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Abstract
Waves transport energy through the atmosphere without transporting mass. Often excited 
in the troposphere, they can propagate horizontally and vertically over long distances, 
depending on the type of wave and the background atmosphere. The fastest atmospheric 
waves are (infra)sound and acoustic gravity waves. The list of possible reasons for the gen-
eration of these atmospheric waves is not short; here, we concentrate on natural hazards. 
Due to their comparatively high propagation speed, infrasound and acoustic gravity waves 
can contribute to or even improve early warning of natural hazards, even when measured at 
high altitudes. Traditionally, each scientific community—the one that deals with the neu-
tral atmosphere and the one that addresses the ionosphere—usually works on its own. The 
aim of this manuscript is to bring together observations and results from both communi-
ties. The main challenges of the respective communities with regard to the use of these 
waves in the context of early warning of natural hazards are identified.

Keywords  Upper mesosphere/lower thermosphere · Ionosphere · Natural hazards · 
Acoustic gravity waves · Infrasound · Travelling ionospheric disturbances

1  Introduction

Waves transport energy through the atmosphere without transporting mass (e.g., Nappo 
(2012)). Often generated close to the ground, they can propagate horizontally and verti-
cally over long distances, affecting not only the neutral atmosphere, but also the ionized 
parts of the atmosphere, the ionosphere. The distance they travel depends on the type of the 
wave (planetary or gravity or infrasound waves) and the background atmosphere. Waves 
transport and redistribute energy in the atmosphere (e.g., Rauthe et al. (2008), Ern et al. 
(2011), Kramer et al. (2015), Wüst et al. (2016, 2017a, 2025)) and are therefore an impor-
tant factor in understanding and modelling the behaviour of the atmosphere (e.g., Alexan-
der et al. (2010), Geller et al. (2013)). Prominent sources for atmospheric waves influenc-
ing the neutral atmosphere and ionosphere are associated with natural hazards including 
earthquakes, tsunamis, and volcanic eruptions (e.g., Benioff et  al. (1951), Hines (1972), 
Kanamori et al. (1994)). The eruption of the Hunga Tonga–Hunga Ha’apai in 2022, which 
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generated atmospheric waves that circled the globe multiple times, is perhaps the most 
notable recent example (e.g., Wright et al. (2022)). Fast waves in particular can contribute 
to early warning of natural hazards, if their signals can be measured in near real time and 
correctly attributed to a natural hazard. This is especially useful for regions of the Earth 
that are less well equipped with other early warning mechanisms, and for natural hazards 
that are difficult to measure early and that could benefit from additional information, such 
as tsunamis.

This manuscript reviews the potential of atmospheric wave measurements at alti-
tudes above 80 km to be used for early warning of natural hazards. However, it does not 
cover observations or mechanisms related to potential precursors of these hazards. Read-
ers interested in that topic are referred to Nemec et al. (2008), Harrison et al. (2010), Liu 
et al. (2010), Pulinets and Davidenko (2014), Kuo et al. (2014), and Liu et al. (2024), for 
example.

In recent years, various review papers have been published on the use of primarily iono-
spheric measurements for the observation, modelling and early warning of natural hazards. 
This often involves not only the detection of ionospheric disturbances but also of ground 
movements. Bock and Melgar (2016), for example, address the relevant concepts of geo-
detic theory, data analysis and physical modelling of a variety of processes that influence 
the GNSS signal. Amongst them are also atmospheric disturbances from natural hazards. 
They discuss the integration of further data sets from geodesy, seismology, and geology. 
Komjathy et al. (2016) specialize in ground-based and space-borne measurements of the 
total electron content (TEC) of the ionosphere, the latter derived from GNSS measure-
ments. They put emphasis on the modelling of TEC disturbances caused by natural hazards 
and also report advancements in estimating tsunami wave heights and ground surface dis-
placements. Astafyeva (2019) and Hohensinn et al. (2024) focus on ionospheric monitoring 
of different natural hazards (earthquakes, tsunamis, and volcanic eruptions, in the case of 
Astafyeva (2019) and earthquakes, landslides, volcanoes, and tropospheric hazards (severe 
weather) in the case of Hohensinn et  al. (2024)). They focus on GNSS measurements 
and TEC information derived from them. Both bring up further perspectives: Hohensinn 
et al. (2024)), for example, discusses the advantages and disadvantages of GNSS measure-
ments and how they can be integrated with other sensors such as seismometers or radar 
(Interferometric Synthetic Aperture Radar, InSAR); Astafyeva (2019) puts more focus on 
the future development of ionosphere-based methods and modelling. To the best of the 
authors’ knowledge, Meng et al. (2019) is the only review article that puts at least some 
emphasis to measurements of the neutral atmosphere. The article addresses impulsive sur-
face disturbance events (e.g. earthquakes, tsunamis, volcanic eruptions and explosions) as a 
source of acoustic-gravity waves, which can be detected using radar, GNSS, ground-based 
radio occultation and airglow measurements. However, they focus on the red oxygen air-
glow, which forms a comparatively broad layer peaking around 250 km (e.g. Haider et al. 
(2022)), rather than the comparatively narrow hydroxyl airglow layer around 86 km height 
(Wüst et  al. 2020). Mesospheric airglow is considered in terms of satellite-based meas-
urements (TIMED-SABER, Thermosphere Ionosphere Mesosphere Energetics Dynam-
ics, Sounding of the Atmosphere using Broadband Emission Radiometry), a limb-looking 
instrument.

In this article, measurements of the neutral and the ionized atmosphere are addressed. 
However, in comparison with Meng et  al. (2019), there is much more focus on neutral 
atmosphere measurements, especially on ground-based ones of the hydroxyl airglow. This 
airglow layer has a comparatively small thickness, which allows the detection of much 
shorter vertical wavelengths than ground-based measurements of the red oxygen airglow 
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do. Furthermore, it has a lower centroid height than the red oxygen airglow; this favours an 
earlier detection of atmospheric waves generated at lower altitudes. Finally, ground-based 
hydroxyl airglow measurements are made at various locations around the world (see e.g. 
the Network for the Detection of Mesospheric Change, NDMC, https:∖ ∖ndmc.dlr.de). The 
first measurements date back to the 1950s. The manuscript is structured as follows: The 
emphasis in Sect. 2 is on a solid presentation of the basic theoretical principles of atmos-
pheric waves and their propagation through the neutral and ionized atmosphere. In addi-
tion, different types of atmospheric waves are considered. Section  3 reviews the neutral 
atmospheric and ionospheric signatures of natural hazards and how they have been his-
torically measured and modelled. Section  4 summarizes the status of challenges associ-
ated with an atmospheric natural hazard early warning system. The manuscript ends with 
Sect. 5, a summary and conclusion.

2 � Vertical Coupling Through Waves

The atmosphere can sustain a variety of waves, which arise when its equilibrium state is 
perturbed and a restoring force acts to bring it back to equilibrium. One of the most com-
mon distinctions between waves in atmospheric physics is based on which forces in the 
wave dispersion relation (from the set of pressure gradient force, gravitational force, and 
Coriolis force) are dominant or negligible. All three forces are initially taken into account 
in the Navier–Stokes equation, which describes the forces acting on an air parcel. In addi-
tion, the conservation of energy is assumed and the first law of thermodynamics is applied. 
Transforming these equations and applying some approximations as shown, for example, 
by Pichler (1997) or Gossard and Hooke (1975) leads to a system of equations that can be 
solved using a plane wave approach. The following dispersion relation, which is valid for 
all atmospheric waves, can then be derived:

with the wave vector (k, l, m) and the vector of its horizontal part kh = (k, l) , N the Brunt-
Väisälä frequency, cs the sound speed, 𝜔̂ the intrinsic frequency, so the frequency that is 
observed by someone who is moving with the background wind, f the Coriolis frequency, 
and E the Eckhart coefficient. The Eckhart coefficient is often neglected, e.g. in the Bouss-
inesq approximation. The same holds for N

2

cs
2
 , which is of a similar order of magnitude ( 10−9

–10−8 , as N varies typically around 2 ⋅10−2 1/s and cs around 3 ⋅102 m/s). However, some-
times the Eckhart coefficient is also approximated by 1

2H
 in an isothermal atmosphere. 

Doing this, Eq. (1) becomes

For the purpose of application in the field of early warning of natural hazards, the focus 
should be on comparatively fast waves: terms including the speed of sound in Eq. (2) 
should therefore not be neglected. This means that the medium is compressible and cs does 
not go to infinity. However, large scale waves (for which the Coriolis frequency plays a 
role) can be omitted. This is done by setting f equal to zero. Also pure gravity waves can 
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be excluded, as their phase speed is much smaller than the sound speed (their dispersion 
relation would follow from Eq. (2) by assuming cs approaches infinity). Acoustic gravity 
waves, however, are to some extent a hybrid between gravity waves and acoustic waves: 
they have an intrinsic frequency somewhat smaller than but comparable to the Brunt-
Väisälä frequency (Yeh and Liu 1974); the compressibility of the atmosphere and therefore 
the speed of sound cannot be set to infinity. Their dispersion relation is

As gravity acts only in the vertical direction, the related wave process is highly anisotropic. 
Only for intrinsic frequencies very near to the Brunt-Väisälä frequency the first term in Eq. 
(3), (N

2−𝜔̂2)kh2

𝜔̂2
 , is less than the second term, 𝜔̂

2

c2
s

 (see Fig. 1) and it becomes zero when 𝜔̂ 
approaches N. Otherwise, the first term dominates: the smaller the intrinsic frequency (the 
larger the intrinsic period), the larger the first term and the smaller the second term 
becomes. This growth of the first term with decreasing intrinsic frequency (increasing 
intrinsic period) leads to (intrinsic) vertical phase speeds cz =

𝜔̂

m
 being too slow in the con-

text of early warning (see Fig. 2).
The dispersion relation for pure sound waves is derived from Eq. (3) by neglecting grav-

ity ( N = 0 ) and the stratification of the atmosphere ( E2 ≈
1

4H2
= 0):

(3)m2 =

(

N2 − 𝜔̂2
)

kh
2

𝜔̂2
+

𝜔̂2

c2
s

−
1

4H2

(4)m2 = − kh
2 +

𝜔̂2

c2
s

Fig. 1   Term 1 in Eq. (3) that is (N
2−𝜔̂2)kh2

𝜔̂2
 and term 2 that is 𝜔̂

2

c2
s

 behave differently for increasing intrinsic 
periods. Please be aware of the different orders of magnitude on the y-axes. For this figure, the Brunt-
Väisälä period is assumed to be five minutes (marked in yellow on the x-axis), the sound speed is 300 m/s, 
background winds are neglected and the horizontal wavelength is set to 30 km. For an intrinsic period equal 
to the Brunt-Väisälä period, term 1 is zero, while term 2 is larger than zero. For an intrinsic period of 
10 min, term 1 is already an order of magnitude greater than term 2
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This shows that in contrast to gravity waves and acoustic gravity waves, sound waves are 
not dispersive; their speed of propagation cs is 

√

cp

cV
RT  with cp and cV the specific heat 

capacity for constant pressure p or volume V and R the specific gas constant. Their intrinsic 
frequency is much higher than the Brunt-Väisälä frequency (indeed they can approach the 
acoustic cut-off frequency cs

2H
 which is larger than the Brunt-Väisälä frequency) and gravity 

effects play no role.
From the dispersion relations (3) and (4), it becomes clear that the speed of propaga-

tion of acoustic waves is higher than that of acoustic gravity waves. While sound waves 
have phase speeds of around 300 m/s up to 100 km height and can reach up to 1,000 m/s 
above (Lognonné et  al. (2006) and see Fig.  3c), the vertical phase velocity of acoustic 
gravity waves, which are dispersive, is always less (see Fig. 1 and Eq. (3) and neglect the 
approximation of the Eckhart coefficient). This means acoustic waves reach the upper mes-
osphere and lower thermosphere, UMLT, and therefore the lower part of the ionosphere ca. 
5–10 min after their generation (see Fig. 3c and 4c). For acoustic-gravity waves, it takes 
longer.

In addition to gravity waves, acoustic gravity waves and acoustic waves, there are also 
some special cases of waves that are mentioned in connection with natural hazards. These 
include lamb waves and shock waves. Like sound waves, shock waves and Lamb waves are 
longitudinal waves. The latter propagate purely horizontally at the speed of sound, with 
the air particles oscillating horizontally. Their vertical wave number is imaginary, so their 
propagation is attenuated in the vertical direction. Accordingly, their pressure amplitude is 
highest at the ground (Gossard and Hooke (1975)). A shock wave is created when the gen-
erating body moves with constant acceleration through a comparatively stationary medium. 
The generating body causes the gas to compress and thus the temperature to rise. This also 
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Fig. 2   The vertical wavelength and phase speed decrease with increasing intrinsic period. The assumptions 
are the same as for Fig. 1. Additionally, the scale height is assumed to be 13 km (according to CIRA for a 
height of ca. 90 km). In this example, waves with an intrinsic period equal to 2�

N
 reach 90 km height after ca. 

5  min, waves with an intrinsic period equal to 30 min need more than 8 h
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increases the speed of the waves (and thus the local speed of sound), and waves generated 
later catch up with those generated earlier. Eventually, a thin shock front is formed within 
which one or more physical properties, such as velocity, change abruptly (Billingham and 
King (2000)).

The ionized atmosphere, the ionosphere, is often described as the area between ca. 60 
and 800  km altitude, with the D-layer at 60–90  km, the E-layer at 90–120  km and the 
F-layer at 120–800  km. The maximum ionized density (referred to as the peak of the 
F2-layer) usually lies between 250 and 400 km altitude. When atmospheric waves gener-
ated in the neutral atmosphere reach ionospheric altitudes, they can couple to and modulate 
ionospheric plasma. Plasma-neutral coupling between the ionosphere and neutral atmos-
phere is complicated by the fact that, in the ionosphere, electrons and ions are subject to 
electromagnetic forces in addition to the forces governing the neutral atmosphere.

The ease with which charged particles can move through the ionosphere is described 
by the ionospheric conductivity, which varies with altitude and is highly anisotropic with 
respect to the direction of Earth’s magnetic field. The parallel conductivity, �∥ , affects mag-
netic field-aligned currents. The Pedersen conductivity, �P , affects currents in the direction 

Fig. 3   Ray tracing results for the infrasound waves started from the surface with zenith angle 5◦ . a Ray 
trajectories in vertical cross section. b Attenuation A as a function of height (relative to initial value) calcu-
lated by the analytic model assuming a wave frequency of 0.01, 0.05, 0.1, 1, 10 and 100 Hz and based on 
the formulas presented by Bass et al. (1984) and Chum et al. (2012) c Propagation time and sound speed cS 
as a function of height. d Ratio of air particle oscillation velocities w at a specific height related to the near 
surface value w0 . The solid line represents the unrealistic lossless propagation for which the quantity cS�w2 
is conserved, where � is the background air density
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of the component of the electric field which is perpendicular to the magnetic field ( ⃗E
⟂
 ). 

The Hall conductivity, �H , affects currents perpendicular to both the electric and magnetic 
field. Typical values of these conductivities in the mid-latitude ionosphere are displayed in 
Fig. 5a.

The large ionospheric parallel conductivity allows charges to quickly respond to 
magnetic field-aligned forces by flowing along the magnetic field. However, in the per-
pendicular direction, their behaviour is highly dependent on the electron and ion gyro-
frequencies as well as the electron-neutral and ion-neutral collision frequencies, which 
change with altitude, as shown in Fig. 5b (inspired by figure 4.10 of Baumjohann and 
Treumann (2012)). Below the so-called dynamo layer, the collision frequencies are 
greater than the gyrofrequencies for both species, meaning that charges cannot com-
plete one gyration around the magnetic field before colliding with a neutral particle. 
Here, ions and electrons move with the neutral atmosphere, regardless of the direction 
of the magnetic field. At the base of the dynamo layer, the electron gyrofrequency is 
greater than the electron-neutral collision frequency but the ion gyrofrequency is less 
than the ion-neutral collision frequency, meaning that electrons are magnetized and drift 
according to electromagnetic forces, but ions move with the neutrals. This differential 
electron/ion motion results in a Hall current perpendicular to the electric and magnetic 

Fig. 4   Ray tracing results for the infrasound waves of frequency 0.05 Hz started with zenith angles 5◦ , 15◦ , 
25◦ , 35◦ , 45◦ and 55◦ . aRay trajectories in vertical cross section. b Evolution of the zenith angle � with 
height c Propagation time as a function of height. d Ratio of air particle oscillation velocities w at a specific 
height related to the near surface value w0 . Solid line represents the unrealistic lossless propagation for 
which the quantity cS�w2 is conserved, where � is the background air density
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fields. Higher in the dynamo layer, where the ion-neutral collision frequency becomes 
comparable to the ion gyrofrequency, ions will move in the direction of the electric field 
and therefore carry a Pedersen current, while electrons still carry a Hall current. Above 
this layer, both electrons and ions are magnetized, so their motion is mainly restricted 
along the magnetic field. As a result, different magnetic field configurations can lead to 
variations in the effectiveness of coupling between neutral atmosphere and ionospheric 
waves (Bagiya et al. (2019), Rolland et al. (2011), Rolland et al. (2013)).

Travelling ionospheric disturbances (TIDs), which are most often measured as modu-
lations in the ionospheric total electron content (TEC), an integrated quantity which 
therefore most closely traces the density of the peak of the ionospheric F-layer, can be 
formed through either direct plasma-neutral collisions which move plasma along field 
lines, or they can have their origin in the dynamo region when electric fields arise which 
can then map along the magnetic field to affect plasma at different altitudes and in the 

Fig. 5   a Typical values of the Pedersen ( �P ), Hall ( �H ) and parallel ( �∥ ) conductivity in the mid-latitude 
daytime ionosphere. b Representative mid-latitude profiles of ionospheric gyrofrequencies (ion gyrofre-
quency �gi , electron gyrofrequency �ge ) and plasma-neutral collisional frequencies (ion neutral frequency 
�in , electron neutral frequency �en ), inspired by figure 4.10 of Baumjohann and Treumann (2012)
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conjugate hemisphere. TIDs are commonly categorized according to their wavelengths 
and periods. Medium-scale TIDs (horizontal wavelengths of a few hundreds of kilo-
metres and typical periods from approximately 10 to 60 min) are usually thought to be 
related to gravity waves associated with lower atmospheric sources (Hocke (1996)). In 
contrast, large-scale TIDs (horizontal wavelengths of a few thousand kilometres and 
typical periods from one to several hours) are primarily associated with auroral heating 
during periods of intense geomagnetic activity (e.g., Jonah et  al. (2018), Lyons et  al. 
(2019)). Simultaneous observations of ionospheric perturbations at magnetically con-
jugated points have also been reported (e.g., Huba et al. (2015), Martinis et al. (2011)).

Not all atmospheric waves that are excited in the lower part of the atmosphere also 
reach heights above 80 km. One of the key aspects of neutral wave propagation in the 
atmosphere is its strong dependence on background conditions. As such, both grav-
ity and acoustic waves increase in amplitude with height as the atmospheric density 
decreases due to energy conservation (Hines (1960)). This amplification factor is esti-
mated to be around 104 in the lower thermosphere (approximately 150  km) and can 
reach up to 105−6 at peak ionospheric density heights (Blanc et  al. (2009), Lognonné 
et al. (2006)). On the other hand, damping effects are inversely proportional to atmos-
pheric density, meaning that wave energy dissipation becomes stronger at higher alti-
tudes. Energy damping is more pronounced for higher frequency waves, indicating that 
the atmosphere acts as a low-pass filter (see Fig. 3b). For gravity waves, these effects 
are only important in the thermosphere. At the OH*-airglow layer height filtering by 
the background wind is more important. The momentum and energy of waves in the 
thermosphere decrease mainly due to the kinematic viscosity and thermal conductivity 
losses, respectively (Vadas et al. (2005)).

Figure 3a shows ray trajectories of infrasound waves originating at the ground with a 
zenith angle �=5◦ , which is a typical angle for infrasound waves generated by coherent 
seismic waves outside the epicentre region. The quasi-vertical orientation of infrasound 
waves is due to supersonic speeds cG of the seismic waves: the infrasound waves are 
generated with an initial zenith angle � given by sin(�) = cS0∕cG , where cS0 is the sound 
speed just above the ground surface (Rolland et al. (2011); see figure 1 in Chum et al. 
(2016b)). In Fig. 4a the trajectories are shown for different zenith angles, which is the 
usual situation close to the epicentre, and a frequency of 0.05 Hz. This is a typical fre-
quency of infrasound generated by seismic waves (e.g. Haralambous et  al. (2023)). It 
becomes clear that the altitude of F layer is only reached by waves with initial zenith 
angles smaller than about 25◦ (green line). In addition, waves starting at higher zenith 
angles are more attenuated at the same height (if they reach it) due to longer propaga-
tion in a medium with high kinematic viscosity. It should also be noted that the energy 
flux decreases due to geometrical spreading: if the infrasound trajectories diverge, i.e. 
the area traversed by them becomes larger, the energy flux must become smaller due to 
energy conservation.

3 � Atmospheric Waves in the Neutral and Ionized Atmosphere Caused 
by Natural Hazards

Natural hazards are known to excite different types of neutral waves (i.e., waves in the 
neutral atmosphere), with a specific relationship between the generating phenomenon and 
the associated neutral waves. Acoustic waves are typically associated with earthquakes, 
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explosive volcanic eruptions (Astafyeva (2019)) and anthropogenic explosions (Jonah et al. 
(2021)). Acoustic waves generated by high-energy events, such those in the near-field of 
large earthquakes, can evolve into N-shaped shock waves due to nonlinear effects. (Acous-
tic) gravity waves are typically generated by tsunamis, volcanic eruptions, and extreme 
tropospheric weather events (Astafyeva (2019)). The following is an overview of measure-
ments of such waves associated with natural hazards and their modelling. This section is 
divided into neutral and ionised atmosphere studies but first the underlying measurements 
techniques are briefly introduced.

3.1 � Detection Techniques

As mentioned above, the focus of this manuscript is on measurements at 80 km height and 
above. We address the non-ionized, i.e. the neutral atmosphere and the ionized atmosphere. 
Both cannot be clearly separated, they co-exist. Up to low earth orbit (about 500 km), the 
neutral density is typically several orders of magnitude higher than the ion density. There-
fore, waves at the same altitude can be detected by measurements of the neutral atmos-
phere and the ionosphere. For the following literature study, we mainly focus on the results 
achieved with specific techniques. We choose primarily OH* airglow measurements for 
the neutral atmosphere and GNSS, Doppler and ionosonde measurements for the ionized 
atmosphere.

OH* airglow measures the neutral atmosphere with a centroid height of ca. 85–87 km 
(e.g., Shepherd et al. (2006); von Savigny (2015); Wüst et al. (2017b, 2020)). In contrast 
to the red airglow, which is due to atomic oxygen showing a peak altitude around 250 km, 
the OH* airglow layer and also the other airglow layers between 90 km and 100 km are 
narrow (ca. 6–9 km full width at half maximum for OH*) and therefore better suited for the 
investigation of atmospheric waves, at least when it comes to measurement techniques that 
integrate vertically. The neutral atmosphere around 90 km can be investigated not only by 
airglow-based techniques, but also by active remote-sensing instruments such as specific 
radar or lidar systems. However, those techniques integrate in most cases over one hour 
(e.g., Rauthe et al. (2008); Wüst et al. (2018) and citations therein) to reach a sufficient sig-
nal-to-noise ratio. Using passive remote sensing of OH* airglow from the ground, informa-
tion about this altitude range has been collected for about 100 years (Meinel (1950)). The 
technical development has made it possible to measure with a temporal resolution of less 
than 1 s for about 10–15 years now (e.g., Hannawald et al. (2016), Sedlak et al. (2016)). 
With this temporal resolution, at least parts of the infrasound range (frequencies lower 
than 16 Hz) can be addressed. In the case of observing OH* airglow transitions for which 
local thermodynamic equilibrium (LTE) holds, not only the intensity (which is defined dif-
ferently by different authors and is therefore an ambiguous term) of the transition can be 
measured also the kinetic temperature can be estimated. The signal is always integrated 
vertically over the OH*-airglow layer when measured by a ground-based instrument look-
ing into the sky. The longer the vertical wavelengths—and high-frequency gravity waves 
as well as mainly vertically propagating infrasound are associated with comparatively long 
vertical wavelengths—the less important this averaging effect becomes. An overview of 
OH*-airglow measurements and their use for investigating atmospheric dynamics can be 
found in Wüst et al. (2023).

In the ionosphere, one of the most common measurements used to detect TIDs is TEC 
maps derived from GNSS measurements. Since the ionospheric density typically has a dis-
tinct peak at around 200–400 km, TEC measurements are typically mapped to an altitude 
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representative of this peak height. Moreover, due to the slant nature of GNSS measure-
ments, a single ground-based GNSS receiver can sense points that are as far as 1,000 km 
from the receiver location. Other traditional instruments used to probe the ionosphere 
include ionosondes and Continuous Doppler Sounding Systems (CDSS). Ionosondes are 
used to retrieve electron density profiles from the E layer up to the peak of the plasma den-
sity (usually the peak of the F2 layer). However, several phenomena can disrupt ionosonde 
profile retrieval, such as spread-F (equatorial plasma bubbles) and sporadic E layers. CDSS 
is a system composed of a high frequency transmitter and receiver that works at a constant 
frequency. By continuously emitting at a constant frequency, it is possible to determine the 
plasma movement at the height of the reflecting layer by studying the induced Doppler fre-
quency shift. By transmitting at various frequencies, CDSS can study different layers of the 
ionosphere, as there is a direct relationship between the signal frequency and the plasma 
density of the reflecting layer.

3.2 � Neutral Atmosphere

3.2.1 � Infrasound or acoustic gravity waves in OH*‑airglow measurements

The idea that natural hazards such as tsunamis produce atmospheric waves and that these 
can propagate to heights of over 80  km was discussed and investigated as early as the 
1970s (e.g., Hines (1972), Najita (1976)). However, due to technical developments, the 
period range of infrasound has only been accessible in OH* airglow measurements, at 
least partially, since approximately 15 years ago. Waves with periods close to the Brunt-
Väisälä frequency, which are typical for acoustic gravity waves, have been observed for 
several decades. Krassovsky (1972) was probably one of the first to report the observation 
of fluctuations with a period of 5–10 min in OH* intensity and temperature measurements. 
Although that article repeatedly refers to “acoustic-gravitational waves”, from today’s point 
of view these are acoustic gravity waves, or at least high-frequency gravity waves.

One of the first statistical analyses of fluctuations with a duration of 2.5 to 10 min 
appeared a good 10 years ago: Pilger et al. (2013a) analysed 40 months of ground-based 
OH* temperature measurements at four different European sites and found more than 
13,000 significant fluctuations in this period range (Figs. 7 and 8 of their publication show 
the corresponding histograms). Bittner et  al. (2010) revisited the idea of infrasound air-
glow measurements and the aspect of early warning of tsunamis and other geo-hazards and 
showed that indications of periodic fluctuations in the infrasound range can be detected in 
ground-based spectrometer measurements. The authors speculated that the observed sig-
nals were due to meteorological and orographic sources. Pilger et  al. (2013b) presented 
similar results regarding the sources, but also provided a corresponding detection algo-
rithm based on the application of different spectral analyses. To the best of our knowledge, 
Le Dû et  al. (2020) was the first to show a spatial signature with a period significantly 
smaller than the Brunt-Väisälä period and propagating at sound speed in OH* airglow 
imager measurements in a case study (Fig. 6). However, it is probably not due to a natural 
hazard.

While there are few fundamental publications on the observation of infrasound in gen-
eral or acoustic gravity waves induced by natural hazards in OH* airglow, modelling is 
more advanced. In his publication, Snively (2013) generally addresses convective tropo-
spheric sources, which generate acoustic waves in addition to concentric gravity waves. 
The author uses a numerical model to determine the characteristics of acoustic and gravity 
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waves observable in OH* airglow (integrated intensity and brightness-weighted tempera-
ture) and generated by idealised transient tropospheric updrafts.

Inchin et  al. (2020), Inchin et  al. (2022), and Inchin et  al. (2022) extended this mod-
elling further, using seismic wave propagation models as lower boundary conditions for 
the vertical velocity of surface motions. They simulated the hypothesized but unobserved 
response of the OH* airglow layer to the 2016 M7.8 Kaikoura earthquake in New Zealand 
(Inchin et al. (2022)), the 2011 Tohoku-Oki tsunami in Japan (Inchin et al. (2020)) as well 
as seven further tsunamis caused by earthquakes with a magnitude between 7.7 and 9.1 
(Inchin et al. (2022)).

For the Kaikoura earthquake, which is considered to belong to the most complex in-
land earthquakes, the strongest estimated infrasound-induced peak-to-peak perturbations 
reach ca. 18% relative to the background state in the vertically integrated volume emission 
rate of the OH(3-1) emission and ca. 5.8 K (3.2%) in the brightness weighted temperature. 
The infrasound exhibits periods of 30–45  s and vertical wavelengths of 7–11  km. Very 
valuable from an observer’s point of view is Fig. 9. It depicts the synthetic observations of 
airglow imaging systems (differing in zenith angle, temporal resolution and observed spe-
cies) showing the evolution of the earthquake-induced and ring-like infrasound structures.

Fig. 6   Shown is the propagation of a perturbation with a period of 5 s for a part of an OH* airglow image. 
The colour code refers the onset time of the perturbation. The red arrow depicts the direction of propaga-
tion. The horizontal speed of propagation is 430 m/s. Reprinted under CC-BY−4.0 license from Le Dû et al. 
(2020) ©2020, The Author(s)
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Inchin et al. (2020) and Inchin et al. (2022) focus on seaquakes. As bottom boundary 
conditions of the atmospheric model ocean surface velocities are taken. While Inchin et al. 
(2020) make the assumption that the ocean compressibility is negligible and therefore the 
ocean surface height changes according to the displacement of the ocean bottom, Inchin 
et al. (2022) use a tsunami model. Inchin et al. (2020) report three types of co-seismic per-
turbations of airglow. The first one is due to shock waves with dominant periods of ca. 60 s 
and vertical wavelengths of 17 km, which lead to a perturbation of up to 50% in the OH* 
airglow integrated volume emission rate and 15% in the OH(3-1) brightness weighted tem-
perature. Second, they observe a quasi-permanent depletion in the volume emission rate; 
the authors speculate that this effect might last at least some minutes. Finally, they report 
airglow perturbations related to Rayleigh waves (acoustic waves that travel along the sur-
face of solids) with periods of ca. 50 s leading to small perturbations of 1–5% in OH(3-1) 
integrated volume emission rate. Inchin et al. (2022) report that tsunamis causing an ocean 
surface displacement of 10 cm and higher result in acoustic and gravity waves, which lead 
to fluctuations in the OH(3-1) integrated volume emission rate of 1–17 % (see table 3 of 
the respective publication).

3.2.2 � Infrasound or acoustic gravity waves in other measurements of the neutral 
atmosphere

Although the focus here is on the altitude range above 80  km, specifically on OH* air-
glow measurements, it should be noted that acoustic gravity waves and infrasound can also 
be detected at lower altitudes or by other measurement methods (stratospheric balloons: 
e.g., Garcia et al. (2022), Bowman et al. (2019), Bowman and Albert (2018), mesospheric 
radar: e.g., Belova et  al. (2023), astronomical measurements of the airglow: Franzen 
et  al. (2017)). In particular, following the 2022 Hunga-Tonga Hunga-Ha’apai (hereafter 

Fig. 7   While P and S waves are body waves, Rayleigh and Love waves are surface waves. P waves are 
longitudinal waves, S waves and Love waves are transverse ones. (LukeTriton, Steven Earle, Mario Baić, 
Lovorka Librić, Danijela Jurić Kaćunić https://​upload.​wikim​edia.​org/​wikip​edia/​commo​ns/0/​07/​Overv​iew_​
Seism​ic_​Waves.​jpg, Meho Saa Kovaević, CC BY-SA 4.0 https://​creat​iveco​mmons.​org/​licen​ses/​by-​sa/4.0 via 
Wikimedia Commons)

https://upload.wikimedia.org/wikipedia/commons/0/07/Overview_Seismic_Waves.jpg
https://upload.wikimedia.org/wikipedia/commons/0/07/Overview_Seismic_Waves.jpg
https://creativecommons.org/licenses/by-sa/4.0
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Hunga-Tonga) volcanic eruption, Wright et  al. (2022) reported evidence of atmospheric 
waves from the troposphere through to the edge of space by analysing radiance data from 
various satellites. These included 10.3 � m emissions corresponding to tropospheric bright-
ness temperatures as measured by the Geostationary Operational Environmental Satel-
lites (GOES) (Schmit et al. (2017)), and 4.3 � m and 15 � m emissions associated with CO2 
absorption bands corresponding to stratospheric brightness temperatures from the Atmos-
pheric Infrared Sounder (AIRS) on NASA’s Aqua satellite and the Infrared Atmospheric 
Sounding Interferometer (IASI) on ESA’s MetOp satellites (Hoffmann et al. (2014)).

Evidence of perturbations in the neutral atmosphere following the 2022 Hunga-Tonga 
volcanic eruption was also observable at thermospheric altitudes. Vadas et  al. (2023) 
showed observations of large-scale thermospheric wind changes associated with gravity 
waves excited by the eruption. These measurements were taken by the Michelson Interfer-
ometer for Global High-Resolution Thermospheric Imaging (MIGHTI) on the Ionospheric 
Connection Explorer (ICON) satellite (Immel et  al. (2018), Immel et  al. (2023)), which 
captures horizontal neutral wind profiles between ∼90–300  km. Li et  al. (2023) showed 
neutral density perturbations following the eruption using in  situ thermospheric density 
measurements from accelerometers onboard the Gravity Recovery and Climate Experiment 
(GRACE, Tapley et  al. (2004)), Gravity Recovery and Climate Experiment Follow-On 
(GRACE-FO, Landerer et al. (2020)), and Swarm constellations (Olsen et al. (2013)).

Fig. 8   Shown is the vertical component of the ground surface velocity vz measured in Panská Ves, Czech 
Republic on 6 February 2023 after the M = 7.7 Turkey earthquake (a). The vertical plasma velocity wp and 
the air particle oscillation velocity wz as they were derived from the Doppler measurements at two different 
frequencies are displayed in (b) and (c). The first pulse (around 10:29:40 UT in vz , dark grey rectangle) cor-
responds to P seismic waves, the second one (around 10:33:32 UT in vz , light grey rectangle) to S seismic 
waves. The variations with a period about 20 s are due to infrasound. The long-term variations (seen mainly 
in (c)) are due to TIDs, which are not related to the earthquake
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3.3 � Ionospheric Signatures of Waves Caused by Natural Hazards

Thanks to the wide availability of sensing techniques and instruments, the ionosphere has 
been extensively studied to identify waves induced by different natural hazards. Over the 
past appr. 60 years, numerous studies have investigated TIDs that highlight the underly-
ing neutral waves. Other ionospheric phenomena associated with natural hazards, such as 
ionospheric holes (e.g., Astafyeva et al. (2013), Aa et al. (2022)) and changes to large-scale 
ionospheric structure and dynamics (e.g., Harding et al. (2022), Aa et al. (2022)), remain 
less well understood and characterized.

Earthquakes are known to generate different types of waves at the ground, which can be 
divided into body and surface waves. Surface waves include among others Rayleigh waves, 
while body waves are subdivided into primary (P) and secondary (S) waves (see Fig. 7). 
Earthquake-induced atmospheric waves have different sources such as co-seismic crustal 
displacement and Rayleigh seismic waves (Astafyeva et al. (2009), Astafyeva (2019)). The 
ionospheric signature caused by crustal displacement consists of acoustic waves that can 
be detected 7–9 min after the main shock, and are the result of ground shaking above the 
epicentre (Afraimovich et al. (2001), Astafyeva and Heki (2009), Heki and Ping (2005), 
Zettergren and Snively (2015), Inchin et al. (2020c), Inchin et al. (2021)). Rayleigh waves, 
which propagate along the Earth’s surface, also generate acoustic waves as they travel, lead-
ing to detection in the ionosphere 7–9 min after their passage (Astafyeva et al. (2009), Kak-
inami et al. (2013), Haralambous et al. (2023), Alfonsi et al. (2024), Rolland et al. (2011)). 
For strong earthquakes, ionospheric signatures of P and S seismic waves can be observed 
at distances larger than about 2,000 km from the epicentre (e.g., Haralambous et al. (2023), 
Chum et al. (2012)) as demonstrated in Fig. 8, which shows the high-frequency (HF) Dop-
pler observations of P, S, and Rayleigh wave ionospheric signatures caused by the 2023 
earthquake in Turkey. Co-seismic crustal displacement and Rayleigh seismic waves typi-
cally produce N-shaped acoustic shock waves. However, Rayleigh waves are defined by 
linear propagation, whereas crustal displacement induced atmospheric waves may exhibit 
nonlinear effects (Inchin et al. (2020c), Inchin et al. (2021)).

The first detection of co-seismic ionospheric disturbances (CSIDs) was by Davies and 
Baker (1965), who used a Doppler sounder to detect the ionospheric signature of the Mw 
9.2 Alaska earthquake of 1964. This earthquake was later detected in ionosonde measure-
ments by Leonard and Barnes (1965). Since then, many studies have used Doppler sound-
ers and ionosondes to investigate CSIDs (e.g., Maruyama et al. (2012), Maruyama et al. 
(2016), Chum et al. (2016), Chum et al. (2016b), Haralambous et al. (2023)). It was only 
30 years later, with the advent of satellite-based navigation, that CSIDs were detected 
through their TEC signatures. Specifically, Calais and Minster (1995) were the first to use 
GNSS-derived TEC to study the Mw 6.7 Northridge earthquake. Since that first study, 
TEC has become the most widely used technique for studying earthquakes through their 
impact on the ionosphere, largely due to the extensive availability and spatial coverage of 
GNSS receivers (currently, there are tens of thousands of GNSS receivers worldwide, or 
even billions when considering smartphones). There is a fundamental difference between 
HF Doppler observations and TEC observations. HF Doppler sounding provides informa-
tion on wave amplitude and phase at specific heights, which can be determined from nearby 
ionospheric sounders (ionograms), whereas GNSS TEC measurements provide integrated 
information on electron density variations along the entire line of sight between the GNSS 
receiver and the GNSS satellite, and additional assumptions about the height of the pertur-
bation are required.
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The near-field ionospheric response shows TIDs propagating with speeds of around 
600–1000 m/s, depending on the distance from the epicentre, and is attributed to acoustic-
gravity waves from the piston-like motion of the crust. Figure 9 shows an example of such 
a near-field response to the Myanmar Mw 7.7 earthquake on March 28, 2025, where a 
4-minute N-shaped TID is visible in dTEC measurements propagating at around 850 m/s 
away from the earthquake epicentre. The Rayleigh wave ionospheric signature, on the 
other hand, travels at the speed of the generating seismic wave, approximately 3–4 km/s. 
Typically, Rayleigh wave signatures are detectable at greater distances from the epicentre. 
Sometimes, P and S waves signatures can also be detected.

The ionospheric signatures of earthquakes usually have periods shorter than approxi-
mately 10 min and can be detected up to distances exceeding 9,000 km from the epicen-
tre (Chum et  al. (2012)). They may also provide information on the earthquake’s focal 
mechanism (deformation in the source region), fault rupture propagation, and tsunamigenic 
potential (Astafyeva (2019)). Additionally, some studies have shown a linear relationship 
between earthquake magnitude and the strength of the ionospheric signature (Astafyeva 
et al. (2013), Cahyadi and Heki (2015)).

As summarized by Astafyeva (2019), some open questions remain regarding the direct 
relationship between wave shape and the focal mechanism. Moreover, for TEC studies, the 
mutual orientation of the GNSS receiver-satellite line of sight, the wave vector, and the mag-
netic field direction significantly affect the detected amplitude (Bagiya et al. (2019), Rolland 
et al. (2011), Rolland et al. (2013)). In addition, the detected amplitude is also influenced by 
the fault rupture propagation, as it can cause constructive or destructive wave interference 
(Bagiya et al. (2023), Inchin et al. (2020c), Inchin et al. (2021)). If the initial amplitude is 
large enough, nonlinear effects play an important role on wave propagation. In such a case, 

Fig. 9   Shown are the detrended differential total electron content (dTEC) perturbations derived from the 
GNSS satellites C01, J02, E02 and C38, and their ionospheric piercing point (IPP) trajectories, for the 
Myanmar earthquake on 28 March 2025. Panel a is a time-distance plot, with distance denoting the great-
circle distance from the earthquake’s epicentre. The crosses mark the times of the respective maxima; the 
gradient of their linear fit yields a propagation speed of 834 m/s. This value is consistent with the typical 
speed of the near-field ionospheric response to earthquakes. The vertical line indicates the time of the earth-
quake. Panel b shows the ground tracks of the four receiver-satellite links. The location of the GNSS station 
(in Dhaka, Bangladesh) is provided by the cyan diamond, and the green star indicates the epicentre location
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at altitudes where the oscillation velocity becomes comparable to the sound speed and/or the 
density perturbations become comparable to the background density (usually at high alti-
tudes where the wave amplitude increases due to the decrease in air density), the shape and 
the spectral content of the original wave packet are changed due to nonlinear effects; this 
often leads to a formation of an N-shape perturbation (Chum et al. (2016, 2018)).

Similarly to earthquakes, the sea surface displacement caused by the propagation of tsu-
namis excites internal gravity waves that propagate obliquely to ionospheric heights (Inchin 
et al. (2020)). Due to the amplification of atmospheric waves, a tsunami wave that is even 
only a few centimetres tall can induce detectable signatures at ionospheric heights. The 
typical delay for these atmospheric waves to reach the ionosphere is around 45–60 min, 
which is probably too long for most early warning purposes. They are therefore not dis-
cussed further in this manuscript.

Volcanic eruptions can also excite gravity and acoustic waves (Astafyeva (2019)). Vol-
canic eruptions are generally classified as either effusive, characterized by the emission 
of hot lava, or explosive, which involves the abrupt release of large amounts of ash and 
gases. It is explosive eruptions that typically produce discernible atmospheric disturbances, 
including infrasound and gravity waves that can reach ionospheric heights. The pressure 
disturbances caused by explosive volcanic eruptions can be detected at ionospheric alti-
tudes approximately 10–45 min after the eruption onset, and they often appear as quasi-
periodic oscillations. Before the advent of TEC measurements, the first detection of the 
ionospheric signatures were performed through ionosondes (Igarashi et  al. (1994)) or 
Doppler sounders (Liu et al. (1982), Cheng and Huang (1992)) for the 1991 Pinatubo and 
1980 Mount Saint Helen eruptions. The first TEC-based detection was conducted by Heki 
(2006), who studied the ionospheric response to the 1 September 2001 eruption of the 
Asama volcano, identifying signatures of shock-acoustic waves approximately 12 min after 
the eruption onset, travelling at a speed of approximately 1.1  km/s. Subsequent studies 
investigated other eruptions, such as the 13 July 2003 Soufrière Hills volcano (Dautermann 
et al. (2009), Dautermann et al. (2009)), the 13 February 2014 Kelud volcanic explosion 
(Nakashima et al. (2016)), the April 2015 Calbuco eruptions (Liu et al. (2017), Shults et al. 
(2016), Tyska et al. (2024)), and the 10 April 2023 Shiveluch volcano (Riabova and Shali-
mov (2024)). On 15 January 2022, the strongest volcanic eruption since the 1991 Pina-
tubo event occurred at the island of Hunga-Tonga in the Pacific Ocean. This extreme event 
generated a wide range of atmospheric disturbances that have been extensively studied by 
the scientific community (Cahyadi et al. (2024), Liu et al. (2023), Themens et al. (2022), 
Maletckii and Astafyeva (2022), Ravanelli et al. (2023), Madonia et al. (2023), Figueiredo 
et al. (2023), Astafyeva et al. (2022a), Verhulst et al. (2022), Wright et al. (2022), Carter 
et al. (2023), Chum et al. (2023)). Ionospheric disturbances were also detected in the con-
jugate hemisphere following this event, likely due to magnetic-field aligned mapping of 
ionospheric electric fields generated by the neutral-wind driven dynamo (Gasque et  al. 
(2022), Yamazaki et al. (2022), Iyemori et al. (2022), Shinbori et al. (2022)). There are still 
open questions regarding the different mechanisms responsible for generating these atmos-
pheric waves, as the processes involved are not yet fully understood.

In addition to TIDs produced via the direct coupling between the neutral atmosphere 
and ionosphere, strong earthquakes and volcanic eruptions have been associated with vari-
ous other ionospheric signatures. One of these, ionospheric depletions or ‘holes’ some-
times observed over the epicentre, has been suggested by Kamogawa et al. (2016) as an 
additional tool for the detection of tsunamis generated by earthquakes or volcanic erup-
tions. Ionospheric holes were first reported in the aftermath of the 2011 Tohoku under-
water earthquake, when a plasma density depletion of several TEC units formed over the 
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earthquake’s epicentre and persisted for nearly an hour (Saito et al. (2011), Tsugawa et al. 
(2011)). Kakinami et al. (2012) reported ionospheric depletions over the underwater Chil-
ean (2010) and Sumatran (2004) earthquakes, with both depletions persisting for 10 s of 
minutes. Initially, it was suggested that these ionospheric depletions occur only after under-
sea earthquakes that have associated tsunamis (Kakinami et  al. (2012)). However, sub-
sequent studies revealed evidence that this phenomenon can also occur following major 
inland earthquakes as well (Kamogawa et al. (2015), Sun et al. (2016)). Evidence suggests 
that the depth and duration of the depletion roughly scales with the earthquake’s magnitude 
(Astafyeva et al. (2013)). Simulation studies suggest that nonlinear acoustic waves interact-
ing with ionospheric plasma likely played a dominant role in depleting ionospheric plasma 
following the 2011 Tohoku earthquake (Shinagawa et al. (2013), Zettergren et al. (2017), 
Zettergren and Snively (2019)). Following the Hunga-Tonga eruption, an ionospheric hole 
was reported for the first time in connection with a volcanic eruption. Observations in the 
eruption’s near-field showed a deep plasma density depletion ( > 10 TEC units), which 
began forming within 45 min after the eruption (Aa et al. (2022), Astafyeva et al. (2022), 
Sun et al. (2022), He et al. (2023), Choi et al. (2023)). Compared to all ionospheric deple-
tions observed after earthquakes to date, the depletion following the 2022 Tonga volcanic 
eruption was deeper, more spatially extensive, and longer-lasting (Aa et al. (2022); Asta-
fyeva et al. (2022)).

4 � Use of Atmospheric Waves for Early Warning Systems

In the context of natural hazards, every second counts, making real-time detection and 
characterization algorithms crucial. Once the data basis has been established, the challenge 
is to differentiate between atmospheric waves and/or TIDs generated by natural hazards 
and those that exist for other reasons. So, the algorithms do not only have to operate in real 
time or near real time (NRT), they also have to be robust against false alarms or missed 
detections. Achieving the right balance between accuracy and processing speed is essen-
tial. Moreover, the best approach probably involves using multi-instrument methodologies, 
combining different measurements, models, and expertise across disciplines.

Research in the context of early warning systems (EWS) is more advanced in the iono-
sphere than in the neutral part of the UMLT. This is despite the fact that the latter is closer 
to the source and therefore the propagation of the atmospheric waves emitted by natural 
hazards is less influenced by the respective atmospheric background. The reason is rather 
the availability of suitable measurement data. In particular, GNSS satellites provide nearly 
global coverage.

4.1 � Early Warning System: Current Progress and Ideal State

In order to construct an early warning system, fast atmospheric waves (infrasound or 
acoustic gravity waves) and/or their corresponding TIDs generated by natural hazards need 
to be detected and appropriately characterised.

As mentioned above, the kind of data coverage that is possible with GNSS satellites 
in the ionosphere is currently not available for any other measurement system addressing 
higher altitudes. Although OH* airglow measurements from satellites are possible and 
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have been done, a single or a few satellites are not helpful here; it would have to be a con-
stellation of satellites with vast spatial coverage.

Concerning TID detection in NRT, a system capable of providing reliable dTEC data in 
real time is essential. Here, one must remember that atmospheric signatures have a natu-
ral delay relative to the originating source as neutral waves have to the respective heights 
to be detected. As a result, the concept of “real time” in ionospheric studies differs from 
ground-based techniques measuring surface variables. Currently, there is no strict standard 
definition for NRT in this context, as different neutral waves exhibit varying delays. At 
present, the NASA-JPL GUARDIAN system is the only system designed to provide such 
measurements for early warning purposes. As shown in Martire et  al. (2022), GUARD-
IAN operates with TEC data from 70 GNSS receivers located over the so-called ring of 
fire. While GUARDIAN lacks automated detection and characterization modules, these 
are planned for future implementation. Other proposed NRT approaches and observables 
include VARION (Savastano et  al. (2017), Savastano et  al. (2019)), NeQuick calibrated 
GFLC (Guerra et  al. (2024)), and the RTCM NTRIP-based technique by Maletckii and 
Astafyeva (2021). Savastano et al. (2017) demonstrated that VARION’s NRT observables 
perform comparably to post-processed slant products. Guerra et al. (2024) introduced an 
observable that projects slant TEC to the vertical with minimal error, while Maletckii and 
Astafyeva (2021) noted that filtering or detrending TEC increases NRT delay and induces 
boundary errors. To address this, they considered TEC derivative time series.

After establishing available NRT observables and systems, the next focus is the autono-
mous identification of fast atmospheric waves and/or TIDs generated by natural hazards.

As pointed out in the former section, there only exist some case studies for the OH* 
airglow. For the ionosphere, several detection methods have already been employed, 
ranging from deep learning to more traditional techniques such threshold or statistical 
approaches. They could also serve, at least in part, as a suggestion for future airglow 
detection techniques. Yang et al. (2017) developed the first method for detecting multi-
ple MSTIDs in differential TEC (dTEC) measurements from the GEONET network in 
Japan. Yang and Moreno et al. (2019) demonstrated the technique’s ability to detect var-
ious superimposed TIDs, including those following the 2011 Tohoku-Oki earthquake. 
Lin (2022) introduced a method using generalized two-dimensional principal compo-
nent analysis that detected a weak 11 cm tsunami. The advent of machine learning has 
led to the testing of new approaches, such as the random forest method by Brissaud and 
Astafyeva (2022), which detects co-seismic TIDs, picks arrival times, and associates 
detections across different satellites in NRT. Luhrmann et  al. (2022) applied a simi-
lar technique but used long short-term memory (LSTM)-based anomaly detection. Fuso 
et al. (2024) and Ravanelli et al. (2024) employed gradient boosting and convolutional 
neural networks, respectively, to differentiate between quiet conditions (noise) and 
earthquake signatures and to retrieve arrival times. Despite these advancements, none of 
these techniques have been implemented in real-time systems, only in post-processing.

Once a TID is identified, the next step is determining the onset time and source 
location. Various techniques have been applied to earthquakes, tsunamis, and volcanic 
eruptions. Source location studies typically involve visually identifying TID arrival 
times, but integrating machine learning models could improve automation and NRT 
applicability. Afraimovich et  al. (2006) were the first to propose a method for deter-
mining CSID speed and source from TEC measurements, followed by Kiryushkin and 
Afraimovich (2007), who applied a similar method to tsunami-induced TIDs. Subse-
quent studies (Liu et al. (2010), Liu et al. (2020), Lee et al. (2018), Tsai et al. (2011), 
Astafyeva and Shults (2019)) gave comparable results. Notably, Astafyeva et al. (2013) 
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used 1 Hz TEC data to locate the maximum crustal uplift caused by the Tohoku-Oki 
earthquake and tsunami and revealed the multi-segment structure of the seismic fault. 
As stronger earthquakes do not necessarily have epicentres coinciding with the maxi-
mum crustal uplift, their findings have crucial implications. Additionally, Astafyeva and 
Shults (2019) applied ray-tracing techniques to account for the vertical propagation of 
neutral waves. Knowing the precise magnitude and location of seafloor uplift is essen-
tial for reliable tsunami EWS. Maletckii and Astafyeva (2021) developed the first NRT 
1 Hz interferometry-based technique for detecting and characterizing TID induced by 
natural hazards and other sources, including solar flares, rocket launches, typhoons, and 
man-made explosions. In subsequent years, they adapted their algorithm for 30-second 
data (Maletckii and Astafyeva (2022), Maletckii et  al. (2023)), increasing delay times 
from 15 to 30 min, while also introducing a module that distinguishes between different 
sources using a TID dictionary (Maletckii and Astafyeva (2024)).

The final step in developing an accurate EWS is determining source parameters based 
on responses of the neutral or ionized atmosphere. The most commonly used parameter 
for evaluating earthquake strength is magnitude. Occhipinti et al. (2018) demonstrated 
that Rayleigh wave signatures detected by over-the-horizon radars and Doppler sounders 
could estimate earthquake magnitude with precision comparable to a single seismom-
eter. Ionospheric studies, however, offer unique insights into source characterization, 
particularly for large earthquakes where multiple faults are activated, and crustal dis-
placement is difficult to estimate until synthetic aperture radars provide data (typically 
with a three-day delay) or results from advanced source models are available. Addi-
tionally, estimating the tsunami potential based on seismic responses is challenging and 
often leads to false alarms, as earthquake magnitude is affected by crustal rigidity and 
fault size. The ionospheric response, in contrast, directly correlates with crustal dis-
placement. Astafyeva and Heki (2009) suggested that the spatial distribution of N- and 
inverted N-shapes could help deduce focal mechanisms, while Astafyeva et al. (2013) 
found a correlation between the amplitude and duration of negative N waves and crustal 
displacement. Kamogawa et al. (2016) aimed to estimate initial tsunami height using the 
amplitude of the near-field TEC depression rates, providing results within 20 min of the 
event. Manta et al. (2020) further refined this approach by focusing on displaced volume 
rather than uplift, revealing a strong correlation between their wave activity index and 
tsunami potential.

Finally, recent studies (Rakoto et al. (2018), Komjathy et al. (2016)) have demonstrated 
the ability to use coupled atmosphere–ionosphere models to derive tsunami wave height 
with centimetre-level precision, which is particularly useful for far-field events. GNSS 
receivers, being more widespread and cost-effective than buoys, offer a practical solution 
for future tsunami warning systems. Volcanic eruptions remain more complex, but Manta 
et  al. (2021) found that ionospheric response amplitudes for stronger eruptions correlate 
with the volcanic explosive index and plume height.

4.2 � Challenges and Requirements

The previous subsection looked at the current state of EWS and promising efforts. This 
subsection identifies the challenges. Due to the better data coverage, the challenges for the 
ionospheric part relate to data analysis and subsequent steps, whereas for OH* airglow 
measurements they cover a wider range.
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The ionosphere is a highly variable medium, influenced from both below and above. 
Ionospheric models can help to understand this variability; however, a number of phe-
nomena still leads to deviations from the expected state. A key aspect in estimating the 
amplitude of TIDs is understanding the background ionospheric conditions, particularly 
the electron density profile (EDP). Due to the coupling of the near-Earth environment with 
the solar wind, geomagnetic storms are known to induce both positive (increasing elec-
tron density) and negative (decreasing electron density) effects on the ionospheric density. 
Moreover, geomagnetic storms can trigger large-scale TIDs that propagate from auroral 
to equatorial latitudes and occasionally extend into the opposite hemisphere (Habarulema 
et al. (2015)). Since large-scale TIDs (LSTIDs) generally exhibit longer periods than those 
induced by natural hazards, filtering techniques should be employed with adequate precau-
tions to minimize the impact of these disturbances and the effects of filtering artefacts. 
In addition to geospace forcing, other types of disturbances in the ionosphere may hinder 
the identification and accurate characterization of medium-scale TIDs (MSTIDs) such as 
those produced by the solar terminator, which are similar to volcano and tsunami-induced 
MSTIDs. To reduce the likelihood of false alarms, a comprehensive understanding of 
MSTID climatology is essential, and an ionospheric EWS should be integrated into pre-
existing hazard monitoring frameworks.

The ionosphere may also react differently to natural hazards during the day and at 
night. For example, clear co-seismic signatures were detected in the ionosphere for the 
daytime M7.7 Turkey earthquake on 6 February 2023, whereas no significant response 
was observed in the ionosphere for the preceding M7.8 shock at night on the same day 
(Haralambous et al. (2023)). However, this result cannot be generalized as there are many 
observations of nighttime co-seismic disturbances in the ionosphere for other earthquakes. 
It should also be noted that the dynamics of the ionosphere is different for low, mid and 
high latitudes.

Another aspect is that the movement of Global Navigation Satellite System (GNSS) 
satellites introduces Doppler effects on the detected TID signal, particularly in the 
case of low-elevation satellites (Guerra et al. (2024)). One potential solution is the use 
of geostationary (GEO) satellites (Savastano et  al. (2019)), as their fixed ionospheric 
detection points eliminate the impact of ionospheric pierce point (IPP) movement. 
With the increase in space-based instruments, such as radio occultation measurements 
(Coïsson et al. (2015)), in situ electron density measurements (Verhulst et al. (2022)), 
new frontiers in the ionospheric detection of natural hazards will open (Komjathy et al. 
(2016)), as they will cover areas of the ionosphere that are not currently tracked, such as 
over oceans. Unlike TEC measurements, Doppler measurements are not subject to geo-
metrical and integration effects, as they can probe different heights and densities of the 
ionosphere by varying the frequency of the transmitted signal.

Finally, the background atmosphere influences natural hazard induced signatures 
not only in the ionosphere but also the neutral part of the UMLT. When determining 
the source of a neutral wave, the (horizontal) background wind velocity plays a critical 
role in the wave vertical propagation speed and its direction. While atmospheric mod-
els are typically used to account for this, the atmosphere’s inherent variability intro-
duces the potential for estimation errors. Additionally, when employing TEC measure-
ments, geometrical and integration effects can affect both the amplitude and timing of 
TID estimations. To address these issues, models that account for non-tectonic forc-
ing and the altitude of ionospheric disturbances may provide a solution (Bagiya et  al. 
(2019)). Nonetheless, the real-time use of such models is computationally demanding, 
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and considering the time-sensitive nature of EWS, these models must be computation-
ally efficient while maintaining a high degree of reliability.

The challenges of detecting atmospheric waves generated by natural hazards also 
exist for OH* airglow measurements. However, there is also a lack of suitable data here. 
So, first of all, the data basis needs to be enhanced. Otherwise, algorithms for the identi-
fication and characterization of atmospheric waves induced by natural hazards cannot be 
further developed and tested. In the following, some important aspects concerning the 
parameters derived by OH*-airglow measurements and the choice of the field of view of 
an airglow imager will be given (Fig. 10).

As the signal is averaged over the OH*-airglow layer for ground-based and spa-
ceborne nadir instruments, these measurements are not sensitive to all vertical wave-
lengths. The averaging depends on the thickness and form of the OH*-airglow layer 
(e.g., Swenson and Gardner (1998), Wüst et al. (2016)). At least the first shows some 
temporal variation (e.g., Shepherd et al. (2006), von Savigny (2015), Wüst et al. (2017b, 
2020)). Due to the residual circulation, which transports atomic oxygen needed for the 
formation of OH* vertically, the OH*-airglow layer is on average thinner in summer 
than in winter (by roughly 1–2 km for the Alpine region, see Fig. 11).

This is of interest when looking for infrasound with periods of ca. 25 s and less at 
least directly above a source (see Fig.  10). The longer the period, the less averaging 
effects due to the vertical extension of the OH*-airglow layer play a role. Slant propaga-
tion paths improve the situation. OH* measurements deliver airglow intensities. Based 
on calculations of the vertical averaging effect, Swenson and Gardner (1998) showed 
that it is not only sufficient but also preferable to work with the airglow intensity meas-
urements instead of the temperatures in this case. So, the extra step from intensity to 
temperature can and should be avoided.

As discussed above, in the gravity wave branch only acoustic gravity waves with an 
intrinsic period very near to the Brunt-Väisälä period can be used in the context of early 
warning. These waves have short horizontal wavelength in the range of tens of km (see 
Figs. 12 and 13). Their vertical wavelength is long compared to waves with the same 
horizontal wavelength but larger periods (see Fig. 12), which makes vertical averaging 

Fig. 10   The calculation of this figure is based on Eq. (3); however, here different periods typical for infra-
sound are used (a: 0.5–3 min, b: 10–60 s). Due to vertical averaging effects, the shortest periods will prob-
ably not be detectable in OH*-airglow measurements. The calculation refers to infrasound that is propagat-
ing purely vertically
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effects due to the thickness of the OH*-airglow layer less important. However, in these 
cases the horizontal wavelengths are in the range of a few kilometres only, which needs 
to be taken into account for the spatial resolution of imaging systems and the choice of 
the analysis method. To reach the OH*-airglow layer with its centroid height around 
85–87 km after ca. 15 min, a vertical phase velocity of at least 96 m/s is needed. This 
is comparatively fast for gravity waves (see, e.g., figure  5 of Nakamura et  al. (1999), 
figure 4 of Suzuki et al. (2004), figure 4 of Wachter et al. (2015) or figure 2 (b) of Wüst 
et al. (2018)) and only a small part of the spectrum of acoustic gravity waves satisfies 
it (see Fig.  13). Furthermore, the background atmosphere, through which the gravity 
waves propagate upwards, plays a role. Tropospheric and stratospheric jets have typical 
wind speeds of approximately 15 and 60 m/s. Only waves with horizontal phase speeds 
faster than 60  m/s or whose phase velocity is opposite to the direction of the corre-
sponding jets can reach the height of the OH*-airglow layer.

The situation changes for infrasound: while the vertical wavelength and therefore 
also the vertical phase speed of acoustic gravity waves change for a fixed period with 
the horizontal wavelength, (see Fig.  12), the vertical wavelength stays constant for a 
fixed infrasound period over a large range of horizontal wavelengths (see Fig. 10).

These considerations set important boundary conditions for the choice of the field of view 
and the spatial resolution of an OH*-airglow imager. Finally, one restrictive natural aspect 
should be mentioned. OH*-airglow measurements, as carried out in the vast majority of cases 
today, have the disadvantage that they are only made at night. Daytime measurements have 
been demonstrated from the ground (Sridharan et al. (1998)) and require narrow-band filters. 
However, the height, width and shape of the OH*-airglow layer changes during the day due to 
solar radiation and the associated chemical processes: the OH* dayglow is characterised by a 
double peak structure with the upper layer at a similar height as in the case of the OH* night-
glow and the lower layer between 70 and 85 km, increasing with the time of day (Gao et al. 
(2015)). Other dayglow emissions might be useful here.

Fig. 11   Shown is smoothed 
yearly course of the full-width 
at half maximum (FWHM) of 
the OH* airglow layer derived 
from TIMED-SABER measure-
ments over the Alpine region for 
the years 2002–2015. The black 
line is the average over all years. 
Reprinted under CC-BY−4.0 
license from Wüst et al. (2017b) 
©2017, The Author(s)
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5 � Summary and Conclusion

It has long been known that atmospheric waves can propagate both horizontally and verti-
cally over great distances in the atmosphere. The idea of using atmospheric waves gener-
ated by natural hazards such as tsunamis to help early warning of those hazards has been 
discussed since at least the 1970s. In particular, when the measurement takes place at 
higher altitudes, e.g. above 80 km, as considered in this manuscript, atmospheric waves 
that can propagate vertically within a few minutes are most suitable for this purpose. For 
this reason, the focus needs to be on infrasound and acoustic gravity waves in this case.

For heights above 80 km, the neutral atmosphere and the ionosphere co-exist. Never-
theless, research on atmospheric waves induced by natural hazards and their use for early 
warning is much more advanced for the ionosphere (based here on GNSS, Doppler and 
digisondes) than for the neutral gas atmosphere considered around 90  km height (based 
here on OH*-airglow measurements). This is mainly due to the availability of satellite-
based GNSS measurements with its unique coverage compared to all other height regions. 
Both communities face similar challenges: the correct differentiation of atmospheric sig-
nals induced by natural hazards from those of other sources, and the influence of the back-
ground atmosphere on the propagation and the observed wave parameters to name just two. 
To some extent, atmospheric models can help by simulating the expected propagation. And 

Fig. 12   According to the dispersion relation for acoustic gravity waves (see Eq. (3)) the vertical wavelength 
increases with the horizontal wavelength. This holds for every intrinsic period. For simplification, the back-
ground wind is set to zero, so the intrinsic period equals the (observed) period. Imaging system with a 
field of view of some 10 km are suitable for the detection of these acoustic gravity waves. OH*-airglow 
spectrometers, which typically average over some km to some 10 km, will probably only detect the longer-
periodic part of the acoustic gravity wave spectrum shown here



Surveys in Geophysics	

finally, both communities might profit from synergies as the different measuring methods 
are sensitive to specific parts of the atmospheric wave spectrum.

Just as cooperation within the atmospheric community is helpful, cooperation with 
other disciplines, such as seismologists in this case, could also provide further insights 
as early warning still is a central focus there. Fostering a multidisciplinary approach that 
brings together atmospheric scientists with seismologists could have a profound impact. 
Such collaboration would enable the mutual exchange of previously acquired knowledge, 
techniques, and ideas, allowing each field to benefit from the other’s expertise. Seismolo-
gists’ well-established methodologies for real-time event characterization, data assimila-
tion, and signal processing could be adapted to study post-earthquake neutral atmospheric 
and ionospheric disturbances. Conversely, neutral atmospheric and ionospheric scientists 
can contribute insights into how seismic energy propagates through the upper atmosphere, 
improving our understanding of earthquake-atmosphere coupling. By integrating expertise 
from the different disciplines, researchers can develop more comprehensive and reliable 
monitoring systems, enhancing global early warning capabilities and broadening the scope 
of earthquake impact assessment.
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