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s Abstract

Accurate cloud phase classification in the near-infrared is challenging due to
the overlapping radiative properties of water, ice, and mixed-phase clouds.
This study presents a new composite Phase Classification Index (PClyigr pv)
for near-infrared satellite measurements in a dual-viewing geometry. The
index is defined as the product of two physically derived components: (1) a
spectral ratio of top-of-atmosphere radiances at 1.61 pm and 2.25 pm, which
exploits the differences in absorption between water and ice, and (2) a di-
rectional ratio of 0.87 pm radiances from oblique and nadir views, which
are influenced by scattering. Theoretical simulations using the SCTATRAN
radiative transfer model demonstrate that the PClxig py effectively distin-
guishes between pure water and ice clouds, enabling mixed-phase clouds to
be identified. Sensitivities are analyzed for ranges of particle sizes, ice frac-
tions, and surface types. Theoretical results show that water clouds, ex-
cluding thin clouds over snow surfaces, exhibit high PClIxg py values (above
3.5), ice clouds yield low values (below 2.75), and intermediate values cor-
respond to mixed-phase clouds. Validation of PClng py derived from the
Sea and Land Surface Temperature Radiometer (SLSTR) dual-view observa-
tions (onboard Sentinel-3A) against CloudSat-CALIPSO phase classifications
confirms its applicability, yielding 86% classification accuracy, including over
63% for mixed-phase clouds. The results demonstrate that PClyig py pro-
vides a robust physical framework for dual-view satellite missions, which aim
to measure the cloud phase.
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1. Introduction

The wavelength-dependent solar radiation leaving the cloudy atmosphere
is strongly influenced by cloud physical properties, such as thermodynamic
phase, optical thickness and particle size[1-3]. Accurate identification of the
cloud phase is important for understanding how clouds influence Earth’s radi-
ation budget [4-6]. Phase identification is also an essential step for satellite-
based cloud property retrievals [7—10]. Although many techniques exist for
distinguishing between water and ice clouds in the solar wavelengths, they
often have limitations in scenes with strong surface reflectance or optically
thin clouds |2, 11]. In addition to pure-phase clouds such as water and ice,
mixed-phase clouds (MPC) add more complexities because they contain both
supercooled liquid droplets and ice crystals. This coexistence of water and
ice makes radiance signals from MPC resemble those of pure-phase clouds,
making accurate detection even more challenging [12, 13].

Various techniques have been developed to discriminate cloud thermody-
namic phases using passive remote sensing instruments. Chylek et al. [14]
utilized a simple band ratio approach involving radiances at 0.87 pm and
1.65 pum, measured by the Multispectral Imager, for separating cloud phases.
Nagao et al. [13] use shortwave infrared observations from passive sensors
to characterize cloud phase. Hyperspectral methods in the 1.40 — 1.80 pm
range are explored by Thompson et al. [8], Knap et al. [15], Acarreta et al.
[16], Kokhanovsky et al. [17]|, Ehrlich et al. [18], demonstrating the useful-
ness of high spectral resolution data for cloud phase classification. However,
these approaches, which rely on single-view measurements for cloud phase
classification, have limitations. This is because the satellite only measures
photons from a single direction, and the classification of cloud phase typically
relies on bands from this single-view, which raises the problem of spectral
signature overlap between cloud phases. Since the scattering of non-spherical
ice crystals differs from spherical water droplets as a function of the viewing
direction, using combinations of viewing geometries provides additional and
enhanced directional information, thereby improving cloud phase classifica-
tion. MPC are particularly difficult to classify because of their occurrence
with varying proportions of water and ice along with particle sizes [12, 19].
Despite their relevance, relatively few studies have examined which MPC



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

occurrences are spectrally distinguishable in the solar NIR bands and under
what conditions the MPC assignment becomes ambiguous [8, 14, 20].

This study investigates the sensitivity of cloud phase classification in
the NIR spectral bands, which are commonly used for cloud remote sens-
ing (0.87 pm, 1.61 pm, 2.25 pm) [21-26]. Section 2 describes the radiative
transfer setup used in this study. This setup utilizes the radiative transfer
software package SCIATRAN [27], which accurately simulates spectral and
directional radiances for varying cloud microphysical properties and surface
conditions. Section 3 discusses the intrinsic physical properties of water and
ice, which are crucial for understanding whether absorption or scattering
dominates in different parts of the spectrum. In Section 4, the sensitivity
results of the spectral indexes are assessed for various ranges of cloud opti-
cal and microphysical properties. The best possible index, formulated using
angular scattering sensitivity at 0.87 pum and spectral absorption differences
at 1.61 pm and 2.25 pm, is tested for MPC to determine whether it can be
distinguished from pure-phase clouds. To validate this index, dual-view mea-
surements from the Sea and Land Surface Temperature Radiometer (SLSTR)
onboard Sentinel-3A, co-located with cloud phase classifications from the
CloudSat-CALIPSO product [28] are used (Section 5). Finally, Section 6
concludes the broader implications of these findings for operational remote
sensing of the cloud phase, especially for dual-view satellite measurements.

Table 1: Input parameters for radiative transfer simulations using SCTATRAN

Phase Ice, Mixed, Liquid

ref (liquid clouds) 4,6, 8,12, 16 ym

Diyax (ice clouds) 45, 90, 135, 180 pm

7 (COD) 1, 3, 5, 10, 15, 20, 30, 50, 80
IFcop 0,0.2,0.4,0.6,0.8,1

CTH - CBH 2.5 km - 2 km

Gas absorption Oft

SZA 45°

Surface type Ocean, Snow
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2. Radiative Transfer Parametrization

SCIATRAN simulates radiances by solving the vector or scalar radiative
transfer equation using the discrete ordinates method. This study employs
a pseudo-spherical geometry for the solar beam to more accurately account
for atmospheric curvature at high solar zenith angles. The diffuse radiation
field is treated in a plane-parallel atmosphere. For unpolarized radiation, the
radiance (7, i, ) as a function of optical depth 7, cosine of zenith angle p,
and azimuth angle ¢ satisfies the following integral-differential equation:

ud] (1,11, 0)

dr = —I(T,M,(b)

wo(r) (1 [* o " ddl di
. ) do'd
* /1/0 P(u, o315 ¢") - I(1, 1, ¢') dd'dp

41

+ S8 (T, 1, @) (1)

where wy = Ssea/Bext 18 the single scattering albedo, P(u, ¢; i/, ¢') is phase
function, and SP? denotes the pseudo-spherical single scattering source term
arising from the attenuated direct solar beam. The extinction coefficient

Bext(A) is defined by:

Bext(A) = /7r’r2 Qext (1, A\;m(X)) - N(r) dr, (2)

where Qe is the extinction efficiency, N(r) is the particle size distribu-
tion, and m(\) = n(\) +ik(X) is the complex refractive index. In this work,
the refractive index of pure water is taken from [29], whereas ice refractive
index data followed [30]. The underlying surface’s bidirectional reflectance
(BRDF) is modeled using physically consistent BRDF models available in
SCIATRAN [31]. For the ocean surface, the model includes Fresnel reflection
and a modified Gordon approximation for water-leaving radiance [31, 32|. For
the snow surface, an asymptotic radiative transfer model for granular media
is used [33]. The cloud is assumed to be vertically homogeneous within the
atmospheric column. As with most passive spectrometer-based studies, the
results presented here primarily represent the effective properties at the cloud
top. The size distribution of water droplets is assumed to follow a gamma
distribution [31, 34]. The optical properties of water droplets are calcu-
lated using the Lorenz—Mie theory [35]. For nonspherical ice particles, the
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gamma distribution function is employed to represent the polydisperse na-
ture of the particles. The optical properties of ice crystals are obtained from
Yang’s database [36], which provides precomputed values for various ice crys-
tal habits at different maximal dimensions and wavelengths. Table 1 shows
the effective radii (reg) for water clouds and maximal dimensions (D) for
ice clouds that are considered in this study. Previous work has shown that
the ice crystal shape and its roughness have far less impact compared to their
effective size [12, 37]. Based on this, a moderately rough solid column habit
for ice crystals is used in our simulations. Nevertheless, the results presented
in Fig.2, i.e., scattering phase functions, remain representative and applicable
for various crystal shapes (not shown here). For MPC, the extinction coeffi-
cient (S™x) single scattering albedo (w§"™*), and the phase function (P™*(0))

ext
are defined as:

water Qwater ice Rice
mix __ f water + f ice wmix _ A fww() 6cxt + fin ext (3)
ext T JwHext 1M ext) 0 Ko mix )

ext

_ fwﬁgfgterpwater(e) + fiﬁé(c:ipice(e)
fwﬂ:gter + fi égz ’

P™™(9) (4)

where f, and f; =1 — f, are the water and ice volume fractions, respec-
tively, and [ya = wo * Pext for each phase. The angle # in the above equation
denotes the scattering angle. In terms of cloud optical thickness (COD), the
ice fraction, denoted as IF yq, is defined as the ratio of the extinction optical
depth due to ice to the total COD.
Tice
(5)
SCIATRAN simulations are performed for a comprehensive set of combi-

nations as summarized in Table 1 to evaluate the radiative impact of different
cloud phases.

[Fcop = ——,
Tice + Twater

3. Physical Basis

3.1. Intrinsic Properties

The refractive index, m(A), determines absorption and scattering radia-
tive properties of water and ice, influencing both wy and P in Eq. 1. Water
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Figure 1: The plot shows the spectral variation of complex refractive index (real and
imaginary parts) of water and ice (0.5-2.5 pm). The annotated values at 1.61 pm and
2.25 pm denote the water-to-ice ratio of the imaginary component (k) at those wavelengths.
The vertical lines indicate the wavelengths used throughout the study.

and ice have wavelength-dependent m(\) as shown in Fig. 1 (the scattering
and absorption coefficients of water and ice are presented in the appendix
section: Fig. A.11). The m(\) of water and ice across the solar spectrum
provides critical insights into their optical behavior when electromagnetic
radiation interacts with them. The real part of the refractive index (n) for
both water and ice decreases gradually with wavelength, indicating a decline
in scattering efficiency at longer wavelengths. At 0.87 pm, high real compo-
nent values as compared to imaginary parts indicate that scattering domi-
nates relatively over absorption. This wavelength is particularly significant
as water and ice exhibit minimal absorption (low imaginary component, k),
leading to strong scattering-driven radiative effects. The imaginary compo-
nent (k) governs absorption and becomes more prominent as the wavelength
increases, particularly at 1.61 pm and 2.25 pm. As shown in Fig. 1, at
1.61 pm, the imaginary part of the refractive index of water is approximately
0.33 times that of ice. In contrast, at 2.25 pm, water’s imaginary compo-
nent is about 1.84 times that of ice, indicating stronger absorption by water.
These wavelength-dependent real and imaginary components are crucial for
distinguishing between the cloud phases, as will be shown in Section 4.
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Figure 2: Phase function at 0.87 pm of ice (solid column) crystals and water droplets at
different maximal dimensions and effective radii, respectively, for polydisperse distribu-
tions as described in Section 2. The shaded region represents the occurrence of SLSTR
observations used for validation described in Section 5.1.

8.2. Phase function

Figure 2 presents the phase functions (P) at 0.87 pm for water droplets
and ice crystals of varying sizes. These angular scattering distributions de-
scribe how polydisperse particles redirect incident light and contribute di-
rectly to the source function term in Eq.1. The choice of the wavelength
0.87 pm is motivated by its minimal absorption and scattering-dominated
regime, as shown in Fig.1. The phase functions of water droplets at 0.87 pm
(Fig. 2) are characterized by a pronounced minimum of scattered intensity
between 110° and 130°. In contrast, ice crystals have higher scattering in this
range of scattering angles due to side scattering caused by their non-spherical
form. For scattering angles exceeding 130°, the similarity in scattering magni-
tudes between water and ice indicates comparable backscattering responses.
The reduction in scattering between 110° and 130° becomes more pronounced
as the water droplet size increases. In contrast, the enhanced side scatter-
ing observed for ice remains prominent across all maximal dimensions. These
scattering distinctions form a critical physical basis for cloud phase differenti-
ation. In particular, instruments with dual-view geometries, such as SLSTR,
which can provide scattering angles between 100° and 120° and 135° and 150°,
can exploit directional radiances to infer cloud phase.

7
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4. Sensitivity results

4.1. Water and Ice phase clouds

As discussed in Section 3.1, the imaginary part of the refractive index gov-
erns the spectral absorption characteristics of cloud particles. At 1.61 um, ice
exhibits stronger absorption than water (due to the high imaginary part), re-
sulting in lower top-of-atmosphere (TOA) radiances. Conversely, at 2.25 pm,
absorption by water dominates. Also importantly, absorption at 1.61 pm and
2.25 pm increases with particle size [1, 38|. Since ice crystals are generally
larger than liquid droplets, this further suppresses the 1.61 pm and 2.25 pm
TOA radiance in ice clouds. To exploit this spectral and microphysical con-
trast, we define the Phase Classification Index in the Near-Infrared (PClyr)
as the ratio of TOA radiances:

L111.61 (6)
L3’

Higher PCIyr values indicate water clouds, arising from their compara-
tively elevated TOA radiances at 1.61 pm relative to ice clouds. In contrast,
ice clouds exhibit stronger absorption at this wavelength, producing system-
atically lower PCIyig values. This is illustrated in Fig. 3a, which depicts the
dependence of PClyir on COD for water and ice clouds across a range of
particle sizes above an oceanic surface. The index exhibits a monotonic in-
crease with COD for water clouds. Ice clouds, by contrast, show consistently
lower PClIyr values with less sensitivity to Dy,... The contrast between the
two phases becomes increasingly discernible as COD increases. For COD val-
ues exceeding 5, PCIyg asymptotically approaches values below 2.5 for ice
clouds and exceeds 3.0 for water clouds. Optically thin ice clouds (COD < 3)
show high values from 2.5 to 3.0 above the ocean surface. For the snow sur-
face conditions, a similar spectral contrast is observed in PClyr (Fig. 4a),
but the absolute values are subtly modulated at lower COD values due to
enhanced surface reflectance. Optically very thin water clouds (COD < 1)
have typically PClyig below 2.5 and are very similar to that of ice clouds. As
the COD increases, COD > 5, the water clouds above the snow surface also
show high values above 3.0. Ice clouds consistently exhibit PClyr values
below 2.5. This distinct phase separation highlights the utility of PCIyr as
a reliable discriminator of cloud phase under optically thick conditions. A
threshold value of 3 for PCIygr effectively distinguishes between water and
ice clouds, with values greater than 3 indicating water clouds and values less

PClyr =



1o than 3 indicating ice clouds. The separation remains robust under a highly
w1 reflective surface, implying consistency for water and snow surfaces.

PClnir, PClpy for Water and Ice clouds above ocean
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Figure 3: PClnir, PClpy for water and ice clouds over ocean surface.

PClnir, PClpy for Water and Ice clouds above snow
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Figure 4: Same as Figure 3 over snow surface.

192 To quantitatively exploit the angular contrast in satellite observations,
13 and to enhance the discrimination at low COD values, we define a Phase
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Classification Index for Dual-View observations (PClpy), as the ratio of ra-
diance observed in an oblique-view geometry to that in a nadir-view geometry
at 0.87 pm.

PCIDV = 23'87, (7)
0.87

This ratio emphasizes differences in the angular scattering signatures be-
tween water and ice clouds, providing a physical discriminator of cloud phase.
A representative geometric configuration (oblique-view and nadir-view) ob-
served by satellite is selected to assess the sensitivity of PCIpy. The oblique-
view case corresponds to a scattering angle of approximately 134°, defined by
a solar zenith angle (SZA) of 45°, a viewing zenith angle (VZA) of 55°, and
a relative azimuth angle (RAA) of 120°. The nadir-view case corresponds to
a scattering angle near 107° (SZA = 45°, VZA = 30°, RAA = 30°). Under
these conditions, PClIpy is computed as a function of COD, and the results
are presented in Figure 3b (ocean surface) and Figure 4b (snow surface).

Above the ocean surface, for COD below 20, the PClpy for water clouds
consistently exceeds that of ice clouds, regardless of r.g. At lower COD val-
ues, COD < 3, the PClIpy of water clouds are 1.5 times that of ice clouds.
As COD exceeds 20, multiple scattering becomes increasingly dominant, at-
tenuating the directional radiance contrast. This attenuation reduces the
discriminative capability of PClpy. However, PClpy values for water clouds
remain consistently higher than those for ice clouds across the COD range.
In the presence of a snow surface (Figure 4), the PClpy values for optically
thin clouds (COD < 1) are less distinct for water and ice clouds, owing to
the angular influence of the underlying snow surface. These findings demon-
strate that radiances from different viewing angles, particularly at 0.87 pm
where scattering dominates, are effective in identifying cloud phases even in
optically thin to moderately thick layers.

Building upon the complementary sensitivities to enhance the discrimina-
tion between cloud phases, particularly in optically thin to moderately thick
conditions, we introduce a composite phase classification index, PCligr pv,
defined as the product of PClyr and PClpy.

o Lo
PCINIR,DV - PCINIR X PCIDV = ( 1'61> X <087> (8)

L3 5 Ljgr
This approach combines the phase-sensitive absorption features at 1.61 pm
and 2.25 pm with scattering differences at 0.87 pym. Figure 5 and 6 show

10
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PClygr pv varies with COD above the ocean and snow surface. Over both
the ocean and snow surfaces, PClxig py effectively separates water and ice
cloud phases across a wide range of COD and 7o/ Diax values. Water clouds
consistently exhibit higher PClIyig py values typically above 3—regardless of
surface type, with values exceeding 5 for droplet sizes larger than 12 pm
and remaining above 3.5 even at COD < 3. Over both the ocean and snow
surfaces, from the above we conclude that PClxir pv can be used to identify
water and ice cloud phases across a wide range of COD and 7/ Dppax values.
Water clouds generally exhibit higher PClng py values, typically exceeding
3.5. Even at COD < 3, water clouds often remain above 3.5 over ocean
surfaces. However, optically thin water clouds may fall slightly below this
threshold over snow surfaces. Ice clouds, in contrast, have consistently lower
values, typically below 2.75, except for optically thin clouds above the ocean
surface. The PClyr pv can be used to more effectively separate the cloud
phase than methods using only single views of the upwelling radiation. This
dual-view index combines two physically based indices, PCIyr and PClpy,
both of which are sensitive to the distinct optical properties of water and ice
clouds. As these components tend to produce higher values for water clouds
and lower values for ice clouds, their product (PCIxr x PClpy) drives the
two phases toward opposite ends of the index range, thereby enhancing phase
discrimination.

PClnir, pv for Water and Ice clouds above ocean
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Figure 5: This plot shows the PCInig py for water and ice clouds over ocean surface. It
is the combined index formed from PCIyir (3a) and PCIpy (3b).
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PClnir, pv for Water and Ice clouds above snow
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Figure 6: This plot shows the PCInr,pv for water and ice clouds over snow surface. It is
the combined index formed from PCInr (4a) and PCIpy (4b).

4.2. MPC

As discussed above, the PClyg py values are higher for water clouds and
lower for ice clouds, due to their contrasting spectral absorption and angular
scattering properties. This separation defines an intermediate window to
identify MPC, which exhibits liquid and ice optical characteristics (depending
on their proportions). To evaluate PClxig,py for MPC, we simulate a set
of cloud configurations by varying COD, IF..q, 7eg, Dmax as summarized
in Table 1. The results for MPC sensitivities above the ocean and snow
surfaces are given in Figure 7 and Figure 8, respectively. These figures show
the variation of the PClyig py for MPC, arranged in a 5-row by 4-column
grid. Each row corresponds to a specific IFyq, increasing from top to bottom:
0.2, 0.4, 0.5, 0.6, and 0.8. Each column represents a different D,,.. in the
MPC for that corresponding IF..q. Each subplot, indicates the variation of
PClInir,pv with COD, as a function of r.g for the MPC configuration. The
shaded bands in each plot represent the ranges of PClyig pv for pure water
( IFcoa=0) and pure ice clouds ( IF.q=1), providing reference boundaries.
The figure captures how the PClnig pv changes for different combinations of
COD, IF oq, Teff, Dmax, revealing the conditions under which MPC signals
overlap or can be separated from pure-phase clouds.

For MPC with an IF.,q = 0.2, i.e. low ice fractions (Figure 7a-d) above
ocean, PClIyig pv exceeds 4 for optical thin clouds (COD < 3). In this regime,
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Figure 7: Plots of PCIxir,py as a function of COD for MPC over ocean. Rows correspond
to increasing IF..q, and columns represent increasing D.x in the MPC. Green points
show MPC simulations for different 7.g. Shaded regions indicate the PCInir,pv ranges
for water and ice clouds, allowing for a visual comparison with MPC cases.

s the radiative signature closely resembles that from pure water clouds. As
20 COD exceeds 10, PClyg py for MPC gradually decreases and typically falls

13



270

271

272

273

PClnig, pv for MPC above snow

IFcop = 0.20, Dmax = 45.0 ym IFcop = 0.20, Dmax = 90.0 ym IFcop = 0.20, Dmax = 135.0 ym  IFcop = 0.20, Dmax = 180.0 pm

67(a) (b) (c) (d)
16.00 16.00 16.00 16.00
5
>
24 2558 g oo e . oo 4fo0 4loo
£ 4% i R 3 T 8 iwraa .
SEXE CELA A 8 gee6 ¢ 6 g 668 & ¢ H $886 ¢ 8 &
> & 45.00 & 4500 | & 4%.00 & 45.00
180.00 180.00 180.00 180'00
1
IFcop = 0.40, Dmax = 45.0 um IFcop = 0.40, Dimax = 90.0 um IFcop = 0.40, Dmax = 135.0 ym IFcop = 0.40, Dinax = 180.0 um
61(e) () (9) (h)
16.00 16.00 16.00 16.00
5
>
24 4{00 4l0o 4loo 4l00
H
2| oy |
g
EEEE b 8 st 8 & (Esess s &l |sEsas 5 a,
18000 180,00 180.00 1€ 180.00
1
IFcop = 0.50, Do = 45.0 um  IFcop = 0.50, Dynay = 90.0 ym IFcop = 0.50, Dy = 135.0 um  IFcop = 0.50, Dynay = 180.0 um
61(i) 4) (k) 0]
16.00 16.00 16.00 16.00
5
>
24 4{00 400 4l00 400
H
o3
| gegE & & B8
¢ &g & &
' Yo, |¢ Bl (MO2RE 8 Mo \RMBRA_ 8. Mo,

-

Fcop = 0.60, Dmax = 45.0 ym IFcop = 0.60, Dmax = 90.0 pm IFcop = 0.60, Dmax = 135.0 ym  IFcop = 0.60, Dmax = 180.0 pm

67(m) (n) (o) (p)
1$.00 16.00 16.00 15.00
5
3,
3 400 4{00 4{00 4{00
H
23 Bees
L & 8
2 So, (RB20 88 Mo (Mems.s b ais, | Messs 6%,
1
IFcop = 0.80, Dpax = 45.0 um IFcop = 0.80, Dpax = 90.0 ym  [Fcop = 0.80, Dypax = 135.0 um  IFcop = 0.80, Dyax = 180.0 um
61(a) ( (s) (t)
16.00 16.00 16.00 16.00
5
3,
& 4f00 400 400 400
G3
= |®esn & @500 | 00 45,00 45,00
2 10.00 &84 & & 4588, {Mewn = a agooo ey 2 a &§0.00
1
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 [ 20 40 60 80
CODxotal CODotal CODxotal CODtotal
O  MPC (reff = 4.0 um) O MPC (reff = 6.0 um) <& MPC (refs = 8.0 um) % MPC (ref = 12.0 pm) 8 MPC (reff = 16.0 pm)
Water clouds (shaded) Ice clouds (shaded)

Figure 8: Same as Figure 7 for MPC over snow surface.

within the intermediate range of 2.75 to 3.5, where spectral signatures begin
to separate from pure water. MPC containing large water droplets, partic-
ularly when the effective radius reg exceeds 12 pum, can still resemble pure
water phase signatures when the ice fraction is low. The PClyig pv values
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decrease with increasing D., because larger ice crystals increase the ex-
tinction, due to the absorption at 1.61 pm and 2.25 pm. Overall, for low
ice fractions IF.,q = 0.2, when the MPC D, < 45 pm and r.g > 12 pm
remain largely indistinguishable from pure water phase clouds. For inter-
mediate ice fractions (IFeq = 0.4, 0.5, and 0.6), (Figure 7e-p), PClxir pv is
consistently different from the pure water cloud regimes across all rog val-
ues. Optically thin MPC (COD < 3) have values above 3.5 for intermediate
ice fractions, making their PClymg py less easily distinguishable from those
of pure water clouds. As COD increases at this ice fraction, the PClxig pv
values fall within the interval 2.5-3.75, gradually separating from both pure-
phase signatures. For IF.,q = 0.6, the PCInr py decreases further, and the
shift toward ice-like behavior becomes more pronounced. This ice-like be-
havior is more pronounced for MPC having D, > 135 pm. As the IF.oq
reaches 0.6, the influence of 7. within the MPC diminishes (Figure 7m-t).
For MPC with a high ice fraction (IF.q = 0.8, Figure 7q-t), the PClxr pv
is primarily governed by the radiative characteristics of the ice component.
Across most combinations of particle sizes, the PCIni py values fall below
2.75, approaching the range typical of ice clouds. When ice crystals are large
(Dmax = 135 pum), the index fully overlaps with the ice regime across all
COD levels, showing strong ice-phase features. Overall, for I[F.,q = 0.8, the
PClnir,pv strongly reflects ice-phase optical behavior, with phase discrimi-
nation becoming challenging. Over snow surfaces (Figure 8), the PCIxr pv
values for MPC exhibit similar trends to those observed over the ocean but
with subtle surface-induced modulation for optically thin clouds (COD < 3).
At low ice fractions (IF.q = 0.2), MPC with high r.g (> 12 pm) and low
Diax (<90 pm) still exhibit characteristics that overlap with those of pure
water clouds. Unlike over the oceanic surface, the PClxig py values for the
optically thin MPC (COD < 3) for IF.,q > 0.6 are less than 2.5 due to en-
hanced surface effects. Optically very thin MPC (COD < 1) above the ice
(water) surface are hard to discriminate from pure ice (water) clouds using
NIR bands.

To summarize, over ocean and snow surfaces, MPC with COD > 3, and
moderate ice fractions (IF.,q = 0.2 — 0.5), exhibit PClyig py values in the
intermediate range 2.75 to 3.50. When (IF.,q = 0.6) the D, becomes a
dominant factor, as Dp.x approaches 90 pm and beyond, PClxig pv values
drop below the intermediate range. For MPCs with high ice fractions (0.8),
distinguishing them from pure ice clouds over ocean and snow surfaces be-
comes increasingly difficult.
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Figure 9: SLSTR cloud mask, PCInir,pv and cloud phase (classified as ice for PCInir,pv
values below 2.75, above 3.5 as water, and in between as MPC) collocated with 2B-
CLDCLASS-LIDAR product, CC (black line) for one swath on 2020-05-03.
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Calipso for 2020-05-03
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5. Validation
5.1. Data used

To validate the PClyig pv for a dual-view spaceborne sensor, SLSTR data
onboard the Sentinel-3A satellite are used for 3rd May 2020 [39]. The valida-
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tion focuses on higher latitudes (above 60°N), where all cloud thermodynamic
phases, including MPC, are frequent. The PClyg py is calculated using
SLSTR L1B radiance data. SLSTR operates in dual-view mode, with nadir
and oblique observations (viewing angles of 55°). The data used here are
500-meter NIR radiances at 0.87 pm, 1.61 um, and 2.25 pm. In SLSTR dual-
view observations, both viewing geometries are aligned at the surface level.
Due to this, clouds exhibit a shift in the along-track direction between both
views (parallax effect). To ensure that the dual-view observations correspond
to the same cloud target, a parallax correction based on spatial correlation
as described in [40] is applied. Once the parallax is corrected, PClyig pv
values are computed using the dual-view radiances from SLSTR. To evaluate
this index, we validate it with the 2B-CLDCLASS-LIDAR product (CC),
a merged dataset derived from the radar measurements of Cloud Profiling
Radar (CPR) (on-board CloudSat) and lidar measurements Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) (on-board CALIPSO) [41].
This synergistic product classifies the cloud thermodynamic phase (ice, lig-
uid, or MPC) based on unique backscattering signatures from CALIOP and
radar reflectivity from the CPR for up to 10 vertical cloud layers. Within
this dataset, mixed-phase classification is assigned to cloud layers where lidar
indicates the presence of liquid water and radar returns exhibit strong reflec-
tivity. This combination suggests that supercooled droplets and ice particles
coexist simultaneously. To avoid misclassification, we exclude scenes where
a thin ice layer lies above water or MPC, since the goal is to identify the
dominant phase within each matched vertical column.

In this analysis, the SLSTR PClyigr pv values and the CC product are
collocated within a spatial threshold of 1 km and a temporal window of 5-
minute intervals. The cloud mask is generated using the cloud flags available
in the SLSTR Level-1B data. However, visual inspection revealed that snow
surfaces are frequently misclassified as clouds. An additional screening cri-
terion using Normalized Difference Snow Index (NDSI) is applied to address
this (NDSI is calculated using 0.87 pm, 1.61 pm bands). The pixels with
NDST greater than 0.6 are excluded [42]. Figure 9 shows the SLSTR cloud
mask and the PClIyg pv collocated with CC for one swath on 3rd May 2020.
Only SLSTR pixels identified as cloudy and collocated with CC pixels having
a cloud fraction greater than 0.8 are included in the comparison to ensure
consistent cloud coverage. The scattering angles associated with the SLSTR
dual-view geometry range from 100° to 120° in the nadir-view and 135° to
150% in the oblique-view, as shown in Figure 2.
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Table 2: Confusion matrix (percentage) for cloud phase classification from SLSTR as com-
pared to the merged dataset CloudSat and CALIOP (CC). The diagonal values represent
correctly classified samples, while off-diagonal values indicate misclassifications.

Phase Total Samples | Ice (%) | Mixed (%) | Water (%)
Ice 2194 87.24% 8.61% 4.15%
Mixed 1213 23.33% 63.73% 12.94%
Water 3677 0.08% 8.19% 91.73%
Overall Accuracy (%) 86%

5.2. Validation Results

Figure 10 shows the distribution of PClymg py values calculated using
SLSTR radiances for all swaths on 3rd May 2020, color-coded from cloud
phases from collocated CC. Based on this distribution and from the theoreti-
cal sensitivity results, thresholds are selected to categorize the cloud types for
the confusion matrix. The values below 2.75 are classified as ice, values above
3.5 as water, and values between these as MPC. Table 2 shows the confu-
sion matrix, highlighting the percentage of correctly and incorrectly classified
samples. The diagonal entries show the correct classifications, with ice clouds
correctly identified in 87.24% of cases and water clouds in 91.73%. MPC,
which are inherently more difficult to classify due to their spectral overlap
with pure water and ice, are successfully identified in 63.73% of cases. While
some misclassification occurred, with 23.33% of MPC being misidentified as
ice and 12.94% as water, the ability to classify a significant fraction of MPC
distinctly demonstrates the discriminatory power of PClnig py. The biases
may also arise from thresholding, as the cloud phase exhibits a continuous
spectral gradient rather than a discrete classification. The overall classifi-
cation accuracy of 86% further shows the effectiveness of this dual-view ap-
proach. For MPC, the accuracy is relatively lower compared to pure-phase
clouds. However, their distinct spectral signatures suggest that they can be
detected and monitored in the atmosphere.

6. Summary

Cloud phase identification in the near-infrared spectrum is challenging
due to the overlapping absorption and varying scattering behaviors of wa-

18



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

ter, ice, and mixed-phase clouds. Variations in surface reflectance due to
different surfaces further intensify these challenges. This study proposes a
physically based index using the PClIynir py, defined as the product of two
complementary quantities:

e PClyrr, the spectral ratio of top-of-atmosphere radiances at 1.61 pm
and 2.25 pm. This ratio exploits the difference in the absorption of
water and ice clouds, having higher values for water clouds and lower
values for ice clouds.

e PClpy, the ratio of radiances at 0.87 pm from oblique and nadir views,
which exploits angular scattering differences between water and ice.
This ratio is also higher for water clouds and lower for ice clouds.

PClIyig and PClpy are simultaneously high for water clouds and low for
ice clouds, reflecting their physical dependence on absorption and scatter-
ing properties. As a result, their product, PClxr pv, extends the dynamic
range of the index and enhances phase separation. This separation pushes
pure-phase clouds toward opposite ends of the index space. It creates a
physically intermediate region where clouds with mixed-phase characteris-
tics fall, depending on their ice fraction, particle sizes, and cloud optical
thickness. Radiative transfer simulations using SCIATRAN show the effec-
tiveness and limitations of PClyg py. To validate this index, PClxig pv
calculated from dual-view SLSTR observations are collocated with the cloud
phase information from CloudSat-CALIPSO. The validation results confirm
the applicability of PClyig, pv for cloud phase classification for the dual-view
satellite measurements. Overall, the method achieved an accuracy of 86%,
with water and ice clouds correctly classified in more than 87% of cases. For
MPC, the accuracy was over 63%. These results suggest that the dual-view
setup helps improve cloud phase detection, especially for complex MPC cases.
The PClyir pv framework provides a physically consistent and adaptable ap-
proach for the current and next-generation satellite missions with multi-angle
observation capabilities.

Appendix A. Scattering and absorption coefficients

The plot below shows the scattering and absorption coefficients of water
and ice
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Figure A.11: The plot shows the Spectral variation of absorption and scattering coefficients
of water (reg = 8 pm) and ice (Dyax = 90 pm) for 0.1 g/m®. The vertical lines indicate
the wavelengths used in this study.

Data availability

SCIATRAN is available for access from the Institute of Environmental
Physics (IUP) (https://www.iup.uni-bremen.de/sciatran/). Contains modi-
fied Copernicus Sentinel data [2020]. The SLSTR L1B data can be accessed
from the Copernicus Data Space Ecosystem (CDSE)
https://browser.dataspace.copernicus.eu/. The 2B-CLDCLASS-LIDAR data
can be accessed at
https://www.cloudsat.cira.colostate.edu/data-products/2b-cldclass-lidar; last
access: February 2024.
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Highlights

An index is formulated from spectral absorption and angular scattering properties of clouds,
which provides robust separation between water, ice, and mixed-phase clouds for a range of cloud
optical and microphysical properties.

As the ice fraction in the mixed-phase clouds exceeds 80%, phase discrimination between mixed-
phase and ice clouds in the NIR wavelengths becomes increasingly challenging.
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