
Journal Pre-proof

Sensitivity of near-infrared bands to cloud phase: An assessment using
dual-view satellite measurements

Kameswara S. Vinjamuri, Marco Vountas, Vladimir Rozanov,
Luca Lelli, Hartmut Boesch, John P. Burrows

PII: S0022-4073(26)00031-2
DOI: https://doi.org/10.1016/j.jqsrt.2026.109837
Reference: JQSRT 109837

To appear in: Journal of Quantitative Spectroscopy and
Radiative Transfer

Received date : 19 June 2025
Revised date : 23 November 2025
Accepted date : 18 January 2026

Please cite this article as: K.S. Vinjamuri, M. Vountas, V. Rozanov et al., Sensitivity of
near-infrared bands to cloud phase: An assessment using dual-view satellite measurements.
Journal of Quantitative Spectroscopy and Radiative Transfer (2026), doi:
https://doi.org/10.1016/j.jqsrt.2026.109837.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability. This version will undergo additional
copyediting, typesetting and review before it is published in its final form. As such, this version is
no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing
this early version to give early visibility of the article. Please note that Elsevier’s sharing policy for
the Published Journal Article applies to this version, see: https://www.elsevier.com/about/policies-
and-standards/sharing#4-published-journal-article. Please also note that, during the production pro-
cess, errors may be discovered which could affect the content, and all legal disclaimers that apply to
the journal pertain.

© 2026 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jqsrt.2026.109837
https://doi.org/10.1016/j.jqsrt.2026.109837
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article


Journal Pre-proof

Manuscript File Click here to view linked References
Jo
ur

na
l P

re
-p

ro
ofSensitivity of Near-Infrared Bands to Cloud Phase: An1

Assessment Using Dual-View Satellite Measurements2

Kameswara S. Vinjamuria,∗, Marco Vountasa, Vladimir Rozanova, Luca3

Lellib, Hartmut Boescha, John P. Burrowsa
4

aInstitute of Environmental Physics, University of Bremen, Bremen, Germany5
bRemote Sensing Technology Institute, German Aerospace Centre (DLR), Wessling,6

Germany7

Abstract8

Accurate cloud phase classification in the near-infrared is challenging due to
the overlapping radiative properties of water, ice, and mixed-phase clouds.
This study presents a new composite Phase Classification Index (PCINIR,DV)
for near-infrared satellite measurements in a dual-viewing geometry. The
index is defined as the product of two physically derived components: (1) a
spectral ratio of top-of-atmosphere radiances at 1.61 µm and 2.25 µm, which
exploits the differences in absorption between water and ice, and (2) a di-
rectional ratio of 0.87 µm radiances from oblique and nadir views, which
are influenced by scattering. Theoretical simulations using the SCIATRAN
radiative transfer model demonstrate that the PCINIR,DV effectively distin-
guishes between pure water and ice clouds, enabling mixed-phase clouds to
be identified. Sensitivities are analyzed for ranges of particle sizes, ice frac-
tions, and surface types. Theoretical results show that water clouds, ex-
cluding thin clouds over snow surfaces, exhibit high PCINIR,DV values (above
3.5), ice clouds yield low values (below 2.75), and intermediate values cor-
respond to mixed-phase clouds. Validation of PCINIR,DV derived from the
Sea and Land Surface Temperature Radiometer (SLSTR) dual-view observa-
tions (onboard Sentinel-3A) against CloudSat-CALIPSO phase classifications
confirms its applicability, yielding 86% classification accuracy, including over
63% for mixed-phase clouds. The results demonstrate that PCINIR,DV pro-
vides a robust physical framework for dual-view satellite missions, which aim
to measure the cloud phase.
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1. Introduction12

The wavelength-dependent solar radiation leaving the cloudy atmosphere13

is strongly influenced by cloud physical properties, such as thermodynamic14

phase, optical thickness and particle size[1–3]. Accurate identification of the15

cloud phase is important for understanding how clouds influence Earth’s radi-16

ation budget [4–6]. Phase identification is also an essential step for satellite-17

based cloud property retrievals [7–10]. Although many techniques exist for18

distinguishing between water and ice clouds in the solar wavelengths, they19

often have limitations in scenes with strong surface reflectance or optically20

thin clouds [2, 11]. In addition to pure-phase clouds such as water and ice,21

mixed-phase clouds (MPC) add more complexities because they contain both22

supercooled liquid droplets and ice crystals. This coexistence of water and23

ice makes radiance signals from MPC resemble those of pure-phase clouds,24

making accurate detection even more challenging [12, 13].25

Various techniques have been developed to discriminate cloud thermody-26

namic phases using passive remote sensing instruments. Chylek et al. [14]27

utilized a simple band ratio approach involving radiances at 0.87 µm and28

1.65 µm, measured by the Multispectral Imager, for separating cloud phases.29

Nagao et al. [13] use shortwave infrared observations from passive sensors30

to characterize cloud phase. Hyperspectral methods in the 1.40 – 1.80 µm31

range are explored by Thompson et al. [8], Knap et al. [15], Acarreta et al.32

[16], Kokhanovsky et al. [17], Ehrlich et al. [18], demonstrating the useful-33

ness of high spectral resolution data for cloud phase classification. However,34

these approaches, which rely on single-view measurements for cloud phase35

classification, have limitations. This is because the satellite only measures36

photons from a single direction, and the classification of cloud phase typically37

relies on bands from this single-view, which raises the problem of spectral38

signature overlap between cloud phases. Since the scattering of non-spherical39

ice crystals differs from spherical water droplets as a function of the viewing40

direction, using combinations of viewing geometries provides additional and41

enhanced directional information, thereby improving cloud phase classifica-42

tion. MPC are particularly difficult to classify because of their occurrence43

with varying proportions of water and ice along with particle sizes [12, 19].44

Despite their relevance, relatively few studies have examined which MPC45
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what conditions the MPC assignment becomes ambiguous [8, 14, 20].47

This study investigates the sensitivity of cloud phase classification in48

the NIR spectral bands, which are commonly used for cloud remote sens-49

ing (0.87 µm, 1.61 µm, 2.25 µm) [21–26]. Section 2 describes the radiative50

transfer setup used in this study. This setup utilizes the radiative transfer51

software package SCIATRAN [27], which accurately simulates spectral and52

directional radiances for varying cloud microphysical properties and surface53

conditions. Section 3 discusses the intrinsic physical properties of water and54

ice, which are crucial for understanding whether absorption or scattering55

dominates in different parts of the spectrum. In Section 4, the sensitivity56

results of the spectral indexes are assessed for various ranges of cloud opti-57

cal and microphysical properties. The best possible index, formulated using58

angular scattering sensitivity at 0.87 µm and spectral absorption differences59

at 1.61 µm and 2.25 µm, is tested for MPC to determine whether it can be60

distinguished from pure-phase clouds. To validate this index, dual-view mea-61

surements from the Sea and Land Surface Temperature Radiometer (SLSTR)62

onboard Sentinel-3A, co-located with cloud phase classifications from the63

CloudSat-CALIPSO product [28] are used (Section 5). Finally, Section 664

concludes the broader implications of these findings for operational remote65

sensing of the cloud phase, especially for dual-view satellite measurements.66

Table 1: Input parameters for radiative transfer simulations using SCIATRAN

Phase Ice, Mixed, Liquid

reff (liquid clouds) 4, 6, 8, 12, 16 µm

Dmax (ice clouds) 45, 90, 135, 180 µm

τ (COD) 1, 3, 5, 10, 15, 20, 30, 50, 80

IFCOD 0, 0.2, 0.4, 0.6, 0.8, 1

CTH - CBH 2.5 km - 2 km

Gas absorption Off

SZA 45◦

Surface type Ocean, Snow

3
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SCIATRAN simulates radiances by solving the vector or scalar radiative68

transfer equation using the discrete ordinates method. This study employs69

a pseudo-spherical geometry for the solar beam to more accurately account70

for atmospheric curvature at high solar zenith angles. The diffuse radiation71

field is treated in a plane-parallel atmosphere. For unpolarized radiation, the72

radiance I(τ, µ, ϕ) as a function of optical depth τ , cosine of zenith angle µ,73

and azimuth angle ϕ satisfies the following integral-differential equation:74

µ
dI(τ, µ, ϕ)

dτ
= − I(τ, µ, ϕ)

+
ω0(τ)

4π

∫ 1

−1

∫ 2π

0

P (µ, ϕ;µ′, ϕ′) · I(τ, µ′, ϕ′) dϕ′dµ′

+ Sps
sun(τ, µ, ϕ) (1)

where ω0 = βsca/βext is the single scattering albedo, P (µ, ϕ;µ′, ϕ′) is phase75

function, and Sps
sun denotes the pseudo-spherical single scattering source term76

arising from the attenuated direct solar beam. The extinction coefficient77

βext(λ) is defined by:78

βext(λ) =

∫
πr2Qext(r, λ;m(λ)) ·N(r) dr, (2)

where Qext is the extinction efficiency, N(r) is the particle size distribu-79

tion, and m(λ) = n(λ) + ik(λ) is the complex refractive index. In this work,80

the refractive index of pure water is taken from [29], whereas ice refractive81

index data followed [30]. The underlying surface’s bidirectional reflectance82

(BRDF) is modeled using physically consistent BRDF models available in83

SCIATRAN [31]. For the ocean surface, the model includes Fresnel reflection84

and a modified Gordon approximation for water-leaving radiance [31, 32]. For85

the snow surface, an asymptotic radiative transfer model for granular media86

is used [33]. The cloud is assumed to be vertically homogeneous within the87

atmospheric column. As with most passive spectrometer-based studies, the88

results presented here primarily represent the effective properties at the cloud89

top. The size distribution of water droplets is assumed to follow a gamma90

distribution [31, 34]. The optical properties of water droplets are calcu-91

lated using the Lorenz–Mie theory [35]. For nonspherical ice particles, the92
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ture of the particles. The optical properties of ice crystals are obtained from94

Yang’s database [36], which provides precomputed values for various ice crys-95

tal habits at different maximal dimensions and wavelengths. Table 1 shows96

the effective radii (reff) for water clouds and maximal dimensions (Dmax) for97

ice clouds that are considered in this study. Previous work has shown that98

the ice crystal shape and its roughness have far less impact compared to their99

effective size [12, 37]. Based on this, a moderately rough solid column habit100

for ice crystals is used in our simulations. Nevertheless, the results presented101

in Fig.2, i.e., scattering phase functions, remain representative and applicable102

for various crystal shapes (not shown here). For MPC, the extinction coeffi-103

cient (βmix
ext ), single scattering albedo (ωmix

0 ), and the phase function (Pmix(θ))104

are defined as:105

βmix
ext = fwβ

water
ext + fiβ

ice
ext, ωmix

0 =
fwω

water
0 βwater

ext + fiω
ice
0 βice

ext

βmix
ext

, (3)

Pmix(θ) =
fwβ

water
sca Pwater(θ) + fiβ

ice
scaP

ice(θ)

fwβwater
sca + fiβice

sca

, (4)

106

where fw and fi = 1− fw are the water and ice volume fractions, respec-107

tively, and βsca = ω0 · βext for each phase. The angle θ in the above equation108

denotes the scattering angle. In terms of cloud optical thickness (COD), the109

ice fraction, denoted as IFcod, is defined as the ratio of the extinction optical110

depth due to ice to the total COD.111

IFCOD =
τice

τice + τwater
, (5)

SCIATRAN simulations are performed for a comprehensive set of combi-112

nations as summarized in Table 1 to evaluate the radiative impact of different113

cloud phases.114

3. Physical Basis115

3.1. Intrinsic Properties116

The refractive index, m(λ), determines absorption and scattering radia-117

tive properties of water and ice, influencing both ω0 and P in Eq. 1. Water118
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Figure 1: The plot shows the spectral variation of complex refractive index (real and
imaginary parts) of water and ice (0.5–2.5 µm). The annotated values at 1.61 µm and
2.25 µm denote the water-to-ice ratio of the imaginary component (k) at those wavelengths.
The vertical lines indicate the wavelengths used throughout the study.

and ice have wavelength-dependent m(λ) as shown in Fig. 1 (the scattering119

and absorption coefficients of water and ice are presented in the appendix120

section: Fig. A.11). The m(λ) of water and ice across the solar spectrum121

provides critical insights into their optical behavior when electromagnetic122

radiation interacts with them. The real part of the refractive index (n) for123

both water and ice decreases gradually with wavelength, indicating a decline124

in scattering efficiency at longer wavelengths. At 0.87 µm, high real compo-125

nent values as compared to imaginary parts indicate that scattering domi-126

nates relatively over absorption. This wavelength is particularly significant127

as water and ice exhibit minimal absorption (low imaginary component, k),128

leading to strong scattering-driven radiative effects. The imaginary compo-129

nent (k) governs absorption and becomes more prominent as the wavelength130

increases, particularly at 1.61 µm and 2.25 µm. As shown in Fig. 1, at131

1.61 µm, the imaginary part of the refractive index of water is approximately132

0.33 times that of ice. In contrast, at 2.25 µm, water’s imaginary compo-133

nent is about 1.84 times that of ice, indicating stronger absorption by water.134

These wavelength-dependent real and imaginary components are crucial for135

distinguishing between the cloud phases, as will be shown in Section 4.136
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Figure 2: Phase function at 0.87 µm of ice (solid column) crystals and water droplets at
different maximal dimensions and effective radii, respectively, for polydisperse distribu-
tions as described in Section 2. The shaded region represents the occurrence of SLSTR
observations used for validation described in Section 5.1.

3.2. Phase function137

Figure 2 presents the phase functions (P) at 0.87 µm for water droplets138

and ice crystals of varying sizes. These angular scattering distributions de-139

scribe how polydisperse particles redirect incident light and contribute di-140

rectly to the source function term in Eq.1. The choice of the wavelength141

0.87 µm is motivated by its minimal absorption and scattering-dominated142

regime, as shown in Fig.1. The phase functions of water droplets at 0.87 µm143

(Fig. 2) are characterized by a pronounced minimum of scattered intensity144

between 110° and 130°. In contrast, ice crystals have higher scattering in this145

range of scattering angles due to side scattering caused by their non-spherical146

form. For scattering angles exceeding 130°, the similarity in scattering magni-147

tudes between water and ice indicates comparable backscattering responses.148

The reduction in scattering between 110° and 130° becomes more pronounced149

as the water droplet size increases. In contrast, the enhanced side scatter-150

ing observed for ice remains prominent across all maximal dimensions. These151

scattering distinctions form a critical physical basis for cloud phase differenti-152

ation. In particular, instruments with dual-view geometries, such as SLSTR,153

which can provide scattering angles between 100° and 120° and 135° and 150°,154

can exploit directional radiances to infer cloud phase.155

7
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4.1. Water and Ice phase clouds157

As discussed in Section 3.1, the imaginary part of the refractive index gov-158

erns the spectral absorption characteristics of cloud particles. At 1.61 µm, ice159

exhibits stronger absorption than water (due to the high imaginary part), re-160

sulting in lower top-of-atmosphere (TOA) radiances. Conversely, at 2.25 µm,161

absorption by water dominates. Also importantly, absorption at 1.61 µm and162

2.25 µm increases with particle size [1, 38]. Since ice crystals are generally163

larger than liquid droplets, this further suppresses the 1.61 µm and 2.25 µm164

TOA radiance in ice clouds. To exploit this spectral and microphysical con-165

trast, we define the Phase Classification Index in the Near-Infrared (PCINIR)166

as the ratio of TOA radiances:167

PCINIR =
Ln
1.61

Ln
2.25

, (6)

Higher PCINIR values indicate water clouds, arising from their compara-168

tively elevated TOA radiances at 1.61 µm relative to ice clouds. In contrast,169

ice clouds exhibit stronger absorption at this wavelength, producing system-170

atically lower PCINIR values. This is illustrated in Fig. 3a, which depicts the171

dependence of PCINIR on COD for water and ice clouds across a range of172

particle sizes above an oceanic surface. The index exhibits a monotonic in-173

crease with COD for water clouds. Ice clouds, by contrast, show consistently174

lower PCINIR values with less sensitivity to Dmax. The contrast between the175

two phases becomes increasingly discernible as COD increases. For COD val-176

ues exceeding 5, PCINIR asymptotically approaches values below 2.5 for ice177

clouds and exceeds 3.0 for water clouds. Optically thin ice clouds (COD ≤ 3)178

show high values from 2.5 to 3.0 above the ocean surface. For the snow sur-179

face conditions, a similar spectral contrast is observed in PCINIR (Fig. 4a),180

but the absolute values are subtly modulated at lower COD values due to181

enhanced surface reflectance. Optically very thin water clouds (COD ≤ 1)182

have typically PCINIR below 2.5 and are very similar to that of ice clouds. As183

the COD increases, COD ≥ 5, the water clouds above the snow surface also184

show high values above 3.0. Ice clouds consistently exhibit PCINIR values185

below 2.5. This distinct phase separation highlights the utility of PCINIR as186

a reliable discriminator of cloud phase under optically thick conditions. A187

threshold value of 3 for PCINIR effectively distinguishes between water and188

ice clouds, with values greater than 3 indicating water clouds and values less189

8
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reflective surface, implying consistency for water and snow surfaces.191
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Ice

Figure 3: PCINIR, PCIDV for water and ice clouds over ocean surface.
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Water
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Figure 4: Same as Figure 3 over snow surface.

To quantitatively exploit the angular contrast in satellite observations,192

and to enhance the discrimination at low COD values, we define a Phase193
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diance observed in an oblique-view geometry to that in a nadir-view geometry195

at 0.87 µm.196

PCIDV =
Lo
0.87

Ln
0.87

, (7)

This ratio emphasizes differences in the angular scattering signatures be-197

tween water and ice clouds, providing a physical discriminator of cloud phase.198

A representative geometric configuration (oblique-view and nadir-view) ob-199

served by satellite is selected to assess the sensitivity of PCIDV. The oblique-200

view case corresponds to a scattering angle of approximately 134◦, defined by201

a solar zenith angle (SZA) of 45◦, a viewing zenith angle (VZA) of 55◦, and202

a relative azimuth angle (RAA) of 120◦. The nadir-view case corresponds to203

a scattering angle near 107◦ (SZA = 45◦, VZA = 30◦, RAA = 30◦). Under204

these conditions, PCIDV is computed as a function of COD, and the results205

are presented in Figure 3b (ocean surface) and Figure 4b (snow surface).206

Above the ocean surface, for COD below 20, the PCIDV for water clouds207

consistently exceeds that of ice clouds, regardless of reff . At lower COD val-208

ues, COD ≤ 3, the PCIDV of water clouds are 1.5 times that of ice clouds.209

As COD exceeds 20, multiple scattering becomes increasingly dominant, at-210

tenuating the directional radiance contrast. This attenuation reduces the211

discriminative capability of PCIDV. However, PCIDV values for water clouds212

remain consistently higher than those for ice clouds across the COD range.213

In the presence of a snow surface (Figure 4), the PCIDV values for optically214

thin clouds (COD ≤ 1) are less distinct for water and ice clouds, owing to215

the angular influence of the underlying snow surface. These findings demon-216

strate that radiances from different viewing angles, particularly at 0.87 µm217

where scattering dominates, are effective in identifying cloud phases even in218

optically thin to moderately thick layers.219

Building upon the complementary sensitivities to enhance the discrimina-220

tion between cloud phases, particularly in optically thin to moderately thick221

conditions, we introduce a composite phase classification index, PCINIR,DV,222

defined as the product of PCINIR and PCIDV.223

PCINIR,DV = PCINIR × PCIDV =

(
Ln
1.61

Ln
2.25

)
×
(
Lo
0.87

Ln
0.87

)
(8)

This approach combines the phase-sensitive absorption features at 1.61 µm224

and 2.25 µm with scattering differences at 0.87 µm. Figure 5 and 6 show225

10
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the ocean and snow surfaces, PCINIR,DV effectively separates water and ice227

cloud phases across a wide range of COD and reff/Dmax values. Water clouds228

consistently exhibit higher PCINIR,DV values typically above 3—regardless of229

surface type, with values exceeding 5 for droplet sizes larger than 12 µm230

and remaining above 3.5 even at COD ≤ 3. Over both the ocean and snow231

surfaces, from the above we conclude that PCINIR,DV can be used to identify232

water and ice cloud phases across a wide range of COD and reff/Dmax values.233

Water clouds generally exhibit higher PCINIR,DV values, typically exceeding234

3.5. Even at COD ≤ 3, water clouds often remain above 3.5 over ocean235

surfaces. However, optically thin water clouds may fall slightly below this236

threshold over snow surfaces. Ice clouds, in contrast, have consistently lower237

values, typically below 2.75, except for optically thin clouds above the ocean238

surface. The PCINIR,DV can be used to more effectively separate the cloud239

phase than methods using only single views of the upwelling radiation. This240

dual-view index combines two physically based indices, PCINIR and PCIDV,241

both of which are sensitive to the distinct optical properties of water and ice242

clouds. As these components tend to produce higher values for water clouds243

and lower values for ice clouds, their product (PCINIR × PCIDV) drives the244

two phases toward opposite ends of the index range, thereby enhancing phase245

discrimination.246
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PCINIR, DV for Water and Ice clouds above ocean

reff = 4.0 µm reff = 6.0 µm reff = 8.0 µm reff = 12.0 µm reff = 16.0 µm

Water Ice

Dmax = 45.0 µm Dmax = 90.0 µm Dmax = 135.0 µm Dmax = 180.0 µm

Figure 5: This plot shows the PCINIR,DV for water and ice clouds over ocean surface. It
is the combined index formed from PCINIR (3a) and PCIDV (3b).
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Figure 6: This plot shows the PCINIR,DV for water and ice clouds over snow surface. It is
the combined index formed from PCINIR (4a) and PCIDV (4b).

4.2. MPC247

As discussed above, the PCINIR,DV values are higher for water clouds and248

lower for ice clouds, due to their contrasting spectral absorption and angular249

scattering properties. This separation defines an intermediate window to250

identify MPC, which exhibits liquid and ice optical characteristics (depending251

on their proportions). To evaluate PCINIR,DV for MPC, we simulate a set252

of cloud configurations by varying COD, IFcod, reff , Dmax as summarized253

in Table 1. The results for MPC sensitivities above the ocean and snow254

surfaces are given in Figure 7 and Figure 8, respectively. These figures show255

the variation of the PCINIR,DV for MPC, arranged in a 5-row by 4-column256

grid. Each row corresponds to a specific IFcod, increasing from top to bottom:257

0.2, 0.4, 0.5, 0.6, and 0.8. Each column represents a different Dmax in the258

MPC for that corresponding IFcod. Each subplot, indicates the variation of259

PCINIR,DV with COD, as a function of reff for the MPC configuration. The260

shaded bands in each plot represent the ranges of PCINIR,DV for pure water261

( IFcod=0) and pure ice clouds ( IFcod=1), providing reference boundaries.262

The figure captures how the PCINIR,DV changes for different combinations of263

COD, IFcod, reff , Dmax, revealing the conditions under which MPC signals264

overlap or can be separated from pure-phase clouds.265

For MPC with an IFcod = 0.2, i.e. low ice fractions (Figure 7a-d) above266

ocean, PCINIR,DV exceeds 4 for optical thin clouds (COD ≤ 3). In this regime,267
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Figure 7: Plots of PCINIR,DV as a function of COD for MPC over ocean. Rows correspond
to increasing IFcod, and columns represent increasing Dmax in the MPC. Green points
show MPC simulations for different reff . Shaded regions indicate the PCINIR,DV ranges
for water and ice clouds, allowing for a visual comparison with MPC cases.

the radiative signature closely resembles that from pure water clouds. As268

COD exceeds 10, PCINIR,DV for MPC gradually decreases and typically falls269
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Figure 8: Same as Figure 7 for MPC over snow surface.

within the intermediate range of 2.75 to 3.5, where spectral signatures begin270

to separate from pure water. MPC containing large water droplets, partic-271

ularly when the effective radius reff exceeds 12 µm, can still resemble pure272

water phase signatures when the ice fraction is low. The PCINIR,DV values273
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tinction, due to the absorption at 1.61 µm and 2.25 µm. Overall, for low275

ice fractions IFcod = 0.2, when the MPC Dmax ≤ 45 µm and reff ≥ 12 µm276

remain largely indistinguishable from pure water phase clouds. For inter-277

mediate ice fractions (IFcod = 0.4, 0.5, and 0.6), (Figure 7e-p), PCINIR,DV is278

consistently different from the pure water cloud regimes across all reff val-279

ues. Optically thin MPC (COD ≤ 3) have values above 3.5 for intermediate280

ice fractions, making their PCINIR,DV less easily distinguishable from those281

of pure water clouds. As COD increases at this ice fraction, the PCINIR,DV282

values fall within the interval 2.5–3.75, gradually separating from both pure-283

phase signatures. For IFcod = 0.6, the PCINIR,DV decreases further, and the284

shift toward ice-like behavior becomes more pronounced. This ice-like be-285

havior is more pronounced for MPC having Dmax ≥ 135 µm. As the IFcod286

reaches 0.6, the influence of reff within the MPC diminishes (Figure 7m-t).287

For MPC with a high ice fraction (IFcod = 0.8, Figure 7q-t), the PCINIR,DV288

is primarily governed by the radiative characteristics of the ice component.289

Across most combinations of particle sizes, the PCINIR,DV values fall below290

2.75, approaching the range typical of ice clouds. When ice crystals are large291

(Dmax ≥ 135 µm), the index fully overlaps with the ice regime across all292

COD levels, showing strong ice-phase features. Overall, for IFcod = 0.8, the293

PCINIR,DV strongly reflects ice-phase optical behavior, with phase discrimi-294

nation becoming challenging. Over snow surfaces (Figure 8), the PCINIR,DV295

values for MPC exhibit similar trends to those observed over the ocean but296

with subtle surface-induced modulation for optically thin clouds (COD ≤ 3).297

At low ice fractions (IFcod = 0.2), MPC with high reff (≥ 12 µm) and low298

Dmax (≤ 90 µm) still exhibit characteristics that overlap with those of pure299

water clouds. Unlike over the oceanic surface, the PCINIR,DV values for the300

optically thin MPC (COD ≤ 3) for IFcod ≥ 0.6 are less than 2.5 due to en-301

hanced surface effects. Optically very thin MPC (COD ≤ 1) above the ice302

(water) surface are hard to discriminate from pure ice (water) clouds using303

NIR bands.304

To summarize, over ocean and snow surfaces, MPC with COD ≥ 3, and305

moderate ice fractions (IFcod = 0.2 − 0.5), exhibit PCINIR,DV values in the306

intermediate range 2.75 to 3.50. When (IFcod = 0.6) the Dmax becomes a307

dominant factor, as Dmax approaches 90 µm and beyond, PCINIR,DV values308

drop below the intermediate range. For MPCs with high ice fractions (0.8),309

distinguishing them from pure ice clouds over ocean and snow surfaces be-310

comes increasingly difficult.311
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Figure 9: SLSTR cloud mask, PCINIR,DV and cloud phase (classified as ice for PCINIR,DV
values below 2.75, above 3.5 as water, and in between as MPC) collocated with 2B-
CLDCLASS-LIDAR product, CC (black line) for one swath on 2020-05-03.
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Figure 10: SLSTR PCINIR,DV matched with cloud phase classification from CloudSat-
Calipso for 2020-05-03

5. Validation312

5.1. Data used313

To validate the PCINIR,DV for a dual-view spaceborne sensor, SLSTR data314

onboard the Sentinel-3A satellite are used for 3rd May 2020 [39]. The valida-315
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phases, including MPC, are frequent. The PCINIR,DV is calculated using317

SLSTR L1B radiance data. SLSTR operates in dual-view mode, with nadir318

and oblique observations (viewing angles of 55°). The data used here are319

500-meter NIR radiances at 0.87 µm, 1.61 µm, and 2.25 µm. In SLSTR dual-320

view observations, both viewing geometries are aligned at the surface level.321

Due to this, clouds exhibit a shift in the along-track direction between both322

views (parallax effect). To ensure that the dual-view observations correspond323

to the same cloud target, a parallax correction based on spatial correlation324

as described in [40] is applied. Once the parallax is corrected, PCINIR,DV325

values are computed using the dual-view radiances from SLSTR. To evaluate326

this index, we validate it with the 2B-CLDCLASS-LIDAR product (CC),327

a merged dataset derived from the radar measurements of Cloud Profiling328

Radar (CPR) (on-board CloudSat) and lidar measurements Cloud-Aerosol329

Lidar with Orthogonal Polarization (CALIOP) (on-board CALIPSO) [41].330

This synergistic product classifies the cloud thermodynamic phase (ice, liq-331

uid, or MPC) based on unique backscattering signatures from CALIOP and332

radar reflectivity from the CPR for up to 10 vertical cloud layers. Within333

this dataset, mixed-phase classification is assigned to cloud layers where lidar334

indicates the presence of liquid water and radar returns exhibit strong reflec-335

tivity. This combination suggests that supercooled droplets and ice particles336

coexist simultaneously. To avoid misclassification, we exclude scenes where337

a thin ice layer lies above water or MPC, since the goal is to identify the338

dominant phase within each matched vertical column.339

In this analysis, the SLSTR PCINIR,DV values and the CC product are340

collocated within a spatial threshold of 1 km and a temporal window of 5-341

minute intervals. The cloud mask is generated using the cloud flags available342

in the SLSTR Level-1B data. However, visual inspection revealed that snow343

surfaces are frequently misclassified as clouds. An additional screening cri-344

terion using Normalized Difference Snow Index (NDSI) is applied to address345

this (NDSI is calculated using 0.87 µm, 1.61 µm bands). The pixels with346

NDSI greater than 0.6 are excluded [42]. Figure 9 shows the SLSTR cloud347

mask and the PCINIR,DV collocated with CC for one swath on 3rd May 2020.348

Only SLSTR pixels identified as cloudy and collocated with CC pixels having349

a cloud fraction greater than 0.8 are included in the comparison to ensure350

consistent cloud coverage. The scattering angles associated with the SLSTR351

dual-view geometry range from 100° to 120° in the nadir-view and 135° to352

150° in the oblique-view, as shown in Figure 2.353
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ofTable 2: Confusion matrix (percentage) for cloud phase classification from SLSTR as com-

pared to the merged dataset CloudSat and CALIOP (CC). The diagonal values represent
correctly classified samples, while off-diagonal values indicate misclassifications.

Phase Total Samples Ice (%) Mixed (%) Water (%)

Ice 2194 87.24% 8.61% 4.15%

Mixed 1213 23.33% 63.73% 12.94%

Water 3677 0.08% 8.19% 91.73%

Overall Accuracy (%) 86%

5.2. Validation Results354

Figure 10 shows the distribution of PCINIR,DV values calculated using355

SLSTR radiances for all swaths on 3rd May 2020, color-coded from cloud356

phases from collocated CC. Based on this distribution and from the theoreti-357

cal sensitivity results, thresholds are selected to categorize the cloud types for358

the confusion matrix. The values below 2.75 are classified as ice, values above359

3.5 as water, and values between these as MPC. Table 2 shows the confu-360

sion matrix, highlighting the percentage of correctly and incorrectly classified361

samples. The diagonal entries show the correct classifications, with ice clouds362

correctly identified in 87.24% of cases and water clouds in 91.73%. MPC,363

which are inherently more difficult to classify due to their spectral overlap364

with pure water and ice, are successfully identified in 63.73% of cases. While365

some misclassification occurred, with 23.33% of MPC being misidentified as366

ice and 12.94% as water, the ability to classify a significant fraction of MPC367

distinctly demonstrates the discriminatory power of PCINIR,DV. The biases368

may also arise from thresholding, as the cloud phase exhibits a continuous369

spectral gradient rather than a discrete classification. The overall classifi-370

cation accuracy of 86% further shows the effectiveness of this dual-view ap-371

proach. For MPC, the accuracy is relatively lower compared to pure-phase372

clouds. However, their distinct spectral signatures suggest that they can be373

detected and monitored in the atmosphere.374

6. Summary375

Cloud phase identification in the near-infrared spectrum is challenging376

due to the overlapping absorption and varying scattering behaviors of wa-377
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ofter, ice, and mixed-phase clouds. Variations in surface reflectance due to378

different surfaces further intensify these challenges. This study proposes a379

physically based index using the PCINIR,DV, defined as the product of two380

complementary quantities:381

• PCINIR, the spectral ratio of top-of-atmosphere radiances at 1.61 µm382

and 2.25 µm. This ratio exploits the difference in the absorption of383

water and ice clouds, having higher values for water clouds and lower384

values for ice clouds.385

• PCIDV, the ratio of radiances at 0.87 µm from oblique and nadir views,386

which exploits angular scattering differences between water and ice.387

This ratio is also higher for water clouds and lower for ice clouds.388

PCINIR and PCIDV are simultaneously high for water clouds and low for389

ice clouds, reflecting their physical dependence on absorption and scatter-390

ing properties. As a result, their product, PCINIR,DV, extends the dynamic391

range of the index and enhances phase separation. This separation pushes392

pure-phase clouds toward opposite ends of the index space. It creates a393

physically intermediate region where clouds with mixed-phase characteris-394

tics fall, depending on their ice fraction, particle sizes, and cloud optical395

thickness. Radiative transfer simulations using SCIATRAN show the effec-396

tiveness and limitations of PCINIR,DV. To validate this index, PCINIR,DV397

calculated from dual-view SLSTR observations are collocated with the cloud398

phase information from CloudSat-CALIPSO. The validation results confirm399

the applicability of PCINIR,DV for cloud phase classification for the dual-view400

satellite measurements. Overall, the method achieved an accuracy of 86%,401

with water and ice clouds correctly classified in more than 87% of cases. For402

MPC, the accuracy was over 63%. These results suggest that the dual-view403

setup helps improve cloud phase detection, especially for complex MPC cases.404

The PCINIR,DV framework provides a physically consistent and adaptable ap-405

proach for the current and next-generation satellite missions with multi-angle406

observation capabilities.407

Appendix A. Scattering and absorption coefficients408

The plot below shows the scattering and absorption coefficients of water409

and ice410
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Figure A.11: The plot shows the Spectral variation of absorption and scattering coefficients
of water (reff = 8 µm) and ice (Dmax = 90 µm) for 0.1 g/m3. The vertical lines indicate
the wavelengths used in this study.
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Highlights

● An index is  formulated from spectral  absorption and angular  scattering properties  of  clouds,
which provides robust separation between water, ice, and mixed-phase clouds for a range of cloud
optical and microphysical properties.

● As the ice fraction in the mixed-phase clouds exceeds 80%, phase discrimination between mixed-
phase and ice clouds in the NIR wavelengths becomes increasingly challenging.
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