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DLR User Service OpAIRS

» Team at DLR Earth Observation Center (EOC)
Oberpfaffenhofen

= Operates and calibrates airborne and ground
based earth observation spectrometers

» Builds upon more than 30 years of expertise
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Airborne Sensor Systems

HySpex-B

» HySpex VNIR-3000N + SWIR-384
* N — Nyquist (sampled)

= Operational since 2023

» Typical hyperspectral sensor

HySpex (EnMAP demonstrator)

* HySpex VNIR-1600 + SWIR-320me
» Acquired for EnNMAP preparation in 2011

» Extensively calibrated

A. Baumgartner | DLR Earth Observation Center | 14.10.2025



Calibration Home Base (CHB)

= Operational since 2007

= Calibration of
= angular response
= spectral response
» radiometric response
= polarization
* non-linearity
= stray light
» temperature sensitivity

= Continuous development
» Instruments: HySpex, AVIRIS-4, “EnMAPY, ...
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Spectral Calibration Results for VNIR-3000N

Similar information is available since 2012 for the original HySpex System DLR
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We were quite optimistic in 2013 ... #7
DLR

» State-of-the-art sensor system
» Extensive knowledge about key calibration data

» EXpected to see significant improvements in surface reflectance and derived EO
products

* This hope never materialized

What was going on?
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What we learned #7
DLR

= Atmospheric Correction assumes Gaussian SRFs (free-form not supported)

* FWHM and shape are assumed to be constant within one band. Center
wavelengths (smile/keystone) are allowed to change, though.

* VNIR and SWIR spectra are interpolated to common spatial grid before
Atmospheric Correction (to enable combined VNIR/SWIR treatment)

A lot of measurements did not find their way into derived products!
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Question #7
DLR

Is it possible to create a at aperture radiance product, which ...

= ...enables users to profit from all our calibration measurements
(e.g. full SRF instead of just center wavelength & FWHM)

» _..fosters incorporation of high-quality sensor characterization into
higher level products

= _..simplifies working with L1 data for non-experts by reducing
complexity
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Imaging Equation — True for Every Camera System

DLR
For simplicity only spectral case is shown fi+ Instrument Pixel Response Function (IPRF)

/can also have two-dimension geometric information
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Spectral Channel

Converting Data from one Sensor to Another
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How to Find the Transformation Matrix K #7
DLR

Question: How to find K from response functions?

BA ._ [rB (A ldea: Using overlapping pixel properties AA ._ [fA LA
cit = (fF, 1) CiA = (fA,

. 7] fiA
BA AA
| F C" =KC -
K can be computed from |
cross-correlation matrices 4 Cross-correlation

Cross-correlation

K = argmin {HK c44 — CBAH2 + 72||KI‘||;}
K 2

Tikhonov solution

Baumgartner et al. (2020)
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Current HySpex VNIR-3000N Processing Settings #7
DLR

Parameter Sensor A Sensor B
Spatial columns 3408 1337 smart binning
Spectral channels 700 295 smart binning
Smile [nm] <0.8 0
Keystone [mrad] <0.14 0
Angular resolution [mrad] 0.09-0.43 0.44
Spectral resolution [nm] 25-17.5 4 super resolution
SRF and ARF shape Spline model (complicated) Gaussian
Spectral channel 350 Spectral channel 148
Spatial column 0.25 Spatial column
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Simulation Study VNIR-3000N
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Experimental Validation of VNIR-3000N #7
DLR

= Mercury lamp coupled into integrating sphere
» |solated spectral emission lines — high frequency stress test
= Comparison of two spatial columns (across-track angles)
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HySpex VNIR-3000N Temperature Sensitivity
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Setup for simulating different ambient temperatures

— Determination of thermal stability

Normalized signal
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HySpex VNIR-3000N temperature dependent spectral shift
Spectral response for 546.09 nm (Hg line*)

Laboratory measurements

*at 22°C, 950 hPa, 45% rel. humidity

In-flight measurements
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Uncertainty Estimation #7
DLR

Covariance propagation: B = K3AKT

HySpex VNIR-3000N: Relative noise level change after transformation:
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Applications #7
DLR

Sensor A Sensor B Application

HySpex ideal HySpex homogenized at-sensor radiance
smart binning

HySpex CHIME CHIME validation

CHIME Sentinel-2 cross-validation

CHIME Sentinel-5p wishful thinking!
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Implications on L1-Processing

» Transformation Matrix is big data
= ~ 941 billion elements for HySpex VNIR
= 7.5 TB at full resolution
= 5.5 GB in practice (sparse matrix)

"9 9% 5% =
*

Processing Time
= Python JIT compiled code (Numba)
= VM with 16 CPUs @ 2.5 GHz, 128 GB RAM
» 3-4 frames per second HySpex VNIR
= ~50 frames per second HySpex SWIR

= Great potential for further improvements
using graphic cards

Reduces complexity of all following
processing steps

7 1R
I

Only 16 % of HySpex VNIR data points
remain after smart binning

A. Baumgartner | DLR Earth Observation Center | 14.10.2025 IMAGE: M. Verch (www.ccnull.de)
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Implications on Future Sensor Design #7
DLR

» |1 post-processing can compensate optical design imperfections
= Effectively reduces / eliminates smile / keystone
» Homogenizes response functions

» Denser sampling (Nyquist) required compared to typical hyperspectral sensors

* Response functions have to be available
= Accurate calibration of each pixel is required
» Instrument instabilities can be corrected, if known and correctly modelled
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Conclusions #7
DLR

» Matrix based response function homogenization is an efficient tool
= Correct several optical artifacts
» Reduce data size by smart binning
» Reduce complexity of down-stream processing
= Deliver at-aperture radiance products which are easier to adopt by the community

* Our finding have implications of the design of future sensors
= Oversampling (spectral & across-track) improves data quality
= Smile and keystone should not drive the optical design
» Knowledge of the response functions (including stability) is of paramount importance
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Discussion #7
DLR

* Where do you see hyperspectral imaging in the next 5-10 years?
» Increasing similarity between atmospheric trace-gas-sensing and hyperspectral sensors

» What features or improvements would you most like to see in future instruments
(portability, calibration, spectral range, real-time analysis, sensor fusion, scale)?
= Spectral and spatial oversampling
= Creating data tailored for certain applications from one instrument

» What emerging applications could drive adoption?
= Not my field of expertise

= How can academia, government, and industry collaborate to accelerate the
adoption of hyperspectral methods?
= Not my field of expertise

A. Baumgartner | DLR Earth Observation Center | 14.10.2025
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