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ABSTRACT19

This study focuses on the role of human activities in shaping climate forcings and their impact on surface air temperature (SAT)
and drought intensification over Africa, emphasizing the human contributions to these phenomena. Through the analysis of
observations, various model experiments, and Regularized Optimal Fingerprinting detection technique, our findings indicate
that human-induced factors have contributed to an increase in surface air temperatures ranging from 0.8 to 1.06°C above
pre-industrial benchmarks. Greenhouse gases (GHGs) emerge as the primary driver of this rise (0.47 to 0.92°C), followed by
land use (LU) changes (0.47 to 0.63°C). In contrast, anthropogenic aerosols (Aaer) exert a cooling effect (-1.82 to -1.36°C) on
SAT. The analysis reveals that SAT anomalies, particularly during the industrial period, have significantly contributed to the
intensification of drought-prone climatic conditions. During the pre-industrial period, the absence of anthropogenic warming
kept SAT stable, resulting in mildly wet conditions (Standardized Precipitation Evapotranspiration Index (SPEI)=0.54). However,
in the industrial period, the sharp rise in SAT due to GHG and LU forcings led towards significantly drought-prone climatic
conditions (SPEI=-0.73), while the cooling effect of Aaer was insufficient to offset the warming trend. Estimates based on
Representative Concentration Pathways (RCP) 4.5 and 8.5 suggest that the SAT over Africa could rise by around 2°C and 5°C,
respectively, by the end of the century, highlighting the significant influence of human-driven factors in driving temperature
rise. Strategic oversight of GHG emissions, LU changes, and aerosol concentrations in Africa offers the possibility potential to
mitigate further warming and consequent drought intensification in this region.

20

Introduction21

The rise in surface air temperature (SAT) over Africa in recent decades has become increasingly pronounced[1, 2], leading to22

more frequent droughts[3, 4], which have a range of impacts including altered rainfall patterns[5], intensified heat waves[6],23

threatened agricultural productivity[7], and amplified food and water insecurity among vulnerable populations[7]. Addressing24

these challenges requires coordinated efforts at local, national, and international levels, prioritizing the understanding and25

mitigation of both natural and anthropogenic factors contributing to rising SAT. Such efforts are essential to ensure a more26

sustainable and resilient future for Africa, particularly facing increasingly frequent drought conditions.27

Different areas experience unique temperature changes compared to the worldwide mean [8], and local warming is driven28

by various human-induced factors specific to those regions [9]. Thus, comprehending the role of human activity in driving29

SAT and its causal link to rising drought conditions in Africa is crucial for several reasons. Most studies on anthropogenic30

influences on SAT have focused on the Global North[9, 10, 11, 12, 13, 14, 15, 16, 17], leaving Africa one of the most climate31

vulnerable regions understudied in terms of the contribution of human factors like greenhouse gas emissions, land-use changes,32

ACCEPTED MANUSCRIPTARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

and aerosols to SAT increases and subsequent drought intensification. Africa’s reliance on agriculture and natural resources33

[18] heightens its sensitivity to climate variability, but the lack of Africa-specific research hinders the development of targeted34

climate adaptation strategies. Moreover, climate drivers in Africa often differ from those in industrialized regions, making35

an Africa-specific focused approach is essential. Although very few studies have examined rising temperatures [5, 19] or36

drought conditions in Africa [20] separately, there remains a gap in research on how increasing anthropogenic activity during37

the industrial era has contributed to both SAT rise and subsequent drought intensification over the continent.38

This study aims to isolate human influences on SAT and assess their role in increasing drought risk, offering new insights39

essential for enhancing climate resilience in Africa. By examining the human influence on SAT increase and its consequential40

impact on drought, this study highlights Africa’s unique climate dynamics and human-climate interactions, distinct from those41

in more industrialized regions. This contributes to a more comprehensive understanding of rising temperature impacts across42

the African continent and socio-economic contexts. The investigation uses various model simulations conducted with different43

natural and anthropogenic activities influence across different spatial scales for the historical period of the 19th, 20th, as well as44

for the 21st century obtained from the Coupled Model Intercomparison Project 5 (CMIP5)[21]. The CMIP5 simulations provide45

the historical and future SAT changes due to the single forcings driven by Greenhouse Gas emissions (GHG), anthropogenically46

originated aerosols (Aaer), human-driven modification of land use (LU), and natural forcings from volcanic eruptions and47

solar-variability (NAT) [21].48

While the CMIP6 simulations[22] provides data on GHG, aerosol (Aaer), and natural (NAT) forcings, CMIP5 is more49

suitable for studying human influence on temperature due to its inclusion of explicit LU forcing simulations. This is crucial for50

analyzing human-land-atmosphere interactions and their impact on temperature changes. LU data enables the quantification of51

how vegetation, urbanization, and agricultural practices influence surface air temperature, particularly in regions where land52

use changes significantly affect climate[17]. Although CMIP6 offers advancements in several areas, it does not treat LU as a53

separate factor[22], limiting its ability to isolate land cover changes and their independent impact on temperature. In contrast,54

CMIP5 allows for the separation of land use effects from other forcings, such as greenhouse gases and aerosols, providing a55

clearer understanding of anthropogenic contributions to observed temperature changes. This makes CMIP5 especially valuable56

for our study, which requires a detailed breakdown of human and natural influences on SAT over Africa. By comparing and57

estimating the combined effects of these forcings on the Standardized Precipitation Evapotranspiration Index (SPEI)[23], an58

indicator of drought conditions[24], we can assess the role of anthropogenic factors in driving temperature rise and subsequent59

droughts in Africa.60

To determine the extent of human-induced effects on rising SAT, this study employs the Regularized Optimal Fingerprinting61

(ROF) detection and attribution method [25]. This approach, widely utilized in detection and attribution research, has been62

applied across multiple regions in numerous studies conducted over different regions of Global North[9, 10, 17, 25, 26, 27]. The63

ROF method, offers a robust and statistically rigorous approach for accessing the influences of individual climate forcings on64

SAT rise. Unlike direct differences between "All" (ANT+NAT) and individual forcing experiments, ROF accounts for overlaps,65

covariances, and interactions among forcings while effectively distinguishing signal from noise by comparing observed and66

modeled spatial-temporal patterns[25]. This method enhances sensitivity and precision, especially in regions with data sparsity,67

like Africa, where direct difference approaches may not be effective. By providing a nuanced, quantitative assessment of68

individual forcings, ROF significantly improves the depth and novelty of the analysis, ensuring reliable and insightful findings69

that align with the study’s objectives. By isolating the distinct influence of natural as well as anthropogenic forcings, ROF70

enables a deeper understanding of the drivers behind SAT changes, offering valuable insights for attribution studies.71

To evaluate human-induced warming, we compare SAT changes against pre-industrial SAT baselines. Although different72

Holocene periods could serve as references [28], this study adopts the 1850-1900 timeframe, aligning with the IPCC Special73

Report on Global Warming of 1.5°C [29]. This selection establishes a relevant foundation for assessing anthropogenic influences74

on SAT across Africa, both during the industrial era (1955-2018) [29] and in future projections (2018-2100).75

The novelty and originality of this study lie in its focus on the African continent, where comprehensive assessments of76

human contributions to SAT increase and their causal impact on rising drought conditions are limited. While numerous studies77

in the Northern Hemisphere have explored the influence of individual natural and anthropogenic forcings on SAT using CMIP578

model simulations[9, 10, 17, 25, 26, 27], a rigorous investigation of these drivers over Africa remains largely unexplored.79

The key contributions of our research are as follows: (i) Comprehensive Analysis of Forcings, we have conducted an80

in-depth evaluation of various forcings—natural, anthropogenic, aerosol, land use, and greenhouse gases—that contribute81

to the SAT increase across Africa. This analysis utilizes the HadCRUT5 observational dataset, a range of CMIP5 climate82

models, and the ROF method, which has not been applied to African climate studies. This makes our work novel in a region83

underrepresented in climate literature. (ii) Exploration of SAT Causal Impacts on Drought, we have examined the causal84

influence of rising SAT and individual forcings on the SPEI and extend our future projections under RCP scenarios. This85

provides a multidimensional view of climate change impacts, particularly on drought, in Africa.86

This research fills a critical gap by analyzing the unique climate dynamics and anthropogenic influences on SAT and drought87
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intensification in Africa, a region with distinct climate sensitivities compared to the industrialized Northern Hemisphere. The88

insights gained are vital for developing tailored adaptation strategies in the African context.89

Results90

Temporal evolution of Human contribution to the rising SAT91

This study examines how different forcing factors have influenced SAT variations in the region from 1850 to 2005. The analysis92

utilizes chosen climate models alongside observational records from HadCRUT5 to assess their respective contributions over93

time (Fig. 1(a-f)). We analyzed the ensemble mean of different historical forcing factors (Ant, GHG, Aaer, LU, and NAT)94

for the 19th and 20th centuries, as summarized in Table S1 and illustrated in Fig. 1(a-f). The temperature variations were95

calculated by subtracting the pre-industrial (1850-1900) annual mean SAT from the yearly averages over the study region96

between January 1850 and December 2005. Each panel displays shaded areas representing one standard deviation of the97

ensemble, along with linear regression trends. Fig. 1(a) highlights a consistent SAT increase from 1925 onward, marking a98

transition from below-zero (negative) to above-zero (positive) anomalies. This anomaly change corresponds closely with the99

model simulations and HadCRUT5 datasets (Fig. 1a).100
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Figure 1. The graph presents the changing patterns of annual surface air temperature anomalies across Africa from
1860 to 2005. It includes a comprehensive category, "All," which accounts for the combined effects of different forcings.
Additionally, individual contributions from specific forcings. These forcings are Aaer, GHG, LU, natural influences (including
solar incoming radiation fluctuations and volcanic activities), anthropogenic influence (Ant), defined as difference between all
forcings and natural influences (Ant = All - NAT), are separately illustrated. A 95% confidence interval is considered for this
analysis, with the resulting trend lines incorporated into each panel. Observational data from HadCRUT5 (represented by black
lines with corresponding equations) are included in all subplots to compare modeled SAT anomalies with HadCRUT5 recorded
total SAT temperature variations. Shaded regions indicate the one-standard-deviation range.
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A positive SAT anomaly from 1925 onwards, which indicates that the SAT is higher than a pre-industrial baseline average,101

is a key metric and serves as an important indicator[10] of warming over time (Fig. 1a,b,d,e). With the exception of Aaer and102

NAT (Fig. 1c, f), all other forcing factors (Ant, GHG, and LU) exhibit a significant rise in SAT, reflected as a positive anomaly,103

beginning around 1925 (Fig. 1b, d, e). GHG forcing leads to even higher forcing than the total SAT of HadCRUT5 observations104

(Fig. 1d). This indicates that the combined impact of greenhouse gases (GHG) and land use (LU) alone contributes significantly105

more to the overall rise in surface air temperature (SAT) across Africa during the industrial era (Fig. 1d, e). At the onset of106

industrialization, the warming linked to GHG and LU began to escalate sharply from 1965 (Fig. 1d, e), an anomaly that aligns107

with both observed data and historical model projections (Fig. 1a). The influence of LU and GHG is also reflected in the108

anthropogenic SAT anomaly starting after 1965, in the industrial period (Fig. 1b). According to Fig. 1b, CMIP5 historical109

simulations show a minimal increase in anthropogenic warming before 1925, suggesting that human-induced impacts on SAT110

were negligible during the early part of the 20th century, with the majority of warming due to human activities occurring after111

1960. Significant warming has been driven by changes in land use and GHG emissions (Fig. 1b, d, e). Additionally, the effect112

of anthropogenic aerosols (Aaer) is noticeable, with a clear decline in SAT beginning in the 1960s. The years 1925 and 1965113

were identified through an objective analysis of SAT anomaly (Fig. 1a-f), marking significant positive shifts. These years align114

with key changes in climate forcings, such as 1925 corresponds to early industrialization[10, 29] and increased anthropogenic115

influences, while 1965 reflects post-war industrialization and a rise in greenhouse gas emissions[10, 29]. These points are116

reflecting shifts in natural and anthropogenic climate drivers.117

(a) (b)

(c)

(d)

Figure 2. Pre-industrial and Industrial spatial SAT trends from various natural and anthropogenic forcings together
with the spatial distribution of SPEI drought index. a) The SAT trends average and standard deviation of different forcing
factors (such as Ant, NAT, GHG, LU, Aaer) over Africa for the pre-industrial period (in blue) and industrial period (in red), b)
The spatial map of the SPEI drought index averaged over 1960 to 2018. c, d) The SAT map from different anthropogenic and
natural influences are shown in top-row showing pre-industrial and in bottom-row shows the idustrial timespan respectively.
The trend which is not significant are removed from the map. These maps have been generated by using Matplotlib
visualization with Python version 3.10.14 (https://matplotlib.org/).
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During the industrial period, the cooling effect of anthropogenic aerosols helped offset the warming caused by greenhouse118

gases (GHG) and land use changes (Fig. 1c). In terms of temporal trends, natural forcings had a relatively smaller impact119

on surface air temperature (SAT) compared to GHG and LU changes (Fig. 1f). Overall, the results suggest that aerosols120

played a very crucial role in reducing warming, while GHGs and land use alterations contributed substantially to the observed121

temperature rise over Africa (Fig. 1d, e).122

In addition to examining the temporal effects of human influence, we analyzed the SAT of different forcings spatially over123

Africa (Fig. 2a-d). This analysis involved breaking down forcings to their individual influences, comparing average trends of124

SAT during the pre-industrial and industrial periods (Fig. 2a), and examining the regional distribution of both temperature and125

drought-like climatic conditions. For drought conditions, we used the Standardized Precipitation Evapotranspiration Index126

(SPEI) to assess the intensity and frequency of conditions of drought across Africa (Fig. 2b) [24].127

Observational data from HadCRUT5 and CMIP5 model ensembles indicate that during the industrial period, regions in both128

northern and southern Africa faced rapid rise in SAT triggered by land use (0.13°C/decade) and GHG (0.26°C/decade) forcings129

(Fig. 2d), in contrast to the time before industrialization (Fig. 2c). These SAT trends align closely with HadCRUT5, and the130

model simulations (Fig. S1). Across Africa, surface air temperature trends during the industrial era indicate warming driven131

by all forcing factors, with variations spanning from 0.03 to 0.14°C/decade for anthropogenic (Ant), 0.04 to 0.21°C/decade132

for GHG, and 0.04 to 0.13°C/decade for LU forcings. Meanwhile, natural forces (NAT) had a minimal effect (-0.04 to133

0°C/decade), and aerosols (Aaer) induced a slight cooling (-0.03 to -0.06°C/decade) (Fig. 2a). These results underscore the134

predominant influence of anthropogenic factors, especially GHG and LU changes, in driving SAT increases, while aerosols had135

a cooling influence. The impact of NAT forcing was negligible (Fig. 2a). The warming observed in the study region during the136

industrial era is therefore largely attributable to GHG and LU influences (Fig. 2d), consistent with observational data (Fig. S1).137

Additionally, the spatial distribution of the SPEI index (Fig. 2b) shows that both northern and southern Africa have experienced138

increasing dryness, which aligns closely with the spatial patterns of SAT increase driven by GHG emissions and land use139

changes (Fig. 2b, c).140

Regularized Optimal Fingerprinting (ROF) Method: To estimate Human contribution to rising SAT141

The ROF method[25] is a powerful statistical technique widely used to detect and attribute human influences on climate142

variables over various regions, such as SAT[9, 10, 17, 25, 26, 27]. This method works by identifying the distinct factors of143

SAT rise, that are associated with specific individual forcing factors, such as greenhouse gases, aerosols, land use, or natural144

variability. By using the ROF method, various research has analyzed the magnitude of anthropogenic factors have influenced145

the observed changes in SAT over various regions of the Global North[9, 10, 17, 25, 26, 27]. The strength of the ROF method146

lies in its ability to distinguish between human and natural influences, providing a robust framework for quantifying the human147

impact on warming trends[25]. This capability is especially valuable as it allows us to assess and compare the contributions of148

different forcings across various temporal scales, thus offering a nuanced understanding of the drivers behind SAT increase.149

Using a combination of data from 22 different model estimations (listed in Table S1) and the HadCRUT5 dataset, along150

with Regularized Optimal Fingerprinting (ROF) attribution method [25], this study evaluated the influence of anthropogenic151

and natural activities on the SAT rise in Africa (Table 1). The assessment shows that anthropogenic influences are responsible152

for an increase in SAT ranging from 0.80°C to 1.06°C (within the 5th to 95th percentile range) during the industrial period when153

compared to the pre-industrial era. Among the different forcings, anthropogenic aerosols (Aaer) led to a cooling of -1.82°C154

to -1.36°C, while greenhouse gases (GHG) caused a warming of 0.47°C to 0.92°C, and land use changes (LU) contributed a155

warming effect of 0.47°C to 0.63°C. Of these, greenhouse gases had the most significant impact on the overall rise in SAT,156

followed by land use changes, while natural forcings (NAT) had a minimal effect, ranging from -0.03°C to 0.06°C. The main157

driver behind the rise in surface air temperatures across the study area during the industrial period is human-induced forcing,158

primarily due to greenhouse gas emissions, with land use changes playing the second most role.159

Recently, the robustness of the optical fingerprinting method has been the subject of scientific debate. Several studies160

have raised concerns regarding its sensitivity to data selection, medological assumptions, and statistical interpretation[30? ].161

Conversely, other studies[10, 25] have defended its validity when applied with appropriate constraints and rigorous calibration.162

This ongoing discussion underscores the importance of transparent methodology and careful evaluation when applying the163

optical fingerprinting approach in climate analyses.164

Temporal causal impact of Human-induced SAT rise on drought conditions165

As the anthropogenic impact started from 1920 onwards (Fig. 1b), and to assess the impact of such anthropogenic contribution166

to drought over this study region, we used the Standardized Precipitation Evapotranspiration Index (SPEI) as an indicator[24].167

Fig. 3 illustrates the temporal evolution of SAT anomalies from the observation and multi-model mean and SPEI index values168

over an industrial period, highlighting a significant upward trend in both parameters. The SAT anomaly graph shows a clear and169

persistent increase, particularly pronounced in the industrial period. This increase in SAT anomaly (1.4 °C, Fig. 3) is indicative170

of warming over Africa, primarily driven by anthropogenic factors such as increased GHG emissions from industrial activities171

/
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NAT Ant Aaer GHG LU
All
(Ant+NAT)

0.015 (-0.03
to 0.06)

0.93 (0.80 to
1.06)

-1.59 (-1.82 to
-1.36)

0.70 (0.47 to
0.92)

0.55 (0.47 to
0.63)

HadCRUT5 0.015 (-0.04
to 0.07)

0.93 (0.80 to
1.06)

-1.62 (-1.85 to
-1.40)

0.71 (0.62 to
0.80)

0.54 (0.45 to
0.63)

Table 1. Using ROF advanced detection methods, the impact of specific drivers on temperature shifts is calculated. The
table outlines model-based assessments of temperature differences caused by various factors, expressed in Celsius, for
the industrial age relative to the time before industrialization. The β , denoting the vector of estimated coefficients, along
with the 5–95% confidence ranges (shown in brackets) representing the estimated warming attributable to each factor. From the
primary multimodel analysis (represented in the first row) and from HadCRUT5 data (in the second row). These estimates
encompass an analysis equivalent to that of the Natural Forcings (NAT), Anthropogenic forcing (Ant), Anthropogenic Aerosols
(Aaer), Greenhouse Gases forcings (GHG), and Land Use forcings (LU).

and fossil fuel combustion, and LU changes due to the alterations resulting from deforestation and farming activities (Fig. 1a-f).172

The consistent rise in SAT anomalies suggests a systematic shift in the African climate system leading to the rise in SAT, which173

is coinciding with the dry conditions (SPEI value of -0.5 in Fig. 3, Table 2). The SPEI index value less than zero represents dry174

conditions and greater than zero represents wet conditions[24] (Table 2).175
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Figure 3. Recent industrial period surface air temperature anomaly mentioned in Fig. 1 and associated SPEI drought
index from 1920 to 2018. The surface air temperature anomaly is from HadCRUT5 and multi-model average (All=Ant+NAT).
As the historical model simulations from models are available up to 2005, we have considered RCP45 for the 2006 to 2018
period.

Simultaneously, the SPEI drought index (Table 2), which measures the severity and frequency of drought conditions[24],176

exhibits a parallel upward trend (Fig. 3). This temporal alignment suggests a linkage between rising temperatures and worsening177

drought conditions. This is attributed to the higher SAT accelerates dry conditions[24]. These changes exacerbate drought178

severity and frequency[24], particularly in vulnerable regions like Africa. The concurrent increase in temperature anomalies179

and drought index values underscores the impact of SAT on hydrological extremes. This is emphasizing the urgent need for a180

comprehensive assessment of the contribution of the total rise in SAT as well as the rise in SAT due to the individual forcings181

on the SPEI drought index. This will be helpful for mitigation of anthropogenic activities, and formulating strategies to address182

the interconnected challenges of anthropogenic warming over Africa and associated drought conditions. Thus in this study,183

we have assessed the causal impact of SAT due to various individual forcings on rising drought conditions over Africa over184

historical time period and is presented in Fig. 4a-f.185

The Fig. 4(a-f) presents the temporal evolution of the annual Standardized Precipitation Evapotranspiration Index over Africa186

caused by SAT anomalies attributable to total and All (Ant+NAT) influence, as well as individual forcings—anthropogenic187

(Ant), GHG, LU, Aaer, and NAT (as per [23], see Method section). This analysis delineates the causal effects of SAT anomalies188

on SPEI, highlighting their role in rising drought conditions during the industrial period compared to the pre-industrial. During189

the pre-industrial period, total SAT anomalies (All) were relatively stable (Fig. 4a), primarily driven by natural forcings such as190
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Figure 4. Impact of surface air temperature from specific drivers on the historical SPEI drought index. The graph
shows the time-based influence of temperature changes caused by individual drivers on the SPEI drought index between 1860
and 2005. The ’All’ category combines all drivers, reflecting their combined effects. Separate drivers, including Aaer, GHG,
LU, NAT (such as solar incoming radiation and volcanic events), and human-induced factors (Ant) (calculated as All minus
NAT), are each represented distinctly.
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Figure 5. Pre-industrial (green) and Industrial (red) period causal effect of individual SAT forcings on SPEI drought
index. Pre-industrial and Industrial average and one standard deviation of SPEI drought index due to various forcings forcing
factors (such as Ant, NAT, GHG, LU, Aaer) over Africa for the pre-industrial period (in green) and industrial period (in red).

volcanic aerosols and solar variability (Fig. 4a-f). This stability resulted in minor fluctuations in SPEI (Fig. 4a). The absence191

of higher anthropogenic warming meant that evapotranspiration rates remained close to natural levels[31], minimizing the192

impact on drought conditions. SPEI values during this time serve as a critical baseline for assessing the subsequent effects of193

industrial-era anthropogenic forcings on Africa’s hydroclimate.194

Whereas, during the industrial period, SAT anomalies increased sharply due to anthropogenic forcings (Fig. 4s-b),195
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significantly exacerbating drought conditions across Africa (Fig. 4a-b). These rising anomalies led to a marked decline in196

the Standardized Precipitation Evapotranspiration Index (SPEI), shifting from an average value of 0.54 (mildly wet) in the197

pre-industrial period to -0.73 (mildly dry) during the industrial period (Fig. 5). The rapid rise in anthropogenic forcings198

transitioned Africa’s climate from near-normal conditions (SPEI = 0.52) to moderately dry conditions (SPEI = -0.76) (Fig. 4b,199

Fig. 5). Greenhouse gas (GHG) emissions were the primary driver of this drying trend, followed by land use (LU) changes200

(Fig. 4c-d, Fig. 5). These forcings rising warming, accelerating evapotranspiration, depleting soil moisture, and reducing water201

availability. LU changes further exacerbated drought by intensifying local warming and disrupting hydrological processes.202

The conversion of forests to agricultural land reduced evapotranspiration and altered precipitation patterns, compounding the203

drought-inducing effects of rising SAT. The combined effects of GHG and LU changes created significant regional variations in204

drought conditions across the continent.205

In contrast, aerosol (Aaer) forcings exerted a cooling effect during the mid-20th century, partially counteracting the206

warming-driven declines in SPEI. Aaer helped maintain near-normal conditions in Africa throughout both the pre-industrial207

and industrial periods, with average SPEI values ranging from 0.17 to -0.18, respectively (Fig. 4c, Fig. 5). However, this208

mitigation effect was regionally variable and insufficient to offset the overall increase in drought conditions across the continent.209

Additionally, natural (NAT) forcings generally kept Africa’s climate in normal conditions over the historical periods (Fig. 5).210

This analysis of the relationship between SAT rise and drought conditions, both past and present, provides valuable insights for211

developing policies aimed at ensuring sustainable climate conditions for Africa’s future.212

Future projections213

Rising surface air temperatures across the study area, driven by combined forcings, align well with the HadCRUT5 SAT trends214

during the entire time span (Fig. 6a-e). The consistency between HadCRUT5 data and multi-model averages strengthens our215

ability to predict temperature increases in the region throughout the 21st century. Analyzing future scenarios is essential for216

reducing the likelihood of droughts in the area. Reducing human-driven activities presents a viable strategy to curb further217

temperature rises and their impact on drought conditions in Africa.218

This study includes a range of future emission scenarios, from the lowest (RCP2.6) to the highest (RCP8.5) Representative219

Concentration Pathways. By 2100, the RCP2.6 scenario predicts a temperature increase of around 2°C over Africa, while220

RCP8.5 projects a rise of roughly 5°C. The overall temperature estimations under RCP8.5 show a steady upward trend, and the221

RCP2.6 results in an increase until mid-century, then it shows a modest decrease (Fig. 6a). Given that the RCP8.5 scenario222

projects the most pronounced increase in SAT across Africa, Figure 6(b–e) presents the spatial distribution of SAT trends223

over the continent during the 21st century under this high-emission pathway. The analysis encompasses four distinct time224

slices: the near-term (2006–2035), mid-century (2046–2065), late-century (2080–2099), and the entire projection period225

(2006–2099). Overall, the results indicate a marked intensification of warming over Africa as the century progresses, with226

substantially greater temperature increases projected for the mid- and late-century compared to the near-term. The far-future227

projections suggest the highest warming of about 1.2°C/Decade across most of the regions of Africa, except for parts of central228

Africa (Fig. 4c,d). The stronger warming of about 1.2 °C per decade projected across most of Africa is primarily linked to229

soil moisture–temperature feedbacks, where reduced evapotranspiration enhances surface heating over arid and semi-arid230

regions. In contrast, the comparatively weaker warming in central Africa is associated with dense vegetation, high humidity,231

and persistent convection, which promote evaporative cooling and moderate temperature rise[32, 33]. This comparative analysis232

across scenarios supports policymakers in prioritizing adaptation and mitigation strategies based on varying climate futures.233

By highlighting Africa’s unique climate sensitivities and linking SAT changes to broader climate impacts, the figure makes a234

crucial contribution to understanding and addressing the continent’s climate challenges.235

Discussions236

The ROF approach provides valuable insights into the factors driving the rise in surface air temperature (SAT) across Africa237

and their effects on temperature changes. This understanding is vital for assessing the role of human activities, such as238

industrialization, greenhouse gas (GHG) emissions, and shifts in land use and land cover, in driving SAT increases and the239

resulting drought conditions. Addressing these factors is key to mitigating further impacts. While future climate shifts are240

expected to be largely influenced by GHG emissions, the role of LU forcing is often underestimated. Analysis conducted in this241

study shows a greater contributions from GHG and LU forcings, with temperature increases ranging from 0.47 to 0.92°C and242

0.47 to 0.63°C, respectively, across Africa. In contrast, anthropogenic aerosols (Aaer) have a cooling effect (-1.82 to -1.36°C),243

while natural (NAT) forcings show negligible influence.244

This study also examines the causal relationship between SAT anomalies and drought conditions, comparing pre-industrial245

and industrial eras. During the pre-industrial period, SAT anomalies remained stable, primarily driven by natural factors,246

resulting in minimal SPEI variations and an average of 0.54 (indicating mildly wet conditions). In contrast, the industrial247
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(a)

(b) (c) (d) (e)

Figure 6. The graph illustrates historical, current, and predicted future changes in surface air temperature across
Africa, both over time and space. a) It displays the yearly average SAT deviation with respect to derived from multiple model
estimations, spanning 1850-2100, compared to the baseline of 1850 to the year 1900. Future estimations, based on different
Representative Concentration Pathways (RCPs), cover the time from 2006 to the year 2099. The colored shades shows one
standard deviation of mean of all different CMIP5 model estimations. The HadCRUT5 (1850–2005) SAT is shown in black.
The historical segment (1850–2005) is included in (a) as it is vital for contextualizing future predictions. b, c, d, e) Maps show
the geographical distribution of temperature trends across Africa during the 21st century under the RCP8.5 scenario. These
trends are analyzed for specific intervals: the near future (2006–2035), mid-future (2046–2065), far future (2080–2099), and
the entire projection period (2006–2099). These maps have been generated by using Matplotlib visualization with Python
version 3.10.14 (https://matplotlib.org/).

period saw a sharp rise in SAT anomalies due to human-driven factors, particularly GHG emissions, reducing SPEI to -0.73248

(mildly dry) (Fig. 5). These shifts reflect a trend toward drier conditions. Land use changes exacerbated these effects by altering249

hydrological cycles, while aerosols provided some cooling, maintaining near-normal SPEI values of -0.18 on average. NAT250

forcings had little to no impact on climatic conditions.251

Our findings highlight the significant role of human-induced changes, including GHG emissions, land use shifts, and252

aerosols, in intensifying drought conditions across Africa during the industrial era. Analyzing future scenarios is critical253

for mitigating droughts. Reducing human activities can help limit SAT increases and their effects on drought severity. We254

assessed both low (RCP2.6) and high (RCP8.5) emission scenarios, projecting temperature anomalies of roughly 2°C and 5°C255

by 2100, respectively. Under RCP8.5, SAT continues to climb, while RCP2.6 shows a slight decline after 2050, aligning with256

radiative forcing trends (Fig. 6a). Fig. 6(b-e) depicts spatial SAT trends under RCP8.5 for different timeframes: near future257

(2006–2035), mid-future (2046–2065), far future (2080–2099), and the entire projection period (2006–2099). These projections258

indicate significant warming, with the far future experiencing a rise of about 1.2°C per decade across most of Africa, except259

central regions (Fig. 6c,d). While similar projections exist for other regions, Africa’s SAT trends and climate impacts have260

received less attention. Thus, Fig. 6(a-e) provides detailed, Africa-specific projections under four RCP scenarios, offering261

high spatio-temporal resolution and historical context. This comparative analysis supports policymakers in crafting targeted262

adaptation strategies, emphasizing Africa’s unique climate vulnerabilities and the urgency of action.263

These findings stress the need to address various human-driven factors, including GHG emissions, land use changes, and264

aerosols, to mitigate future SAT increases and their impact on drought conditions, fragile ecosystems, and food security in265
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Africa. The dominance of anthropogenic forcings during the industrial era highlights the necessity for tailored reduction of266

anthropogenic activities over Africa.267

SPEI Climate Condition
SPEI ≥ 2.0 Extremely wet
1.5 ≤ SPEI < 2.0 Severely wet
1.0 ≤ SPEI < 1.5 Moderately wet
0.5 < SPEI < 1.0 Mildly wet
-0.5 ≤ SPEI ≤ 0.5 Normal
-1.0 < SPEI < -0.5 Mildly dry
-1.5 < SPEI ≤ -1.0 Moderately dry
-2.0 < SPEI ≤ -1.5 Severely dry
SPEI ≤ -2.0 Extremely dry

Table 2. SPEI categories and corresponding climate conditions[24].
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Data and Methodology268

SAT from CMIP5 models and HadCRUT5 observation269

This study assessed 22 climate models and 158 corresponding simulations spanning the 19th, 20th, and 21st centuries, as270

detailed in Table S1. It is important to highlight that not all simulations incorporate every type of climate forcing examined.271

The selected models represent various emission pathways, including RCP4.5, and account for different forcing factors: 17272

simulations include NAT forcing, which is driven by changes in solar fluctuations and volcanic influences, 18 account for273

greenhouse gas (GHG) fluctuations, 10 simulate anthropogenic aerosol (Aaer) effects, and 5 incorporate land-use (LU) changes.274

These simulations, which contribute to the IPCC Fifth Assessment Report [34], are designed to replicate climate variations275

over the past two centuries by integrating multiple climate drivers. Monthly mean SAT were retrieved from 22 CMIP5 model276

estimations for historical timespan and the RCP4.5 scenario. For the post-2005 time, the RCP4.5 pathway was used to extend277

the analysis through 2018, offering a realistic projection of contemporary climate conditions.278

To evaluate model performance, Taylor diagrams were utilized to compare CMIP5 model-derived mean SATs with279

HadCRUT5 observational data [35] across Africa from 1955 to 2005. The assessment between the HadCRUT5 observational280

dataset and the individual model simulations was calculated as a temporal (annual) correlation of the mean absolute surface281

air temperature values averaged spatially over the entire African continent for the period 1955–2005. This time frame was282

selected because it represents an era during which both satellite and ground-based observations were increasingly integrated283

into global datasets, thereby improving the reliability and consistency of temperature records. Consequently, the correlation284

analysis presented here captures temporal variations rather than spatial differences across the region.285

All these 22 models included in this study, such as, Bcc-csm1-1, BNU-ESM, CanESM2, CCSM4, CESM1-CAM5, CNRM-286

CM5, CSIRO-Mk3-6-0, FGOALS-g2, GFDL-CM3, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-CC, HadGEM2-ES,287

Inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, MIROC5, MPI-ESM-LR, MRI-CGCM3, NorESM1-M. The288

Taylor diagram in Fig. S2 visualizes how well CMIP5 simulations temporally align with observational datasets. While this289

study utilizes only five CMIP5 models that provide simulations including land-use forcing (Table S1), this limited number290

reflects the restricted availability of such experiments within the CMIP5 archive rather than a methodological choice. Although291

a smaller ensemble may reduce the ability to fully capture the spread of model responses, the selected models still represent a292

diverse range of physical parameterizations and land–atmosphere interactions, offering meaningful insights into the influence293

of land-use changes on surface air temperature. Nevertheless, the results should be interpreted with an understanding of294

this constraint, and future studies would benefit from incorporating a larger ensemble of models as more land-use forcing295

simulations become available to further strengthen attribution assessments.296

The SAT anomalies were calculated annually using area-weighted spatial averages from HadCRUT5, with anomalies297

referenced to the pre-industrial baseline (1850–1900). The median dataset was used to reduce uncertainties and enhance298

result reliability. The choice between the mean and median significantly affects the representation of ensemble-based climate299

anomalies. While the mean is sensitive to outliers and can exaggerate interannual variability when some models deviate strongly,300

the median offers a more robust central estimate by reducing the influence of extreme values. This approach minimizes model301

bias and provides a smoother, more representative depiction of the ensemble climate signal[36]. To ensure consistency across302

different datasets, SAT outputs from multiple models and simulations were re-gridded (bilinear interpolation) to a 1° × 1°303

spatial resolution using the Climate Data Operators (CDO) toolkit [37]. Trend estimation was performed using the Iteratively304

Reweighted Least Squares (IRLS) method [38], which improves robustness in detecting long-term trends.305

Regular Optimal Fingerprinting (ROF) Method:306

Additionally, a ROF method analysis was performed[25] by using HadCRUT5 observations, and different CMIP5 model runs,307

implemented in Python [39]. This approach evaluates the influence of individual forcings to the total SAT change observed by308

HadCRUT5 to SAT fluctuations [10]. The ROF method has been successfully utilized in several key studies [10, 17, 25, 26, 27]309

to detect and attribute the influence of specific forcings on SAT rise. The calculation process of ROF steps are outlined below:310

The step begins by modeling by using HadCRUT observed temperature change (y) as regression of various model simulated311

forcing (such as GHG, Aaer, NAT) (x1,x2, . . . ,xn), and (ε , which is residual value):312

y = β0 +β1x1 +β2x2 + . . .+βnxn + ε

Then the SAT values are arranged as matrix for computational efficiency. X represents the different considered forcings313

matrix, Y is the observed SAT vector, and β the vector of coefficients to be estimated:314

X =


1 x1,1 x2,1 . . . xn,1
1 x1,2 x2,2 . . . xn,2
...

...
...

. . .
...

1 x1,m x2,m . . . xn,m


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Y =


y1
y2
...

ym


315

β =


β0
β1
...

βn


Thus, the regression can be written as Y = Xβ + ε .316

Then to calculate the coefficient associated with (β ) we apply least squares approach to reduce the summation of the317

squared residuals of the HadCRUT observation and predicted SAT: [β = (XT X)−1XTY ]318

Then, we compute residual (ε), these are the disparity of the HadCRUT5 observed SAT and predicted SAT. The model319

uncertainties are considered as the standard deviation of the obtained residuals (ST D_residual).320

Next, estimation of confidence intervals (CI) at 95% of the (βi) are computed as:321

CI = [βi −1.96 ·ST D_residual,βi +1.96 ·ST D_residual]

Then to assess the significance associated with different forcings estimations, we check whether the CI of different322

coefficients has zero. When zero is excluded from the CI, then the corresponding forcings are significant in terms of statistics in323

explaining HadCRUT SAT observational shifts.324

Calculation of the SPEI Drought Index325

The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated for individual SAT forcings following the326

methodology proposed by[23]. In this work, we employed the r1i1p1f1 ensemble for analyzing both surface air temperature327

(SAT) and precipitation, as SAT data corresponding to various forcings are exclusively accessible for this particular ensemble.328

Precipitation simulations from all the above models are utilized. The SPEI combines precipitation (P) and potential evap-329

otranspiration (PET) to quantify moisture availability and its temporal variability. The steps for deriving SPEI are detailed330

below.331

Potential Evapotranspiration (PET)332

Potential evapotranspiration (PET ) was estimated as a function of surface air temperature (SAT ) anomalies using an empirical333

formulation:334

PET = k · (SAT+ c), (1)

where:335

• k = 0.0023 is a scaling coefficient specific to the dataset.336

• SAT represents surface air temperature anomalies (in ◦C).337

• c = 17.8 is an offset constant ensuring positive values for PET.338

This simplified approach balances computational efficiency and accuracy, aligning with the requirements of large-scale drought339

analysis.340

Climate Water Balance341

The climate water balance (W ) represents the net subtraction between precipitation (P) and potential evapotranspiration (PET ):342

W = P−PET, (2)

where both P and PET are expressed in millimeters (mm).343
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Temporal Aggregation of Water Balance344

To capture cumulative drought effects over time, the climate water balance was aggregated using a rolling sum for a defined345

temporal scale (n):346

Wrolling(t) =
t

∑
i=t−n+1

W (i), (3)

where:347

• t is the current time step.348

• n is the chosen time scale (e.g., 12 months for annual SPEI).349

This rolling sum accounts for the persistence of water deficits or surpluses over a given period.350

Standardization of the Climate Water Balance351

The aggregated water balance (Wrolling) was standardized to transform it into a dimensionless drought index. Standardization352

was performed using:353

Z =
Wrolling −µ

σ
, (4)

where:354

• µ is the mean of the aggregated water balance.355

• σ is the standard deviation of the aggregated water balance.356

This standardization ensures comparability across different temporal scales and regions.357

Conversion to the SPEI Index358

The standardized values (Z) were then converted into probabilities using the cumulative distribution function (CDF) of the359

standard normal distribution:360

F(Z) = Φ(Z), (5)

where Φ(Z) is the standard normal CDF.361

Finally, these probabilities were mapped back to the standard normal distribution to derive the SPEI values:362

SPEI = Φ
−1(F(Z)), (6)

where Φ−1 represents the inverse standard normal distribution.363

Application to Forcing-Specific SAT Data364

The above procedure was applied to individual and total SAT forcings, including anthropogenic (Ant), GHG, LU, Aaer, and365

NAT components. For each forcing:366

1. PET was computed using SAT anomalies.367

2. The climate water balance (W ) was calculated with observed precipitation.368

3. SPEI values were derived at monthly and annual scales.369

This approach provides a detailed assessment of the causal contributions of each forcing to drought conditions across Africa370

during the pre-industrial (1850–1900) and industrial (1955–2005) periods.371

Data Accessibility372

The CMIP5 model datasets used in this study can be accessed at https://esgf-data.dkrz.de/search/cmip5-dkrz/.373

Observational temperature data from HadCRUT5 is available at https://crudata.uea.ac.uk/cru/data/temperature/.374

The Global Standardized Precipitation Evapotranspiration Index (SPEI) dataset was sourced from https://spei.csic.375

es/database.html.376
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Software and Tools377

The regularized optimal fingerprinting algorithm [25], employed for optimal detection analysis, is accessible at http:378

//www.umr-cnrm.fr/spip.php?article23&lang=en.379
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