehicle controlled by the driver model. The objective
is to maintain a safe longitudinal distance from the lead vehicle while adapting to its speed fluctuations.
This configuration provides a controlled environment for analysing shared-control strategies.

4.1 HM - the Driver Model

We implemented the driver model within the ACT-R architecture (using the pyactr implementation [1]),
integrating goal, declarative, procedural, visual and manual modules. Its task is to select the longitudinal
acceleration of the following vehicle based on the observed time headway (thw) to the lead vehicle, i.e.
the longitudinal gap divided by the speed of the following vehicle. Specifically, the model evaluates the
change in time headway (Athw) over elapsed time (At¢), and computes the acceleration according to an
adapted form of the Salvucci driver model [44]:

Aa = kiAthw + k, (l‘hW — thwfollow)At'

Here, ki penalises abrupt acceleration changes, while k; drives thw towards the desired value thw ro/10y -
At each simulation step, (i) the environment updates vehicle positions and velocities; (ii) the current
thw is computed and passed to the driver model; (iii) the model selects the acceleration for the next
step; and (iv) the internal subgoal is updated to ensure behavioural continuity. This process establishes a
closed-loop interaction between the driver model and its environment (Fig. 4). The simulation generates
temporal traces of states and actions (s, a1, 51,42, ..., 5,), Where states encode cognitive variables such as
buffer contents and goals, and actions correspond to perceptual updates, rule firings, or motor responses.

Scope and rationale. The generation of the cognitive model itself is not part of the proposed frame-
work; instead, we modified and used a validated ACT-R-based driver model. The cognitive mechanisms

104 Adjusting level of automation in HCPS

» time head way (thw) to lead vehicle
)

Driver Model Task Environmen
€ ode acceleration (acc) of follow vehicle as o ent
L

Figure 4: Interaction between driver model and driving environment.

Parameter Description Type of parameter
Declared chunks Internal logic and rule-based system of ACT-R driver model Internal

and procedural rules

ki, ka Coefficients of Eq. 1 tuning driver model behaviour Internal
thw_follow Desired temporal gap the driver aims to maintain Internal
Reaction latency Delay due to ACT-R processing Internal
Vehicle dynamics Update equations for vehicle velocity and position Task-specific
destination_pos Target position of follow vehicle Task-specific
Init_conditions Initial positions and velocities of two vehicles Task-specific
lead_profile(r) Time-varying speed/acceleration profile of the lead vehicle Task-specific
thw current time headway Simulation
Athw Change in thw compared to previous step Simulation
At Simulation time step size Simulation
acc_follow Acceleration decided by driver model Output
simulation-trace Sequence of activated modules, fired production rules and executed actions | Output

Table 1: List of identified parameters.

and empirically grounded representation of decision-making at the cognitive-band level make it a suit-
able proxy for human control behaviour in the present driving scenario. This allows the evaluation to
focus on the subsequent learning and synthesis steps rather than on model construction.

4.2 Learning the Human Behaviour Abstraction

We treat the ACT-R driver model as a grey-box system under learning (SUL) and infer a finite-state HM
using active automata learning. The learned HM is a finite Mealy machine to represent the automation’s
operational view of admissible human input—output behaviour in the given task context.

What is identified. During simulation, a set of tuneable parameters and observable variables are ex-
posed to the learner, grouped into four categories (Table 1): (i) Internal parameters—model-intrinsic
variables such as ACT-R production rules, k1,k2, thw r,j10, and reaction latency, which shape the under-
lying HM dynamics; (ii) Task-specific parameters—scenario-defining elements such as the lead vehicle
profile, initial conditions, and destination, which determine contextual stimuli; (iii) Simulation param-
eters—measured variables and timing quantities (e.g. thw, Athw, At), forming the input alphabet (X)
and time context; (iv) Outputs—selected accelerations and relevant cognitive-trace features, constituting
the output alphabet (I'). This mapping enables the learner to capture both observable task behaviour
and salient internal reasoning features yielding an HM that reflects the driver’s decision process in its
operational context.

Learning configuration. We define the input alphabet X as discrete environmental stimuli delivered
to the driver model, such as quantised levels of thw. The output alphabet I" comprises tuples combining
the decided acceleration and compact representations of the cognitive trace (e.g. sequences of fired
production rules).

M. Hajnorouzi, A. Rakow & M. Frinzle 105

Each input stimulus triggers internal deliberation that culminates in an output action; the resulting
input—output observations populate the L* observation table, where prefixes form the rows, suffixes the
columns, and output tuples the cell entries. An illustrative excerpt is provided in Table 2. For instance,
the last row and first column indicate that, given the input sequence (1,1,2,1) and query 1, the learner
receives the output ((‘attend’,’read’,’ encode’,’n_ret’),-2). This corresponds to the sequential firing of the
four production rules mentioned, whose combined execution results in a decided acceleration of —2.

Rational for active learning. Active automata learning offers a query-driven, sample-efficient ap-
proach for identifying finite-state models [7], supported by mature methodology and tooling [23,34,48].
Unlike purely passive, log-based methods, it can deliberately explore rare or safety-critical behaviours
that may not appear in empirical data—an essential property for HCPS safety analysis. Refinements such
as TTT [25] and NL* [10] improve query efficiency and model succinctness, while recent studies demon-
strate continued applicability in complex software settings [35]. We therefore adopt an active setup to
derive an HM that is both behaviourally discriminating and synthesis-ready.

Implementation details. The active learning process was implemented using AALpy [34] employ-
ing a deterministic L* learner in combination with a RandomWalkEqOracle to approximate equivalence
queries. The oracle’s reset probability parameter controlled the frequency of simulation restarts during
exploration. The resulting HM is a deterministic Mealy machine, in which outputs depend on the current
state and the provided input. For the configuration with four discretised time-headway levels, the learned
HM comprised 13 states and 52 transitions.

4.3 Shared-Control Automaton

To operationalise the synthesised strategy, we implement the automation component as a supervisory
automaton that monitors safety-relevant variables and dynamically regulates control authority. The au-
tomaton acts over the HM, enforcing safety constraints while maintaining a cooperative shared-control
interaction.

The controller monitors the time headway (thw) and time to collision (#tc), defined respectively as
the ratio of inter-vehicle distance to the follower’s velocity and to their relative velocity. Both quantities
are required to remain above specified thresholds (e.g. thw > 1.5s, tfc > 2s). At each step, the controller
evaluates short-horizon predictions (one or two steps ahead) to assess whether the driver’s selected ac-
celeration might violate these thresholds, indicating increased collision risk. Based on this assessment,
the controller switches between three modes:

* Nominal (no hazard): the driver’s acceleration is accepted without modification;

Prefixes/E set | (1,) 2,

0O (Cattend’,’read’,’encode’, retrieve’,’decide’), 0) ((Cattend’,’read’, encode’, retrieve’,’decide’), 0)
(1,) ((Cattend’,’read’,’encode’,’n_ret’),0) (Cattend’,’read’,’encode’, retrieve’,’decide’),2)
2, (Cattend’,’read’,’encode’ retrieve’,’decide’),-3) | ((Cattend’,’read’,’encode’,’n_ret’),0)

(1,2) ((attend’,’read’,’encode’, retrieve’,’decide’),2) ((Cattend’,’read’,’encode’, n_ret’),2)

2,1) ((Cattend’,’read’,’encode’, n_ret’),-3) ((Cattend’,’read’,’encode’, retrieve’,’decide’),-1)
(1,2,1) ((Cattend’,’read’,’encode’,’ n_ret’),2) None

2,1,2) None ((Cattend’,’read’,’encode’,’ n_ret’),-1)

(1,1,2) ((Cattend’,’ read’,’encode’,’retrieve’,’decide’),-2) | ((attend’,’read’,’encode’,’n_ret’),1)

(1,1,2,1) ((Cattend’,’read’,’encode’,’n_ret’),-2) ((Cattend’,’read’,’encode’, retrieve’,’decide’),0)

Table 2: Example of observation table.

106 Adjusting level of automation in HCPS

* Advisory (low risk): the controller issues an alert signal (‘“hint”) prompting the driver model to
re-evaluate the current thw before finalising its decision;

* Intervention (high risk): if risk exceeds critical limits, the controller overrides or modifies the
driver’s selected acceleration, enforcing emergency braking. This represents a transition from
advisory support to direct intervention.

Transitions between these modes are guarded by hazard predicates:

RiskWarn = (thw < thwyarm) V (ttc < ttCyarm),
RiskFilter = (thw < thwpy,) V (ttc < ttcpin),
SafeNow = (thw > thwsar, N (ttc > ttcgqge).

This defines a compact three-mode shared-control policy with recovery transitions (e.g. Recover-From-
Advisory, Recover-From-Intervention) returning the system to lower modes once hazards resolve.

The resulting automaton provides a concrete realisation of the shared-control paradigm explored
in this work: it embodies predictive risk awareness, selective intervention, and preservation of human
agency. In the broader context of HCPS design, it serves as a design blueprint for instantiating formally
synthesised strategies as interpretable supervisory control logic.

4.4 Game-Theoretic Synthesis of Shared-Control

The final step integrates the learned HM and the automation’s supervisory logic into a unified game-
theoretic synthesis framework. The synthesis process formally derives a reactive control strategy that
guarantees satisfaction of the specified objectives under all admissible human and environmental be-
haviours.

The game arena is constructed as the synchronous product of the component automata:

o/ = Driver || Lead || Follow || SensorError || SimCtrl || Control.

Each automaton represents a constituent of the HCPS, contributing its own states, variables, and transition
dynamics.

* Driver: Derived from the learned Mealy-machine abstraction of the cognitive model and translated
into a timed automaton. A Python-based tool extracts states and transitions, while timing guards
and invariants encode the 50 ms cognitive-cycle constraint (cf. Sect. 2.1).

* Lead and Follow: Represent vehicle dynamics; the lead vehicle follows a predefined motion pro-
file, while the following acceleration is governed by the driver model or overridden by the Control
automaton during intervention.

» SensorError: Introduces stochastic perturbations to the perceived thw to represent sensor and per-
ception noise.

» SimCtrl: Serves as a global scheduler, maintaining consistent timing semantics across all compo-
nents.

e Control: Encodes the supervisory shared-control automaton with three modes—~Nominal, Advi-
sory, and Intervention—encoding the automation’s decision logic for issuing hints or enforcing
overrides.

M. Hajnorouzi, A. Rakow & M. Frinzle 107

A global system state of <7 is defined as

q= (lDrivera lLeadylFollovwlSensorErr()rylSimCtrlleOnlrolav)a

where /; denotes the active location of component i and v is the joint valuation of clocks and continuous
variables (e.g. positions, velocities, accelerations). Transitions of the Control automaton correspond to
controllable actions X, while all other components contribute uncontrollable actions X, representing
human behaviour, environment dynamics, and exogenous disturbances.

Specifications and synthesis. The control objectives are formulated as winning conditions expressed
in a fragment of TCTL:

* Safety: the follower must never overtake the lead, VOO(follow_pos < lead_pos);
* Reachability: the follower eventually reaches the destination, 3O follow_pos > DEST);

* Minimal intervention: the control automaton remains in Nominal or Advisory unless a hazard is
detected VI((safe \V low-risk) — —Intervention).

These objectives jointly yield the weak-until condition:
control : A[—(follow_pos > lead_pos) W (follow_pos > DEST)]

requiring that the follower never overtakes the leader until the destination is reached.

We employ the UPPAAL model checker [8] (v5.0.0) to solve the game. If the objectives are satisfiable,
the tool synthesises a memoryless strategy 7 : Q — X., mapping each reachable state to a controllable
action. The resulting strategy instantiates the three-mode policy:

Nominal: —RiskWarn N\ —RiskFilter = follow_acc = driver_acc,
nt(q) = < Advisory: RiskWarn N\ —RiskFilter = hint!,

Intervention: RiskFilter = acc_floor = —3, acc_cap = —1.

Simulation traces confirm the intended behaviour: In Nominal mode, the driver retains full authority
and the invariant follow_pos < lead_pos is preserved. Under Advisory, the controller issues a hint!
message, prompting the driver to reassess the situation. Intervention occurs only under critical conditions
(e.g. near-collision under sensor noise), enforcing braking until safety is restored. Representative trace
segments in Table 3 demonstrate that the synthesised strategy satisfies the weak-until property, maintains
safe distance, ensures progress to the destination, and minimises unnecessary overrides.

This synthesis step demonstrates how the learned human abstraction, supervisory control logic, and
safety-game formulation combine to realise a correct-by-construction shared-control policy for HCPS.

lead_pos | follow_pos | thw | control_mode driver_acc | follow_acc (applied) | Controller action
172 158 3 Intervention 2 —1 (clamped) Brake override
180 165 2 Nominal — Advisory -3 1 Hint issued

188 175 2 Nominal -1 -1 Safe, no action
204 182 4 Nominal -2 1 Safe, no action
204 189 0 Intervention 2 -1 Brake override
212 200 1 Advisory — Intervention | 0 -1 Brake override
220 198 2 Nominal 0 1 Safe, no action

Table 3: Exemplary fragment of simulation trace supervised by the synthesised strategy.

108 Adjusting level of automation in HCPS

5 Related Work

While the technical aspects of automation within cyber-physical systems (CPS) have been extensively
investigated, the impact on human operators remains comparatively unexplored [29]. Recent efforts
toward reliable HCPS aim to integrate models of human behaviour with CPS models, extending formal
analysis and synthesis to encompass human-machine interaction. Human-in-the-loop control synthesis
has been studied, for instance, by [19], in the context of conditional driving automation (SAE Level 3),
where advisory controllers are synthesised to mediate authority transfer between driver and automation.

Bridging formal methods and cognitive modelling remains at an early stage. Most existing work
adopts automata- or Markov-based abstractions of human behaviour to enable verification or strategy
synthesis in human—CPS interaction (e.g. [16,41]). While computationally tractable, these abstractions
lack the psychological grounding of cognitive architectures, such as ACT-R [5], SOAR [40], or CASCaS
by [50], which explicitly model perception, decision-making, and learning processes. Incorporating such
architectures into formal frameworks represents a promising but still underdeveloped direction toward
cognitively grounded and explainable synthesis of shared-control automation.

Initial steps towards bridging this gap have been taken by [28] and [20]. Both groups pioneered trans-
lations of fragments of cognitive architectures into formal models, thereby providing effective reductions
of correctness problems of cognitive architectures into model-checking or constraint-solving problems
for which effective tool support exists. Langenfeld et al. [28] mapped ACT-R mechanisms into network
of timed automata [3], enabling automated defect analysis of programmed models. While precise, such
encoding often leads to significant computational costs when applied to control synthesis. Current syn-
thesis algorithms do not appear capable of handling timed automata translations of full-fledged ACT-R
models, due to both computational scalability limitations and the lack of expressiveness for probabilistic
transition selection inherent to ACT-R models. The optimized encoding may alleviate the scalability is-
sues, but the application of less heavy-weight strategy synthesis algorithms like reinforcement learning
trade off scalability with weaker formal guarantees.

The cognitive architectures have also served as proxies for human behaviour, particularly in the de-
sign of driver-assistance systems (e.g. [50]), and automated risk analysis (e.g. [39]). However, their
potential for automatic synthesis of reactive strategies remains largely unexplored. Such a procedure
would allow automation to anticipate human behaviour to generate a strategy to fulfil the technical sub-
systems objectives. It follows model-predictive control paradigm to account for the expected states and
behaviour of human as reflected in the cognitive model.

One of the key challenges is state estimation. As discussed in our previous work, the existing con-
trol synthesis approaches relying on the synthesis methodology of [32] assume full observability of the
underlying timed game. The strategy is synthesised depending on the entire vector of cognitive states
which is unrealistic. In practice, human cognitive states are largely not observable and can only be in-
ferred indirectly to a limited extent through correlations with (often weak) neurophysiological signals or
behavioural cues. Practical controllers must therefore remain robust under partial observability, recon-
structing latent human states from measurable indicators while tolerating uncertainty.

Approaches addressing scalability and limited observability include abstraction-based methods. Ehler
et al. [18] proposed abstract timed games that group behaviourally equivalent states with respect to the
analysed properties to mitigate state-space explosion. The key idea is to construct high-level representa-
tion of relevant behaviour and iterative refinement to increase accuracy and preserve correctness. Simi-
larly, [26] integrated automata learning and statistical model checking to derive user-centred strategies in
interactive systems.. Their case study on music streaming service demonstrates how learned user models
can be used to guide interaction strategies without restricting the user’s freedom of choice. The authors

M. Hajnorouzi, A. Rakow & M. Frinzle 109

of [9] developed probabilistic models of human driver behaviour using a hierarchical learning approach
that incorporates known system modes. Their model captures highway driving responses to contextual
factors such as speed limits and curvature, accurately reproducing observed patterns and generating re-
alistic simulation data. However, these models remain descriptive rather than explanatory. Our approach
models behaviour through perception, decision-making, and action processes grounded in psychologi-
cal theory. Cognitive architectures offer explainability and enabling analysis of why drivers act as they
do, though they may be less precise in continuous control reproduction. For evaluating shared-control
paradigms in HCPS, such cognitively grounded models are preferable to purely data-driven approaches,
as they capture goals and situational awareness.

Our implemented case study illustrates the feasibility of combining human-behaviour learning and
reactive synthesis within a shared-control scenario. While the results are encouraging, several aspects of
the framework merit further reflection regarding methodological choices, assumptions, and applicability
to larger systems. We therefore discuss these points in more detail in the following section.

6 Discussion and Future Work

The proposed framework demonstrates how active automata learning and reactive synthesis can be jointly
applied to analyse shared-control in HCPS. While the feasibility study confirms the conceptual sound-
ness of the approach, several aspects deserve further refinement, and extension, particularly regarding
abstraction design, timing representation, and empirical validation.

Choice of learning algorithm. We adopted Angluin’s L* algorithm owing to its simplicity, trans-
parency, and well-understood convergence guarantees. Although more recent variants such as TTT or
NL* improve query efficiency, they remain conceptually based on L* and are already supported by ex-
isting learning libraries such as AALPY. The framework can therefore incorporate these variants without
conceptual modification.

Timing and observability assumptions. The learned Mealy machine (HM) captures the discrete de-
cision logic of the ACT-R model, whereas timing aspects are currently introduced through manual an-
notation. Transitions are enriched with timing parameters derived from ACT-R ’s internal processing
cycle and observed reaction latencies, ensuring consistency with the cognitive architecture’s temporal
dynamics. Future work will investigate automatic inference of timing parameters, for example through
timed-model learning or statistical estimation of timing distributions from simulation traces.

Abstraction design and human-state observation. An important consideration concerns how the full
cognitive model is abstracted into a form usable for synthesis. The abstract human model (HM) repre-
sents the controller’s belief about the operator’s behaviour; its construction must therefore align with the
observability of human states. In practice, the controller continually compares predicted and observed
human actions to assess whether its abstraction remains accurate. This implies concrete requirements for
sensor design and perceptual inference, potentially involving physiological and behavioural indicators
such as facial expressions or gaze direction. The feasible level of abstraction must thus be co-designed
with the sensing modalities and computational resources available. Future work will explore system-
atic methods for linking abstraction refinement to observability, enabling the automation to adapt its
predictive model using measurable human cues.

110 Adjusting level of automation in HCPS

Refinement of the human model. In the current framework, refinement of the human model is trig-
gered by specification violations detected during co-simulation. Although this iterative process improves
behavioural coverage, formal termination criteria remain to be defined. Future work will address the for-
malisation of convergence criteria, potentially using stability measures or bounded performance metrics.
Moreover, probabilistic or non-deterministic learning algorithms could capture inter-individual variabil-
ity and uncertainty, strengthening the robustness of the learned abstractions.

Design variants and levels of automation. The synthesis process supports systematic exploration of
automation levels and design variants. Extending this analysis to more complex interaction settings, such
as multimodal human—machine interfaces, cooperative robotics, or higher SAE automation levels, will
enable quantitative assessment of trade-offs between safety guarantees, computational scalability, and
human engagement. A promising direction is the comparison of design variants under equivalent formal
objectives to identify architectures that maximise safety while preserving human agency.

Integration and empirical validation. Integration of the complete toolchain, from cognitive simula-
tion (ACT-R) through model learning (AALPY) to synthesis (UPPAAL), remains a technical challenge.
Automating this pipeline would enable large-scale evaluation across domains and facilitate reproducibil-
ity. Ultimately, empirical human-in-the-loop validation is required to assess how well the learned ab-
stractions generalise to real human behaviour and whether the synthesised strategies remain effective
under real variability.

Outlook. Overall, the framework establishes a principled foundation for bridging cognitive modelling
and formal synthesis in shared-control systems. Future extensions will aim to close the loop between
abstraction, observability, and synthesis—allowing the automation to refine its human model dynami-
cally as behavioural evidence accumulates. By grounding abstraction refinement in measurable human
states, the framework may evolve towards adaptive, co-regulative automation that maintains safety while
remaining sensitive to human intent.

7 Conclusion

This work demonstrates that combining automata learning of cognitive models with reactive synthesis
provides a rigorous foundation for adaptive automation in HCPS. By learning finite-state abstractions of
cognitive architectures and integrating them with cyber-physical components in a game-theoretic syn-
thesis framework, the proposed approach enables systematic, correct-by-construction reasoning about
shared control and safety in dynamic human—automation interaction. A key contribution is the iterative
learning—synthesis—validation loop, which refines both the human abstraction and the control strategy
through counterexamples obtained from co-simulation, thereby establishing a principled link between
cognitive modelling and formal verification for realising verifiable, adaptive shared control.

M. Hajnorouzi, A. Rakow & M. Frinzle 111

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Available at https://colab.research.google.com/github/abrsvn/pyactr-book/blob/master/
notebooks/2_pyactr_implementation_of ACTR.ipynb#scrollTo=DnNa6als9IC2.

Rajeev Alur (2004): Games for Formal Design and Verification of Reactive Systems. In Farn Wang, ed-
itor: Automated Technology for Verification and Analysis: Second International Conference, ATVA 2004,
Taipei, Taiwan, ROC, October 31-November 3, 2004. Proceedings, Lecture Notes in Computer Science 3299,
Springer, p. 1, doi:10.1007/978-3-540-30476-0_1.

Rajeev Alur & David L. Dill (1994): A theory of timed automata. Theoretical Computer Science 126(2), pp.
183-235, doi:10.1016/0304-3975(94)90010-8.

John R. Anderson, Shawn Betts, Daniel Bothell, Cvetomir M. Dimov & Jon M. Fincham (2024): Tracking
the Cognitive Band in an Open-Ended Task. Cognitive Science 48(5), p. €13454, doi:10.1111/cogs.13454.

John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Christian Lebiere & Yulin Qin
(2004): An integrated theory of the mind. Psychological review 111 4, pp. 1036-60, doi:10.1037/0033-
295X.111.4.1036.

John R. Anderson & Christian Lebiere (1998): The Atomic Components of Thought. Psychology Press,
doi:10.4324/9781315805696.

Dana Angluin (1987): Learning regular sets from queries and counterexamples. Information and computation
75(2), pp- 87-106, doi:10.1016/0890-5401(87)90052-6.

Gerd Behrmann, Agneés Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen & Didier Lime
(2007): UPPAAL-Tiga: Time for Playing Games! In Werner Damm & Holger Hermanns, editors: Computer
Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 121-125, doi:10.1007/978-3-540-
73368-3_14.

Benjamin von Berg, Bernhard K. Aichernig, Maximilian Rindler, Darko Stern & Martin Tappler (2025):
Hierarchical Learning of Generative Automaton Models from Sequential Data. In Alexandre Madeira &

Alexander Knapp, editors: Software Engineering and Formal Methods, Springer Nature Switzerland, Cham,
pp- 215-233, doi:10.1007/978-3-031-77382-2_13.

Benedikt Bollig, Peter Habermehl, Carsten Kern & Martin Leucker (2009): Angluin-style learning of NFA.
In: Proceedings of the 21st International Joint Conference on Atrtificial Intelligence, IICAI’09, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, p. 1004-1009, doi:10.5555/1661445.1661605.

Benedikt Bollig, Martin Leucker & Daniel Neider (2022): A Survey of Model Learning Techniques for Re-
current Neural Networks, pp. 81-97. doi:10.1007/978-3-031-15629-8_5.

Matthew L. Bolton & Ellen J. Bass (2010): Using Task Analytic Models and Phenotypes of Erroneous
Human Behavior to Discover System Failures Using Model Checking. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting 54(13), pp. 992-996, doi:10.1177/154193121005401315. PMID:
25382961.

M.L. Bolton, Ellen Bass & Radu Siminiceanu (2013): Using Formal Verification to Evaluate Human-

Automation Interaction: A Review. Systems, Man, and Cybernetics: Systems, IEEE Transactions on 43,
pp- 488-503, doi:10.1109/TSMCA.2012.2210406.

Patricia Bouyer, Frangois Laroussinie, Nicolas Markey, Jo€l Ouaknine & James Worrell (2017): Timed Tem-
poral Logics. In Luca Aceto, Giorgio Bacci, Giovanni Bacci, Anna Ingélfsdéttir, Axel Legay & Radu
Mardare, editors: Models, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen
on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 10460, Springer, pp. 211-230,
doi:10.1007/978-3-319-63121-9_11.

Christos G Cassandras & Stéphane Lafortune (2008): Introduction to discrete event systems. Springer,
doi:10.1007/978-0-387-68612-7.

https://colab.research.google.com/github/abrsvn/pyactr-book/blob/master/notebooks/2_pyactr_implementation_of_ACTR.ipynb#scrollTo=DnNa6als9IC2
https://colab.research.google.com/github/abrsvn/pyactr-book/blob/master/notebooks/2_pyactr_implementation_of_ACTR.ipynb#scrollTo=DnNa6als9IC2
https://doi.org/10.1007/978-3-540-30476-0_1
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1111/cogs.13454
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.4324/9781315805696
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-031-77382-2_13
https://doi.org/10.5555/1661445.1661605
https://doi.org/10.1007/978-3-031-15629-8_5
https://doi.org/10.1177/154193121005401315
https://doi.org/10.1109/TSMCA.2012.2210406
https://doi.org/10.1007/978-3-319-63121-9_11
https://doi.org/10.1007/978-0-387-68612-7

112

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

Adjusting level of automation in HCPS

W. Damm, M. Frinzle, A. Liidtke, J. W. Rieger, A. Trende & A. Unni (2019): Integrating Neurophysiological
Sensors and Driver Models for Safe and Performant Automated Vehicle Control in Mixed Traffic. In: 2019
IEEE Intelligent Vehicles Symposium (IV), pp. 82-89, doi:10.1109/1VS.2019.8814188.

Moussa Diarra, Jean Theurel & Benjamin Paty (2025): Systematic review of neurophysiological assessment
techniques and metrics for mental workload evaluation in real-world settings. Frontiers in Neuroergonomics
Volume 6 - 2025, doi: 10.3389/fnrgo.2025.1584736.

Riidiger Ehlers, Robert Mattmiiller & Hans-Jorg Peter (2010): Combining Symbolic Representations for
Solving Timed Games. In Krishnendu Chatterjee & Thomas A. Henzinger, editors: Formal Modeling and
Analysis of Timed Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 107-121, doi:10.1007/978-
3-642-15297-9_10.

Lu Feng, Clemens Wiltsche, Laura Humphrey & Ufuk Topcu (2016): Synthesis of Human-in-the-Loop Con-

trol Protocols for Autonomous Systems. IEEE Transactions on Automation Science and Engineering 13(2),
pp- 450-462, doi:10.1109/TASE.2016.2530623.

Daniel Gall & Thom Frithwirth (2018): An Operational Semantics for the Cognitive Architecture ACT-R and
Its Translation to Constraint Handling Rules. ACM Trans. Comput. Logic 19(3), doi:10.1145/3218818.

Kenneth H. Goodrich, Paul C. Schutte, Frank O. Flemisch & Ralph A. Williams (2006): Application of the
H-Mode, A Design and Interaction Concept for Highly Automated Vehicles, to Aircraft. In: 2006 ieee/aiaa
25TH Digital Avionics Systems Conference, pp. 1-13, doi:10.1109/DASC.2006.313781.

Holly Gorin, Jigna Patel, Qinyin Qiu, Alma Merians, Sergei Adamovich & Gerard Fluet (2024): A Review
of the Use of Gaze and Pupil Metrics to Assess Mental Workload in Gamified and Simulated Sensorimotor
Tasks. Sensors 24(6), doi:10.3390/s24061759.

Falk Howar & Bernhard Steffen (2018): Active Automata Learning in Practice, pp. 123—-148. Springer
International Publishing, Cham, doi:10.1007/978-3-319-96562-8_5.

Eva Hudlicka (2002): This Time with Feeling: Integrated Model of Trait and State Effects on Cognition and
Behavior. Applied Artificial Intelligence 16, pp. 1-31, doi:10.1080/08339510290030417.

Malte Isberner, Falk Howar & Bernhard Steffen (2014): The TTT Algorithm: A Redundancy-Free Approach
to Active Automata Learning. In Borzoo Bonakdarpour & Scott A. Smolka, editors: Runtime Verification,
Springer International Publishing, pp. 307-322, doi:10.1007/978-3-319-11164-3_26.

Einar Broch Johnsen, Paul Kobialka, Andrea Pferscher & Silvia Lizeth Tapia Tarifa (2025): Nudging Strate-
gies for User Journeys: Take a Path on the Wild Side, pp. 42—-63. Springer Nature Switzerland, Cham,
doi:10.1007/978-3-031-73751-0_6.

Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad & Alireza Karimi (2011): Adaptive control: algo-
rithms, analysis and applications. Springer Science & Business Media, doi:10.1007/978-0-85729-664-1.

Vincent Langenfeld, Bernd Westphal & Andreas Podelski (2019): On Formal Verification of ACT-R Archi-
tectures and Models. In: CogSci, pp. 618-624.

John D Lee & Katrina A See (2004): Trust in automation: Designing for appropriate reliance. Human
factors 46(1), pp. 50-80, doi:10.1518/hfes.46.1.50_30392.

A Liidtke, F Frische & JP Osterloh (2011): Validation of a digital human model for predicting flight crew-
aircraft cockpit interaction. Proceedings of Berliner Werkstatt fiir Mensch-Maschine Systeme.

Andreas Liidtke, Lars Weber, Jan-Patrick Osterloh & Bertram Wortelen (2009): Modeling pilot and driver
behavior for human error simulation. In Vincent G. Duffy, editor: International Conference on Digital
Human Modeling, Springer, pp. 403—412, doi:10.1007/978-3-642-02809-0_43.

Oded Maler, Amir Pnueli & Joseph Sifakis (1995): On the Synthesis of Discrete Controllers for Timed
Systems. In: STACS 95, Springer Berlin Heidelberg, pp. 229-242, doi:10.1007/3-540-59042-0_76.

Mauricio Marcano, Sergio Diaz, Joshué Pérez & Eloy Irigoyen (2020): A Review of Shared Control for
Automated Vehicles: Theory and Applications. IEEE Transactions on Human-Machine Systems 50(6), pp.
475-491, doi:10.1109/THMS.2020.3017748.

https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.3389/fnrgo.2025.1584736
https://doi.org/10.1007/978-3-642-15297-9_10
https://doi.org/10.1007/978-3-642-15297-9_10
https://doi.org/10.1109/TASE.2016.2530623
https://doi.org/10.1145/3218818
https://doi.org/10.1109/DASC.2006.313781
https://doi.org/10.3390/s24061759
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1080/08339510290030417
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-031-73751-0_6
https://doi.org/10.1007/978-0-85729-664-1
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1007/978-3-642-02809-0_43
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1109/THMS.2020.3017748

M. Hajnorouzi, A. Rakow & M. Frinzle 113

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

Edi Muskardin, Bernhard K Aichernig, Ingo Pill, Andrea Pferscher & Martin Tappler (2022): AALpy: an
active automata learning library. Innovations in Systems and Software Engineering 18(3), pp. 417426,
doi:10.1007/s11334-022-00449-3.

Edi Muskardin, Tamim Burgstaller, Martin Tappler & Bernhard K. Aichernig (2024): Active Model Learning
of Git Version Control System. In: 2024 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 78-82, doi:10.1109/ICSTW60967.2024.00024.

Allen Newell (1990): Unified Theories of Cognition. Harvard University Press, USA.

Andrea Pferscher & Bernhard K. Aichernig (2020): Learning Abstracted Non-deterministic Finite State Ma-
chines. In Valentina Casola, Alessandra De Benedictis & Massimiliano Rak, editors: Testing Software and
Systems, Springer International Publishing, Cham, pp. 52-69, doi:10.1007/978-3-030-64881-7_4.

A. Pnueli & Roni Rosner (1989): On the synthesis of a reactive module. Automata Languages and Program-
ming 372, pp. 179-190, doi:10.1145/75277.75293.

Stefan Puch, Bertram Wortelen, Martin Frinzle & Thomas Peikenkamp (2013): Evaluation of Drivers In-
teraction with Assistant Systems Using Criticality Driven Guided Simulation. In: Digital Human Modeling
and Applications in Health, Safety, Ergonomics, and Risk Management. Healthcare and Safety of the En-
vironment and Transport - 4th International Conference, DHM, Lecture Notes in Computer Science 8025,
Springer, pp. 108-117, doi:10.1007/978-3-642-39173-6_13.

Paul S. Rosenbloom, Allen Newell & John Laird (1993): The SOAR papers: Research on integrated intelli-
gence. 978-0-262-18152-5. Mit Press Cambridge, MA.

Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia & Anca D. Dragan (2016): Planning for Au-
tonomous Cars that Leverage Effects on Human Actions. In: Robotics: Science and Systems,
doi:10.15607/RSS.2016.X11.029.

SAE International (2021): J3016: Taxonomy and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles. SAE Standard J3016_202104. Available at: https://doi.org/10.
4271/J3016_202104.

Dario Salvucci, Erwin Boer & Andrew Liu (2001): Toward an Integrated Model of Driver Behavior in
Cognitive Architecture. Transportation Research Record 1779, pp. 9-16, doi:10.3141/1779-02.

Dario D Salvucci (2006): Modeling driver behavior in a cognitive architecture. Human factors 48(2), pp.
362-380, doi:10.1518/001872006777724417.

Paul Maria Scheikl, Baldzs Gyenes, Tornike Davitashvili, Rayan Younis, André Schulze, Beat P. Miiller-
Stich, Gerhard Neumann, Martin Wagner & Franziska Mathis-Ullrich (2021): Cooperative Assistance in
Robotic Surgery through Multi-Agent Reinforcement Learning. In: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1859-1864, doi:10.1109/IROS51168.2021.9636193.

Thomas B Sheridan, William L Verplank & TL Brooks (1978): Human and computer control of undersea
teleoperators. In: NASA. Ames Res. Center The 14th Ann. Conf. on Manual Control.

Wolfgang Thomas (1995): On the Synthesis of Strategies in Infinite Games. In Ernst W. Mayr & Claude
Puech, editors: STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer Science, Mu-
nich, Germany, March 2-4, 1995, Proceedings, Lecture Notes in Computer Science 900, Springer, pp. 1-13,
doi:10.1007/3-540-59042-0_57.

Frits Vaandrager (2017): Model learning. Commun. ACM 60(2), p. 86-95, doi:10.1145/2967606.

Matt Webster, David Western, Dejanira Araiza-Illan, Clare Dixon, Kerstin Eder, Michael Fisher & Anthony G
Pipe (2019): A corroborative approach to verification and validation of human—robot teams. The Interna-
tional Journal of Robotics Research 39(1), p. 73-99, doi:10.1177/0278364919883338.

Bertram Wortelen, Andreas Liidtke, Martin Baumann, WG Kennedy, R St Amant & D Reitter (2013): In-
tegrated Simulation of Attention Distribution and Driving Behavior. In: Proceedings of the 22nd Annual
Conference on Behavior Representation in Modeling and Simulation, pp. 69-76.

https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1109/ICSTW60967.2024.00024
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-642-39173-6_13
https://doi.org/10.15607/RSS.2016.XII.029
https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://doi.org/10.3141/1779-02
https://doi.org/10.1518/001872006777724417
https://doi.org/10.1109/IROS51168.2021.9636193
https://doi.org/10.1007/3-540-59042-0_57
https://doi.org/10.1145/2967606
https://doi.org/10.1177/0278364919883338

	Introduction
	Preliminaries
	Human–Automation Interaction
	Reactive Strategy Synthesis and Safety Games
	Levels of Automation and Shared-Control

	Iterative Model Learning and Control Synthesis
	Generating the Abstract Human Model
	Game Graph Construction and Synthesis
	Refining the Human Model
	Adapting the Automation Design Variant

	Preliminary Evaluation through Case Study
	HM – the Driver Model
	Learning the Human Behaviour Abstraction
	Shared-Control Automaton
	Game-Theoretic Synthesis of Shared-Control

	Related Work
	Discussion and Future Work
	Conclusion

