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Abstract
We study the phenomenon of multistability in mutualistic networks of plants and pollinators,
where one desired state in which all species coexist competes with multiple states in which some
species are gone extinct. In this setting, we examine the relation between the endangerment of
pollinator species and their position within the mutualistic network. To this end, we compare
endangerment rankings which are derived from the species’ probabilities of going extinct due to
random shock perturbations with rankings obtained from different network theoretic centrality
metrics. We find that a pollinator’s endangerment is strongly linked to its degree of mutualistic
specialization and its position within the core-periphery structure of its mutualistic network, with
the most endangered species being specialists in the outer periphery. Since particularly well
established instances of such peripheral areas are tree-shaped structures which stem from links
between nodes/species in the outermost shell of the network, we summarized our findings in the
admittedly ambiguous slogan keep the bees off the trees. Finally, we extend the mutualistic system to
a multilayer network, where a species’ position in the mutualistic network layer determines its
position in a competitive network layer. We find that this multilayer setup, that allows peripheral
species to avoid competition, can lead to very similar endangerment rankings as the standard setup
under harsh environmental conditions, but to very different rankings under favorable conditions.

1. Introduction

Mutualism is defined as an interaction between two species from which both benefit [1, 2]. A popular
example of a mutualistic interaction is a bee which visits flowers to collect pollen or drink nectar and thereby
facilitates the pollination of the visited plants, i.e. the pollinator receives food (+), the plant the service of
pollination (+). If one considers not only the mutualistic interaction between two species but between all
plant and pollinator species within an ecosystem, one ends up with a complex mutualistic network in which
each node represents either a plant or a pollinator species and each link denotes that the pollinator at the one
end of the link has been observed to visit the plant species at the other end (figure 1(a)).

The network of interactions between plants and pollinators yields non-random complex patterns [3, 4]
whose specifics affect the dynamics and the stability of the corresponding ecosystems [5–10]. Importantly, the
individual contribution to the overall system functioning and robustness varies widely among species—e.g.
the loss of particular keystone species can trigger extinction cascades [5, 11–13]. However, just like the
importance, also the vulnerability of species is distributed unevenly—which has led to non-random losses of
species in the past [14, 15]. Differences in the importance and vulnerability of species can be associated with
differences in topological properties of the corresponding nodes [13, 16]. For instance, the endangerment of
species with few connections (specialists) has been highlighted multiple times [15, 17] and the importance of
specific species with many connections (generalists) is amplified due to the disassortative mixing within
plant–pollinator networks, especially due to the tendency of specialists to interact with generalists [4, 18].

© 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-072X/ade927
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-072X/ade927&domain=pdf&date_stamp=2025-7-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0126-3940
https://orcid.org/0000-0003-4389-4334
https://orcid.org/0000-0002-6638-6095
mailto:lukas.halekotte@uol.de


J. Phys. Complex. 6 (2025) 035002 L Halekotte et al

Figure 1. Core-periphery structure and multistability in a plant–pollinator network. (a) Exemplary plant–pollinator network
exhibiting a core-periphery structure with a single tree-shaped part (highlighted in green). The network is bipartite with links
existing only between plant (flowers) and pollinator (squares) species. (b) Exemplary phase space with two basins of attraction,
one corresponding to the desired state X0 (yellow) in which all species coexist and one to an alternative undesired state Xa (white)
in which some species are extinct. The two initial conditions (red crosses) depict a non-fatal and a fatal perturbation leading to
the two opposing attractive states. (c) Network depiction of an alternative state in which two species are lost.

The tendency for asymmetric interactions paired with a heterogeneous degree distribution (many
specialists, fewer generalists) results in a global network structure which can be divided into a rather densely
connected core and a periphery of specialists which are mostly linked to generalists in the core [4, 19–21]
(figure 1(a)). A simple approach to capture this core-periphery division is the k-shell decomposition [22]
which assigns nodes to different shells based on the following procedure: All nodes of degree k= ks = 1 are
recursively removed and assigned to the 1-shell until no such nodes remain. To create the higher order shells,
ks is then stepwise increased and the procedure—recursively remove nodes with degree k⩽ ks and assign
them to the ks-shell—is repeated until each node has been assigned to a shell. Accordingly, nodes in the inner
core receive a high shell index, while the most peripheral species are in the 1-shell (e.g. all specialists and the
two nodes in the tree-shaped structure in figure 1(a)). The significance of the core-periphery distribution of
plant–pollinator networks was highlighted by Morone et al [23]. Using the k-shell decomposition, they
showcased that the gradual collapse of a mutualistic network follows the core-periphery distribution, with
nodes/species in the outermost periphery being lost first, while the loss of nodes in the innermost core
signals the advent of a complete system collapse.

The work by Morone et al [23] is part of a series of theoretical works examining the robustness of
mutualistic networks in the light of changing environmental conditions [24–31]. Studying corresponding
scenarios is valuable for understanding, predicting and potentially countering the systemic response of
mutualistic networks to an ongoing environmental deterioration [32]. In this context, it is important to note
that mutualistic networks are nonlinear dynamical systems which, due to the positive interactions between
species, inevitably involve positive feedbacks [25, 33, 34]. Positive feedbacks can reinforce the impact of an
initial change and thus allow for an abrupt response to the gradual environmental change. The most severe
instance is a so-called tipping point [35], which, if approached due to a parameter surpassing a critical
threshold, leads to a partial or even complete system collapse. Important insights provided by tipping-related
studies are that specialists or generally species in the periphery of mutualistic networks are the ones being
affected first as conditions are becoming critical [23, 25, 26], while central species and species in the core are
most essential for the integrity of the whole system [23, 27, 30].

In a scenario of smoothly and slowly changing conditions, a system can only tip or collapse if a
bifurcation is approached at which the present desired system state is replaced by an alternative undesired
one. However, not only the system response but also disturbances can be large and occur abruptly.
Prominent examples of such shock perturbations are extreme events like floods, dry periods or wildfires
[36]—all of which represent extreme stressors for populations [37–41]. In mutualistic networks, large shock
perturbations are particularly significant as the characteristic positive feedbacks are likely to induce
multistability [33]—especially in systems with obligatory mutualism [42]. Multistability describes the
phenomenon that the phase space is populated by multiple coexisting basins of attraction (figure 1(b)),
where each basin comprises all initial conditions which lead to the same attractor or stable long-term
behavior. In plant–pollinator networks, one of these attractors can be considered the desired state in which

2



J. Phys. Complex. 6 (2025) 035002 L Halekotte et al

all species coexist (X0 in figure 1), while all others are considered undesired states in which some species are
lost or extinct (Xa in figure 1). Accordingly, a shock perturbation can be fatal if it pushes the system into the
basin of any undesired state. As such shock-induced transitions can occur long before a bifurcation point, no
prior trend precedes the event, no early warning signals can be detected [26, 43] and its consequences are
hard to predict [28].

In an earlier study, Halekotte and Feudel [44] determined the most efficient way to trigger such a
shock-induced transition from the basin of the desired to the basin of an undesired state for different
plant–pollinator networks. They found that motifs which turned out to be particularly vulnerable involved
links between multiple peripheral nodes. The most outstanding instances of such peripheral motifs are
tree-shaped or tree-like structures (figure 1(a)). A tree-shaped structure [45] can be defined as a connected
subgraph which is located entirely in the 1-shell and thus, if cut from the rest of the network, fulfills the
definition of a tree (it contains no circles), while a tree-like structure is one which resembles a tree-shaped
structure. Accordingly, the findings by Halekotte and Feudel [44] highlight the particular significance of
peripheral, tree-like structures (the trees) for the vulnerability of mutualistic species to shock perturbations.

However, the consideration of single specific perturbations only provides insights concerning the
endangerment of a small set of particularly vulnerable species. In this work, we provide information on the
endangerment of all species—also including less endangered species. To this end, we consider
plant–pollinator networks as nonlinear dynamical systems (section 2.1) exhibiting multistability—with one
desired and multiple undesired states. As in [44], we assume that these systems are subject to large abrupt
disturbances which directly affect their state variables. More specifically, we examine how likely a species is to
go extinct due to a single large shock perturbation (section 2.2). However, in contrast to [44], we consider
random instead of specific perturbations. The use of a set of random perturbations allows us to derive an
endangerment ranking—ranking all pollinator species frommost to least prone to getting extinct. In order to
capture the relation between a species’ endangerment and its position in the network, we compare the
endangerment ranking to rankings which are derived from structural properties of the underlying network
topology—i.e. rankings which are based on centrality metrics (section 2.3). In this context, we aim for
ranking algorithms which are ecologically meaningful as well as easy to interpret—in particular, we apply
centrality metrics which take into account the degree of specialization, the core-periphery structure of
plant–pollinator networks and/or the mutual enforcement between mutualistic partners.

In the remainder of this work, we proceed as follows: We first illustrate the general idea of our work and
introduce the necessary tools for our analysis, which include the dynamical model of mutualism, the
procedure for creating the endangerment rankings and the selection of applied topological ranking
algorithms (section 2). By applying these tools to different empirical plant–pollinator networks, we then test
which centrality metric best reflects the distribution of species endangerment within mutualistic networks
(section 3). We then proceed to investigate how changing environmental conditions can affect the
distribution of species endangerment, first in our standard system setup (section 4) and then in an
alternative setup which involves a non-trivial topology for the competition between species (section 5). In
this context, we also use a composite of different centrality metrics to illustrate how certain topological traits
of network nodes contribute to the endangerment of the corresponding species. Finally, we conclude with a
discussion of our findings (section 6).

2. Methods: endangerment and peripheriness rankings

In short, the core idea of this work is to rank the pollinator species within plant–pollinator systems according
to their probability of getting extinct (endangerment ranking, figure 2(a)) and according to their position
within the corresponding network (peripheriness ranking, figure 2(b)), and then compare those rankings. It
should be noted that, in line with this core idea, the results in figure 4 (section 3) represent the centerpiece of
this work. In the following, we present the tools required to obtain the different rankings, (1) for the
endangerment ranking: the dynamical model of the plant–pollinator system (section 2.1) and the applied
perturbation/simulation scheme (section 2.2), and, (2) for the peripheriness ranking: an overview over the
selected ranking algorithms (section 2.3).

2.1. Model of plant–pollinator networks
We consider a simple model of a mutualistic network [6, 25] in which the dynamics of each species, plant P
or animal pollinator A, are captured in a differential equation including a term for the intrinsic dynamics fi,
the interspecific competition gi and the mutualistic interactionmi. The latter is combined with an Allee effect
qi. For the abundance of an exemplary plant species Pi, the dynamics read

dPi
dt

= [ fi (Pi) − gi (P) + qi (Pi)mi (A) ] Pi , (1)
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Figure 2. Creation of endangerment and peripheriness rankings. (a) Upper half of the figure illustrates the creation of the
endangerment ranking (red numbering): (1) Set up dynamical system and determine its desired state in which all species coexist;
(2) perturb desired state and simulate system until final stable state is reached, repeat this N∆ times; (3) extinction probability for
each species is obtained by counting the number of final states in which the species is extinct and dividing it by the total number
of simulations N∆; (4) rank species in descending order of extinction probability. (b) Lower half of the figure illustrates the
creation of an exemplary peripheriness ranking based on the neighborhood coreness (blue numbering): (1) Determine k-shell
index for each node; (2) neighborhood coreness is obtained as the sum of all neighbor indices; (3) rank nodes in ascending order
of neighborhood coreness. Finally, endangerment ranking and peripheriness ranking are compared.

while the equation for the abundance of an animal species Aj can be written in the same way by interchanging
P and A. In the model, the vector P holds the state variables corresponding to the abundances of all NP plant
species Pi (i = 1, . . .,NP) and the vector A holds the abundances of all NA animal species Aj (j = 1, . . .,NA).

A species’ intrinsic dynamics fi constitute the dynamics which are independent of any other species, with

fi (Pi) = αi − βP
iiPi . (2)

In order to obtain multistability [42], we assume the benefit a species gains from mutualistic interactions
(the pollination process) to be obligatory for its own growth and thus we choose the intrinsic net growth rate
α⩽ 0. The strength of the intraspecific competition between individuals of the same species is given by the
parameter βP

ii .
In addition to intraspecific competition, we include the interspecific competition gi between species from

the same class of species (or guild) – plants compete with plants and animals with animals (intra-guild
competition) – with

gi (P) =
NP∑
l ̸=i

βP
ilPl . (3)

In the case of plant species, βP
il holds the competitive pressure of plant species l on plant species i.

Ultimately, the plant–pollinator network (e.g. figure 1(a)) is built by the mutualistic interactions. In the
most commonly applied formulation—introduced in [6]—the mutualistic benefitmi a species obtains from
its partners saturates in accordance with a Holling type II functional response

mi (A) =

∑NA

j=1 γ
P
ijAj

1+ h
∑NA

j=1 γ
P
ijAj

, (4)

where the parameter h describes the handling time and γ holds the topology of the mutualistic network and
the strength of the involved interactions. The mutualistic network is bipartite and thus the mutualistic
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benefit of plant species i depends on the abundance of the animals Aj it interacts with (inter-guild
mutualism). More specifically, γP

ij gives the relative benefit plant species i obtains from animal species j. In
accordance with former studies [24, 25], we assume that this relative benefit depends on a species’ degree of
specialization, which is expressed by the following trade-off

γij = γ0
δij

kζi
, (5)

where γ0 is a constant capturing the general mutualistic strength, δij = 1 if species i and j are linked and
δij = 0 if they are not, ki is the number of links species i has and ζ specifies the strength of the trade-off
(ζ ∈ [0,1], with no trade-off for ζ = 0 and full trade-off for ζ = 1).

Except for the Allee effect q(Pi), equations (1)–(5) correspond to a commonly used formulation of a
mutualistic system (e.g. [6, 10, 25, 31, 44, 46, 47]). The Allee effect describes the phenomenon that a small
abundance can adversely affect a species’ own per-capita growth [48]. Pollinators and pollinated plants are
both likely to be subject to such an effect due to, e.g. inbreeding depression, pollen scarcity, sterilization due
to haplodiplocity, or impaired mate finding or cooperation-based defense strategies [33, 49–51]. We consider
a formulation of the Allee effect which affects the mutualism-dependent growth rate and which is often
associated with the issue of mate-finding (or, in the case of plants, attracting pollinators)

qi (Pi) = 1 − exp

(
−Pi
θi

)
, (6)

where the parameter θi controls the strength of the Allee effect. It is important to note that qi(Pi) ∈ [0,1] can
only weaken but not reverse the mutualistic benefit (qimi ⩾ 0). In combination with the negative intrinsic
growth rate αi, this induces an Allee threshold, which means that a species’ overall per capita growth rate
becomes negative below a certain critical population size (dPi/dt< 0 for Pi < Pcriti ). This ultimately ensures
that the system has a sufficiently high number of coexisting stable states.

2.2. Extinction probability and endangerment rank
The premise of this study is that the dynamical system of plants and pollinators exhibits multistability and
that one desired state X0 (figures 1(a) and (b)) in which all species coexist competes with multiple undesired
states in which some species are lost or extinct (e.g. Xa in figures 1(b) and (c)). Accordingly, a perturbation in
state variables can induce the loss of species if it pushes the system state into the basin of attraction of an
undesired state (figure 1(b)). Our aim is to assign an endangerment score and rank to each species in light of
such perturbations. For simplicity, we consider random instantaneous perturbations which we apply by
drawing the initial abundance of each species from a uniform distribution within the interval [0,N∗

i ], where
N∗

i is the abundance of species i in the desired steady state X0. The ultimate effect of a perturbation is
evaluated by numerically integrating [52] the system until it reaches its final stationary state, which can be
the desired or an undesired state.

In the end, we determine the endangerment ranking in four steps (see figure 2(a)): (1) We numerically
determine the desired state X0 of the system. (2) We perturb X0 a number of times N∆ and determine the
corresponding final stationary states. (3) For each species i, we count in how many Li of the approached
states it is extinct, and obtain the extinction probability as Ωi = Li/N∆. (4) We then rank the species
according to their extinction probabilities Ω from most to least endangered, where the species with the
highest Ωi obtains the rank 1.

2.3. Centrality metrics and ranking algorithms
Topological ranking algorithms or centrality metrics usually aim at sorting nodes of a network according to
their ‘importance’, often with an emphasis on identifying particularly important nodes [53, 54]. In this work,
we test different ranking algorithms with regard to their ability to rank nodes of mutualistic networks in
accordance with the endangerment of the corresponding species (see figure 2). Since we assume that the
most endangered species are located in the network periphery, we always rank the species from most to least
peripheral (or from least to most central) and refer to the obtained sorting as peripheriness ranking (see
figure 2(b)). In general, we aim for metrics that are ecologically meaningful and easy to interpret.

Degree: The simplest measure of centrality is the degree (k), which is defined as the number of links a node
has. An advantage of the degree is that it is easy to access and interpret. For example, in a mutualistic network
of plants and pollinators, the degree is equivalent to the degree of specialization of species. Since the
particular endangerment of specialist species has been emphasized by multiple empirical studies, the degree
might be a suitable starting point for linking network topology and endangerment.
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Iterative refinement:However, the degree is a purely local metric that neglects the importance or centrality
of neighbors. In a mutualistic system, each species depends on partner species, which in turn rely on further
other partners, which makes networks of mutualistic interdependencies prime examples of mutual
reinforcement. Iterative refinement metrics such as the eigenvector centrality (EV) [55] consider this aspect as
they assign each node a score which depends on the number and scores of its neighbors. Due to its
self-referential definition, which reads

x= κ−1Bx , (7)

the eigenvector centrality x takes into account the whole network structure—contained in the adjacency
matrix B. In this notation, the constant κ corresponds to the largest eigenvalue of B.

One disadvantage of the eigenvector centrality is that it tends to accumulate in a few nodes. In order to
avoid this, we introduce a saturation to the eigenvector centrality

x=
Bx

1+ heBx
. (8)

The chosen saturation is in line with the typical formulation of the mutualistic benefit, which is often
described by a Holling type II functional response (see equation (4)). In reference to the Holling type, we call
this centrality index the eigenvector centrality type II (EV2). In accordance with equation (4), the parameter
he corresponds to the handling time. For the sake of simplicity, we set he = 1 throughout this work.

k-shell index: An alternative and simple approach for considering a node’s position within the potentially
hierarchical structure of a network is the k-shell decomposition [22], which assigns a k-shell index (ks) to
each node (see section 1). In fact, since mutualistic networks possess a core-periphery structure which has
been shown to be essential for their structural integrity [23], a ranking considering the coreness (or
peripheriness) of a node might be worthwhile.

k-shell refinement: Because many nodes are assigned to the same shell, the k-shell decomposition is fairly
limited when used to rank all nodes of a network (see left side of figure 2(b)). However, in plant–pollinator
networks, which typically include many specialists, the same is true for the degree. Fortunately, owing to its
generally good performance, especially in capturing influential spreaders [56], multiple adaptations of the
k-shell decomposition have been proposed (e.g. [57–60]). All of these adaptations provide an improved
resolution concerning the distinction of nodes.

In this work, we apply two of these adaptations. The first is the neighborhood coreness (Cnc) [58], which is
obtained by simply summing up the k-shell indices of a node’s direct neighbors Λ1

Cnc =
∑
j∈Λ1

ks ( j) . (9)

Importantly, this yields an index which combines the degree of a node with the coreness of its neighbors—a
rather basic approach to combine connectedness with position. In figure 2(b), this index is used to
demonstrate the general procedure to obtain a peripheriness ranking.

The second adaptation—the neighborhood centrality (CN) [61]—is slightly more elaborated but still
intuitively interpretable (see below). It is defined as

CN =
R∑

r=0

dr
∑
j∈Λr

θj

 , (10)

where θ is the benchmark centrality (in our case, the k-shell index) and Λr is the set of nodes whose distance
to node i equals r. The parameter R denotes the range of neighborhood which is taken into account, i.e. for
R= 1, only a node’s direct neighbors are considered, for R= 2, also the next order neighbors and so on. The
parameter d controls the diminishing impact of nodes in the neighborhood of node i with increasing
distance to node i. According to Liu et al [61], d should be in the range [0,1].

Using the k-shell index as the benchmark centrality and setting the parameter d to an arbitrary but very
small value (d= 0.001) allows an instructive interpretation of the neighborhood centrality. For d≪ 1, the
rank of a node is primarily based on its own k-shell (r= 0), while the sum of the k-shell indices of its
neighbors is a secondary argument (r= 1), the sum of the k-shell indices of its second-order neighbors a
tertiary argument (r= 2) and so on (we set R= 2 and thus only consider primary, secondary and tertiary
arguments). Due to this hierarchical configuration of arguments (most, second most, third most important),
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Figure 3. Endangerment of species within an exemplary network. (a) Extinction probabilitiesΩ of species. (b) Endangerment
ranks of species. Squares depict animals and circles plants. Parametrization corresponds to the standard setup with competition
type I (see appendix B). Placement of the vertices is based on the Kamada–Kawai algorithm [63].

the neighborhood centrality highlights nodes within tree-shaped structures. In fact, since both their own and
the k-shell indices of their neighbors are 1, nodes in the outermost positions of tree-shaped structures obtain
the lowest centralizes.

3. Species in trees are most endangered

Now that we have established the necessary tools for creating endangerment and peripheriness rankings, we
are set to examine how the two relate. Accordingly, what follows is the centerpiece of this work, in which we
present how the core-periphery structure of mutualistic networks affects the simulated endangerment of
species.

3.1. Exemplary endangerment ranking
First, we consider an exemplary mutualistic system (figure 3) which stems from a plant–pollinator network
on the Amami Islands in the Ryukyu Archipelago, Japan [62] (M_PL_044 in table A1). To start with, we set
up the dynamical system according to the standard parametrization (see section 2.1 and appendix B) and
numerically determine the desired state in which all species coexist (P∗i > 0 ∀ i and A∗

j > 0 ∀ j). Based on this
pre-disturbance state, we then calculate the extinction probabilities Ω for all species and derive the
corresponding endangerment ranking (according to the explanations in figure 2(a) and in section 2.2 with
N∆ = 5× 105).

Already the visual inspection of Ω (figure 3(a)) suggests the conclusion that the degree of specialization
and its position within the core-periphery structure determine a species’ endangerment. Especially a low
degree, which corresponds to a high level of specialization, seems to establish a species’ status as being
endangered. However, the endangerment ranking (figure 3(b)) indicates that the core-periphery structure
shapes the endangerment ranking of species as well. We find that specialists close to the core hold a lower
endangerment rank than species in the outer parts of the network (according to the Kamada–Kawai
visualization). Moreover, we find that the most endangered species are those in the outermost positions of
tree-like structures (bees in trees).

3.2. Peripheriness vs. endangerment rankings
In the following, we compare the endangerment rankings to rankings based on different centrality metrics
(see section 2.3 and figure 2(b)) for a set consisting of 11 of the largest plant–pollinator networks, including
the exemplary network, from the web of life database (see appendix A). However, we sort species from least
to most central (reversed centrality or peripheriness rankings) as we assume the correlation between
centrality and endangerment to be negative (e.g. low degree equals high endangerment). Importantly, we do
not consider all nodes of a network. There are two reasons for this. First, species with the same set of
neighbors are topologically and dynamically equivalent (due to our parametrization, see appendix B). We
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therefore only include one node from each set of equivalent nodes in the comparison (e.g. ÑA denotes the
number of unique animal species). Second, comparing the endangerment of animals and plants is
questionable since their competitive terms are separated. We concentrate on the numerically dominant
group, the pollinators. However, it should be noted that conducting the same analysis for the plants yields
similar results (see appendix C).

To evaluate the goodness of fit of the rankings obtained by different centrality indices and the
endangerment in these networks (i.e. to ‘compare’ endangerment and peripheriness rankings, see figure 2),
we propose two measures. The first is Kendall’s tau [64], which represents a common tool (e.g. [58–61, 65])
to quantify the overall rank correlation between two metrics xi and yi (one being the reversed centrality index
and the other the endangerment in our case) based on a pairwise comparison of all nodes. The rank
correlation coefficient τ is obtained as

τ =
2

n(n− 1)

∑
i<j

sign
[(
xi − xj

)(
yi − yj

)]
, (11)

where n is the total number of nodes compared and sign[z] is the sign-function which gives sign[z] = +1 if
z> 0 and sign[z] =−1 if z< 0. Accordingly, for each pair of nodes (node i and node j), it is checked whether
both metrics arrange the two nodes in the same order ((xi − xj)(yi − yj)> 0) or not ((xi − xj)(yi − yj)< 0). A
value of τ close to 1 means that most pairs are arranged in the same way by the two metrics, which indicates a
strong positive correlation between the two rankings. For the purpose of this work, a strong positive
correlation shows an overall high accuracy of the proposed peripheriness index in ranking nodes in
accordance with the endangerment of the corresponding species.

The second measure is inspired by the imprecision function proposed by Kitsak et al [56]. In our
adaptation, we compare the average extinction probabilityMcen(ρ) of a small fraction ρÑA (0< ρ < 1) of all
considered nodes/pollinators ÑA to the average extinction probabilityMmost(ρ) of the qÑA nodes with the
highest extinction probability Ωi. It should be noted that if the set is not unique (e.g. due to multiple nodes
having the same degree),Mcen(ρ) is calculated as the worst possible realization. The measure is then
obtained as

ϵ =
Mcen (ρ)−Ωmin

Mmost (ρ)−Ωmin
, (12)

where the minimal extinction probability Ωmin of all ÑA nodes is used as a scaling factor. The closer ϵ is to 1,
the better the corresponding reversed centrality index is in correctly capturing the most severely endangered
species. Accordingly, we refer to ϵ as the precision function (imprecision would be 1− ϵ, see [56]). The
precision function puts special emphasis on a small subset of the ranking (we choose ρ= 0.05) which
represents the few most endangered species. In this regard, the precision complements Kendall’s tau. In
figure 4, both measures—τ (angle) and ϵ (radius) – are displayed together.

The degree (blue), the eigenvector centrality (yellow) and the eigenvector centrality type II (orange) all
provide at least a decent approximation of the endangerment ranking (figures 4(a)–(d)). However, the results
also reveal some significant differences between the three ranking algorithms. First of all, the impression that
the degree is a good indicator of a species’ endangerment is backed up by the general strong correlation
between the rankings (high τ for blue marks in figure 4(d)). Noteworthy is that the strong impact of the
degree is in part due to the Allee effect which in combination with large perturbations induces a certain
ground-endangerment for every species. As any species can be lost if its own abundance falls below a certain
threshold, species with low degree have a much higher chance of losing all partners and thus eventually
becoming extinct (see appendix D for an elaborated explanation). However, the degree is not capable of
separating the set of the most endangered species (low ϵ for blue marks in figure 4(d)). In fact, the degree
only provides a kind of presorting that puts species into certain classes of endangerment (see figure 4(a)).

By contrast, the eigenvector centrality EV (figure 4(b) and yellow marks in figure 4(d)) captures the most
endangered species well (high ϵ) but provides a worse overall ranking than the degree (lower τ ). Finally, the
best agreement with the endangerment ranking is obtained by the eigenvector centrality type II EV2
(figure 4(c) and orange marks in figure 4(d)) which surpasses the other two in both the overall rank
correlation (τ ) and the capability of identifying the most severely endangered species (ϵ). This is because its
own connectivity (degree) and the position of its neighbor(s), which both significantly contribute to the
EV2, determine a species’ endangerment. The contribution of both aspects can be demonstrated by means of
the mutualistic benefit a species obtains right after the initial perturbation, which depends on the number
and the pre-disturbance abundance of partner species. As the latter arises from the mutual enforcement
between species, it strongly depends on the partners’ position within the network (see appendix E for an
elaborated explanation).
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Figure 4. Goodness of fit between node rankings obtained from peripheriness indices (inversed centrality) and simulated species
endangerment. (a)–(c) Comparison for one exemplary plant–pollinator network: Peripheriness rank based on degree k (a),
eigenvector centrality EV (b) and eigenvector centrality type II EV2 (c) versus endangerment rank. Each point corresponds to one
node/species in the network. The closer the points are to the diagonal, the better the agreement between the two rankings. (d)–(g)
Comparison for 11 empirical plant–pollinator networks: The evaluation is based on the rank correlation coefficient Kendall’s tau
τ (angle) and the precision ϵ (radius). Each colored point displays τ and ϵ for the comparison between the species endangerment
and one specific peripheriness index for one network. The line displays the mean value of all 11 τ and ϵ and the fan the range of
all 11 τ that are obtained based on the same peripheriness index. In (d), the peripheriness indices are based on degree (blue),
eigenvector centrality (yellow) and eigenvector centrality type II (orange). In (e)–(g), the peripheriness indices are based on
k-shell index ks (e), neighborhood coreness Cnc (f) and neighborhood centrality CN (all depicted in green). The closer the points
(and the tip of the line) are to the bottom right corner where τ = 1 and ϵ= 1, the better the agreement between the two rankings.

In order to obtain a better insight into the correlation between the endangerment of species and the
specific core-periphery structure of mutualistic networks, we consider simple measures of the coreness, the
k-shell index and two of its variants (see section 2.3). The k-shell index provides a fit similar to the one
achieved by the degree, concerning both the rank correlation τ and the precision ϵ (green marks in
figure 4(e)). Accordingly, a node’s coreness alone does not provide a sufficient explanation for the particular
endangerment of some specialists (this is hardly surprising as a node with a degree of 1 is always located in
the 1-shell). However, already the simplest adaptation of the k-shell index—the neighborhood coreness Cnc

(green marks in figure 4(f)), which is obtained as the sum of a node’s neighbors k-shell indices—works
pretty well (only slightly worse than the EV2). The reason is that this index combines the two aspects which
can be shown to be decisive for a species’ vulnerability to random shocks, its degree and the coreness of its
neighborhood (see appendices D and E). An even better agreement—roughly as good as the EV2 – is
obtained by the neighborhood centrality CN based on the k-shell index (green marks figure 4(g)). As
mentioned earlier (see section 2.3), this metric is especially beneficial for the interpretation of our results as it
uses a node’s own, its first-order neighbors’ and second-order neighbors’ shell indices as primary, secondary
and tertiary arguments and thus highlights nodes which are located deep within tree-shaped and tree-like
structures as the least central ones. Accordingly, the good fit between the reversed neighborhood centrality
and the endangerment encourages our initial impression that the most endangered species are those in the
outermost periphery.

9
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Figure 5. Relation between eigenvector centrality type II (EV2), neighborhood centrality (CN) and degree (k) within an
exemplary network. (a) Correlation between the treeness rankings based on EV2 and based on CN. (b) Linear correlation between
the treeness (normalized to the interval [0,1]) based on EV2 and based on CN and the extinction probabilitiesΩ. (c) Correlation
between the specialization ranking based on the negative degree−k and the treeness ranking based on EV2. (d) Linear correlation
between the specialization (normalized to the interval [0,1]) based on−k and based on the power law description pk and the
extinction probabilitiesΩ. The parameter p is set as the difference between the lowestΩi of all nodes with degree 1 and the overall
lowestΩi (see appendix D).

3.3. Treeness vs. extinction probability
Both the EV2 and the neighborhood centrality (CN) capture the endangerment ranking of pollinators
exceptionally well. In fact, the rankings obtained by the two algorithms resemble one another (figure 5(a)),
which is why, from now on, we refer to both of them as treeness rankings. However, importantly, the
underlying distribution of centrality indices (or better treeness indices) shows immense differences. This
becomes apparent when looking at the linear correlation between the two indices and the actual extinction
probabilities Ω (figure 5(b)). While the block-wise distribution of CN indices provides only a very broad
approximation to Ω, the EV2 – which is based on the Holling type II functional response also used in the
dynamical model of the plant–pollinator system (see equation (4)) – captures the distribution of extinction
probabilities very well.

An important factor to the great fit between the endangerment described by Ω and the treeness described
by the EV2 is that the degree of specialization significantly contributes to the latter metric. In fact, we find
that all pollinators which obtain the 69 highest treeness ranks (according to the EV2) have a degree of k= 1
(see figure 5(c)). But, in contrast to the EV2 (see figure 5(b)), the degree k shows a very poor linear
correlation with the extinction probability Ω (figure 5(d)). The reason is that the impact of the degree on
species endangerment is not linear but broadly follows a power law which describes a species’ chance of
losing all mutualistic partners due to the initial shock perturbation, i.e. Ωi ∝ pki (where the constant p
provides some kind of basal-endangerment that is the same for all species; see appendix D for the derivation
of this relation based on a simplified model of the mutualistic system). Therefore, in the following, we will
use the power law description of the degree pk as a measure of a species’ specialization. As a measure of the
treeness, we will use the EV2, since it captures both the endangerment ranking and the distribution of
extinction probabilities Ω particularly well.

4. Species in trees are most endangered under different conditions

So far, our findings are based on a single parametrization scheme. However, the chosen parameters are
somehow arbitrary and environmental conditions (and thus system parameters) may change. Accordingly, it
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Figure 6. Evolution of the endangerment ranking with increasing stress level. (a) Development of endangerment ranks as the
intrinsic growth rate α is decreased from α= 0 to α≈−1.7. Color coding of the different species corresponds to treeness rank
based on the EV2 of the respective node (see colorbar in the center). (b) Change in extinction probability∆Ω from highest to
lowest α,∆Ωi =Ωi(α≈−1.7)−Ωi(α= 0). Species are ordered according to their treeness rank (in line with the axis of the
colorbar). Location of two pollinators/nodes (yellow and orange square) with exceptionally high increase inΩi is highlighted in
the small inset.

is informative to test for the robustness of the obtained rank correlations. To this end, we consider once again
the exemplary plant–pollinator network from the Amami Islands (see figure 3) and check how the
endangerment of species evolves when an exemplary parameter changes.

4.1. Robustness of the endangerment ranking
First, we check the robustness of the endangerment ranking for the standard system setup (see appendix B).
Our parameter of choice is the intrinsic growth rate α, which we assume to be negative and whose further
decrease can be interpreted as a globally increasing stress level affecting all species in the same way (e.g.
harsher conditions due to anthropogenic impact). We vary α within an interval in which the mutualism
remains obligatory (α⩽ 0) and in which the long-term coexistence of all species is possible (the desired state
is stable). It should, however, be noted that for the most negative values of α, the system is close to a
bifurcation (tipping point) at which some species would inevitable go extinct.

We find that, overall, the endangerment ranking is pretty robust and thus the proposed centrality
metrics, like the EV2, provide a good fit for all values of α. This can be seen in the consistent distribution of
colors in figure 6(a): Nodes in the core (dark/purple) permanently remain at low ranks, while peripheral
nodes (bright/yellow) occupy the upper endangerment ranks. Nevertheless, we do observe that for a few
individual nodes the endangerment rank changes significantly—particularly noticeable is a jump of one of
the orange-colored nodes from endangerment rank 73 (at α≈−1.2) to rank 10 (at α≈−1.7, figure 6(a)).

In order to better understand this jump and to check whether it might undermine the general validity of
our former findings, we take a look at the change in the absolute extinction probabilities∆Ω from the
highest to the lowest α (figure 6(b)),∆Ωi =Ωi(α≈−1.7)−Ωi(α= 0). The absolute extinction
probabilities Ω do of course adapt to the changing conditions—lower growth rates α generally entail higher
extinction probabilities Ω and thus∆Ωi > 0 for all species i. However, the change∆Ω is not evenly
distributed across species (figure 6(b)). We find that more peripheral species (higher treeness ranks) tend to
show a higher increase in Ωi than species which are closer to the core (lower treeness ranks). But, there are
some clear outliers to this trend. The most obvious of them is the above-mentioned node that jumps from
endangerment rank 73 to 10 (marked by an orange square in figure 6(b)). Taking a look a the corresponding
node’s position in the network (inset in figure 6(b)), we see that its high∆Ωi can be associated with the
node’s proximity to the most peripheral (highest treeness) and most endangered (highest Ωi)
pollinator-node in the system. Furthermore, the node is itself located within a tree-structure. Accordingly,
this phenomenon does not undermine our former findings since the highest endangerment still originates
from the most peripheral species.

4.2. Composite centrality index
What we do observe is that, for α close to 0, the set of the most endangered species only consists of specialists
with a degree of k= 1 (there are 69 unique species with a degree of 1, all of them are within the set of the 69
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Figure 7. Topological determinants of endangerment for different values of α. (a) Linear correlation between the extinction
probability Ω and pk (blue line), EV2 (orange line) and the best composite centrality index CCI (purple squares) which is
obtained as the weighted sum of the normalized forms of pk and EV2−1. (b) Best composition of the CCI with a describing the
contribution of pk and b the contribution of EV2−1.

most endangered species). Due to the strong increase in the extinction probability of some species (figure 6),
this changes and some nodes with degree k> 1 enter the set of the most endangered species as α decreases
(i.e. for smaller α, the set of the 69 most endangered species also contains species with k> 1).

In fact, by examining the correlation between the extinction probability Ω and the power law pk, we can
see that the degree loses explanatory power as a determinant of species endangerment. For good conditions
(greater α), the endangerment of species can well be captured by the power law pk, i.e. Ωi ∝ pki . However, as
α is decreased, the correlation coefficient declines (blue line in figure 7(a)). By contrast, the EV2 captures the
extinction probability Ω very well for all values of α and only slightly declines for smaller α (red line in
figure 7(a)).

Although the EV2 provides a good fit for all values of α, we test whether the degree can add additional
explanatory value. To this end, we apply a hybrid method [66] by setting up a composite centrality index

CCI = aCIa + bCIb , (13)

with a+ b= 1 and a,b⩾ 0. The CCI is obtained as the weighted sum of two normalized centrality indices,
where CIa is the normalized form of pk and CIb the normalized form of EV2−1. The normalization is
obtained by setting the length of each vector to 1. To receive the best composition of CCI, we then check for
each value of α which combination of a and b provides the highest Pearson’s linear correlation coefficient
with the extinction probability Ω.

Following the best composition of CCI (figure 7(b)), we see that the EV2 is the dominant descriptor of
the endangerment for all α. For greater α, the EV2 underestimates the explanatory value of the degree and
thus a composite which takes a small contribution of the degree provides the highest correlation coefficient
with the endangerment. As α decreases, the contribution of the degree vanishes, i.e. the importance of the
degree for the overall endangerment decreases.

5. Species in trees are most endangered—but which trees?

Now, after having established that the particular endangerment of mutualistic species in tree-like
substructures is rather robust against changes in an exemplary parameter, we shortly illuminate an aspect
which might undermine the general validity of this finding: Real plant–pollinator systems are actually
multilayer networks. For instance, in addition to mutualistic links with certain plants, pollinators also have
antagonistic links to other pollinators with whom they compete for food and/or nesting sites.

Due to the consideration of intra-guild competition (equation (3)), the mutualistic model in principle
already considers the multilayer nature of plant–pollinator networks. However, the assumption that all
species within one guild compete with all other species in the same guild in a uniform manner (see left side
of figure 8(a)) – also called competition of mean-field type [6]—represents a strong simplification [67].
Although a realistic topology is difficult to obtain, a reasonable alternative to the mean-field approach is to
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Figure 8. Evolution of the endangerment ranking with increasing stress level for the case of explicit intra-guild competition
topologies. (a) So far, we assumed that species competed with all other species from the same guild in a uniform manner
(adjacency matrix on the left side illustrates competition type I). Now, we consider the case of an explicit competition topology
which is based on the assumption that the resources for which species compete are their mutualistic partners (adjacency matrix
on the right side illustrates competition type II). (b) Development of endangerment ranks as the intrinsic growth rate α is
decreased for the mutualistic model with an explicit competition topology. Color coding of the different species corresponds to
treeness rank based on the EV2 of the respective node.

assume that the resources for which species compete are their mutualistic partners [67]: Plants compete for
pollinators and pollinators for plants. Accordingly, we can derive an explicit competition topology by
drawing a competitive link between two species from the same guild if they share a common mutualistic
partner. Importantly, this way of constructing the competition topology gives rise to a potential benefit of
being located in the periphery of the mutualistic network, since peripheral species tend to obtain fewer
competitive links than species which are located in the core of the mutualistic network (i.e. being peripheral
allows species to avoid competition). By applying this scheme, we obtain a multilayer network which includes
explicit topologies for both inter-guild mutualism and intra-guild competition (see right side of figure 8(a)).
In the following, we refer to the corresponding system setup as themultilayer setup (competition type II in
appendix B), in contrast to the standard setup (competition type I in appendix B) which we considered so far.

5.1. Robustness of the endangerment ranking
Following the same procedure as before (see section 4.1) and using the same exemplary plant–pollinator
network (see figure 3), we check how the endangerment of species within the multilayer setup (competition
type II) changes depending on the intrinsic growth rate α (figure 8(b)). It should again be noted that for the
most negative α (right side of figure 8(b)), the system is close to a bifurcation point beyond which the
stability of the desired state would no longer be maintained.

It is striking that, under rather stress-free conditions (high α), the obtained endangerment ranking
(figure 8(b)) is almost reversed compared to the standard setup (competition type I setup in figure 6(a)). As
external stress levels increase, first, the endangerment ranks of the most specialized and most peripheral
species of the mutualistic layer drastically increase (bright/yellow colored nodes with high treeness ranks take
the upper endangerment ranks until α≈−2), followed by the species with intermediate treeness ranks
(orange nodes take the medium endangerment ranks until α≈−4). Ultimately, for high stress levels (small
α), the endangerment ranking converges towards the ranking which has been obtained for the standard
setup (compare right side of figure 8(b) with figure 6(a)).
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Figure 9. Topological determinants of endangerment in the case of explicit intra-guild competition. (a) Linear correlation
between the extinction probability Ω and pk (blue line), EV2 (orange line), the degree within the competition network kcom
(yellow line) and the best composite centrality index CCI (purple squares) which is obtained as the weighted sum of the
normalized forms of pk, EV2−1 and k−1

com. (b) Best composition of the CCI with a describing the contribution of pk, b the
contribution of EV2−1 and c the contribution of k−1

com.

5.2. Composite centrality index
The evolution of the endangerment ranking (figure 8(b)) indicates that intra-guild competition has a great
impact on the endangerment of species when overall conditions are rather favorable (high α) but loses in
significance as conditions become harsher (smaller α) – in comparison to the impact of inter-guild
mutualism (see also [25]). This impression is backed up by the correlation between the endangerment Ω and
a species’ degree within its competitive layer kcom (figure 9(a)), which is high only for high α and decreases
fast as conditions become harsher. In return, the fit between Ω and the two centrality measures referring to
the mutualistic layer (pk and EV2) becomes better as the stress level increases (figure 9(a)). For the most
negative α, the best fit with the endangerment is again obtained for the treeness described by the EV2.

We again test whether a composite centrality index CCI can provide a good fit for all α. To cover the
impact of the competition layer, we expand the index presented in equation (13) by a third normalized
centrality index CIc and thus obtain

CCI = aCIa + bCIb + cCIc , (14)

where now a+ b+ c= 1 and a,b, c⩾ 0. For the third component CIc, we use the inverse of the degree k−1
com

within the competitive layer, i.e. 1 for a pollinator with one competitive link, 1/2 for a pollinator with two
links and so on. We normalize the corresponding vector to a length of 1, so that CCI is obtained as the
weighted sum of three vectors, each with a length of 1. Again, we check for each value of α which
combination of a, b and c provides the highest Pearson’s linear correlation coefficient with the extinction
probabilities Ω (figure 9(b)). The best CCI provides a good fit with the endangerment for all α (figure 9(a)).

Following the best composition of CCI with changing α (figure 9(b)), we see how the mutualistic layer
replaces the competitive layer as the dominant descriptor of pollinator endangerment. For very high α
(α≈ 0), the degree within the competition matrix kcom is the main driver of the endangerment, while the
mutualistic degree only provides a minor contribution. Accordingly, species in tree-like substructures of the
mutualistic network are least endangered (see figure 8(b)) – they have few mutualistic partners but also few
competitors. On the contrary, species in the core of the mutualistic network are most endangered as the high
number of mutualistic partners cannot compensate the impact of having many competitors. With the
decrease of α, the impact of kcom decreases continuously (figure 9(b)). At first, the contribution of the
number of mutualistic partners (pk) increases in return and becomes the main descriptor of the
endangerment for intermediate values of α. As a result, the endangerment of specialists increases
dramatically and they replace species in the mutualistic core as the most endangered species (see figure 8(b)).
As conditions continue to become harsher, the EV2 becomes a factor (at α≈ 1.2). With the increasing impact
of the EV2 (figure 9(b)), species in trees establish as the most endangered ones (see figure 8(b)). With the
EV2 gradually replacing the mutualistic degree as the main descriptor of the endangerment (figure 9(b)), the
endangerment ranking obtained for the multilayer setup (competition type II) more and more resembles the
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one obtained for the standard setup (competition type I) – which means that species in the core are least and
species in trees most endangered (see figure 8(b)).

6. Discussion and conclusion

The question how structure affects stability is one of the field-defining questions in ecological network
theory. We add a new perspective to this issue by bringing together the concepts of shock-induced tipping
[44, 68] and node centrality [69]. To this end, we considered mutualistic plant–pollinator networks as
dynamical systems exhibiting multistability, with one desired state in which all species coexist and multiple
undesired states in which some species are gone extinct. This implies that an instantaneous state change or
shock perturbation can induce a tipping event that causes the loss of some plant and/or pollinator species.
For several realistic network topologies, we sorted species from most to least likely to go extinct due to
random shock perturbations and compared these endangerment rankings with rankings obtained from
network theoretic centrality metrics. In particular, the comparison with three centrality metrics—the degree,
an adaptation of the k-shell index and a newly introduced variant of the eigenvector centrality—helped us
unravel how the vulnerability of species is shaped by their degree of specialization and by the core-periphery
structure of mutualistic networks, with the most endangered species being specialists (nodes with low
degree) in the outer periphery (outer k-shells). Particularly well established instances of such peripheral areas
are tree-shaped structures of the network which stem from links between nodes/species in the 1-shell (hence
the title ’keep the bees off the trees’).

The particular significance of a pollinator species’ degree of specialization for its endangerment has
already been highlighted in earlier empirical studies [15, 70]. Furthermore, recent theoretical work
demonstrated that the positioning within the core-periphery structure of a mutualistic network can be an
important factor for a species’ endangerment [23]. Our work affirms such findings but adds a new
perspective to the existing theoretical analyses. So far, studies which involved a dynamic description of a
plant–pollinator network often examined the system’s response to gradual environmental degradation [23,
25–29, 31]. Our work complements such studies by capturing another section of the spectrum of potential
stressors. The abrupt and large shock perturbations, which we consider, can be interpreted as non-specific
extreme events—a class of disturbances which plants and pollinators are likely to experience (e.g. due to
wildfires, extreme rainfall or sudden pesticide exposure). Another difference to most former studies is that,
instead of highlighting the point of collapse (i.e. the loss of most or a significant amount of species) or the
precursory signs thereof [29, 32], we consider all possible outcomes of a perturbation (i.e. all coexisting
attractors), including major as well as minor extinction events.

It is this approach which allowed us to distinguish all pollinator species within a mutualistic network
based on their individual chance of getting extinct. The derived endangerment ranking then enabled us to
examine how topological traits of nodes might affect the endangerment of corresponding species. In this
regard, the finding that topology-based metrics which reflect the ‘treeness’ of a node—in particular, the
inverse EV2 and the inverse neighborhood centrality based on the k-shell index (CN) – are well suited to
capture the overall distribution of vulnerabilities is instructive in multiple ways. In particular, it highlights
the potential endangerment of species engaging in mutually specialized interactions (species in trees). This
might not only concern the endangerment of currently present pollinator species but could also give a hint at
why corresponding motifs, like tree-like substructures, are rather rare in plant–pollinator networks. Another
aspect refers to the usual use of the applied ranking algorithms. Centrality metrics, like the eigenvector and
neighborhood centrality, have been developed to identify the most important nodes within networks.
Accordingly, losing the most endangered species, corresponding to the nodes with the lowest centrality (or
the highest inverse centrality), is unlikely to profoundly affect the overall network integrity (see also [71]).
While this is certainly no bad news, it also implies that many species could be lost long before a mutualistic
network is anywhere close to a system collapse—i.e. many species could be extirpated without warning.

The main focus of this work was examining the impact of network topology on species endangerment.
We therefore chose a simple parametrization scheme which ensures that species solely differ on account of
their position within the mutualistic network. This also meant neglecting multiple phenomena which occur
in real plant–pollinator networks, like phenological dynamics which affect the topology of mutualistic
networks over the course of a season [11, 21], the spatial configuration of the landscapes that harbor the
mutualistic systems [34, 72, 73] or differences in the level of reliance on mutualistic partner species [12, 74,
75] (e.g. some pollinators also feed on resources outside the mutualistic network), to name but a few. Due to
the simplistic approach, it should be obvious that our findings cannot be directly applied to assess the
endangerment of real world pollinator species. In fact, under certain conditions, the mutual specialization
might have had benefits for the involved species, enabling the evolution and persistence of this phenomenon.
To shed some light on potential benefits of being located in the periphery, we considered an explicit topology
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for the intra-guild competition (switch from standard setup tomultilayer setup in section 5) based on the
assumption that the resources for which species compete are their mutualistic partners [67]. We found that
being peripheral can be beneficial when conditions are good, since it allows pollinators to avoid competition
for resources. However, we also saw that, under comparatively harsh conditions, pollinators in tree-like
structures are again the ones being most endangered—i.e. with increasing stress, mutualism rather than
competition becomes the decisive interaction for a species’ survival (in agreement with the stress-gradient
hypothesis [76, 77]). A more detailed analysis of the impact of environmental conditions on the variability of
the observed vulnerability patterns, for example via a more elaborated sensitivity analysis [78], is a promising
task for future research.

In the real world, the multilayer nature of plant–pollinator systems goes way beyond the two layers which
we considered in this work. For instance, bees require both nectar and pollen which they often receive from
different flowers [79]. Accordingly, a degree greater than 1 does not necessarily mean that a species is not
specialized in one way or the other. The same holds true for competition since species do not only compete
for mutualistic partners but also for nesting sites (pollinators), and nutrients and space (plants). Overall, we
believe that the interplay as well as potential trade-offs between different network layers are aspects which
deserve further investigation in future studies. The approach which we presented in this work—creating
endangerment/vulnerability scores and comparing them to network-based centrality metrics—can be an
instructive tool for such analyses. For further analyses, the tools that we used for the comparison (correlation
coefficients and composite centrality indices) could also be replaced, for example, by techniques that enable
the consideration of a nonlinear relation between centrality and vulnerability scores (e.g. nonlinear
regression). In this way, the approach could also be further developed for use in more realistic settings, for
instance, in system setups where species differ on account of intrinsic parameters (like αi) and on account of
their position in the mutualistic network.

Furthermore, our approach can easily be adopted for other fields of application. For instance, the
comparison between centrality and vulnerability scores would also be insightful for other networked systems
that exhibit multistability. Particularly suitable are networks where the single components can switch
between two (or more) alternative states, for instance, power grids, where network elements can be either
functional or non-functional [80] or, generally, networks consisting of multiple interlinked tipping elements
[81]. Another interesting field of application are other, potentially more complex, disturbance scenarios like
periodically recurring disturbances [82], disturbances with an explicit temporal structure [83] or
combinations of gradual environmental degradation and shock perturbations [84]. In this context, the use of
centrality metrics can also help to examine potential trade-offs between a species’ vulnerability against
different types of perturbations. For instance, Suweis et al [85] found that the impact of small perturbations
tends to accumulate in the most central rather than the most peripheral species of mutualistic networks.
Further analyzing the relation between topological traits and different aspects of a species’ vulnerability in
the same system setting is a promising direction for future studies.
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Appendix A. Plant-pollinator networks

The topologies of all studied plant–pollinator networks have been taken from the Web of Life database
(www.web-of-life.es). In order to attain a set of comparable, connected networks of sufficient size, we
processed the original data as follows: (1) All networks are considered as being unweighted. (2) From each
dataset, only the largest connected component is taken while all other components are omitted. (3) Only
those networks which hold more than 100 topologically unique pollinator nodes ÑA (i.e. nodes which have a
unique set of neighbors) are considered—so that we end up with a set of 11 networks (see table A1). The
reason for the last selection criterion is that we do not consider all but only the distinguishable nodes for the
endangerment and centrality rankings (see section 3.2).
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Table A1. Overview of the dataset of applied plant–pollinator (P-A) networks. From each dataset only the largest connected component
is considered. For the ranking only the unique pollinator nodes (ÑA) are taken into account.

IDa sourceb #linksc NP / NA
d ÑP / ÑA

e

M_PL_005 [86] 918 91 / 270 88 / 170
M_PL_015 [87] 2930 130 / 663 128 / 476
M_PL_021 [88] 1192 90 / 676 79 / 206
M_PL_044 [62] 1121 107 / 605 103 / 248
M_PL_048 [89] 671 30 / 236 30 / 132
M_PL_049 [90] 590 37 / 225 37 / 118
M_PL_053 [91] 567 92 / 272 88 / 139
M_PL_054 [92] 763 106 / 308 101 / 167
M_PL_055 [93] 427 61 / 192 56 / 117
M_PL_056 [94] 871 91 / 365 89 / 188
M_PL_057 [95] 1920 114 / 883 107 / 319
a In the web of life database (www.web-of-life.es).
b Original study in which the network topology was established.
c # mutualistic links in the largest connected component.
d # plant/pollinator species in the largest connected component.
e # unique plant/pollinator species (considered in the ranking).

Appendix B. Dynamical model set-up

For the choice of parameters in the model of plant–pollinator networks (see section 2.1), two considerations
were decisive. The first refers to the main goal of this work, which is to link topological traits of network
nodes to the endangerment of corresponding species. To ensure that differences in the endangerment (given
by Ω) actually reflect differences in the topological traits of the respective nodes, we choose a parametrization
which makes sure that species solely differ on account of their position within the mutualistic network. This
is achieved by using the same set of constant parameters for each species i (e.g. αi = α ∀ i). The second
important consideration concerns the existence (and attractiveness) of the desired state X0 in which all
species coexist. Since X0 serves as the ground state for the applied perturbation scheme, which means that
the system resides in this state prior to a shock perturbation (see section 2.2), the desired state X0 should be
locally attractive (linearly stable) for each of the examined mutualistic systems (see table A1). We choose the
parameters accordingly, with the standard setting being α= 1.0, βii = 1.0, γ0 = 10.0, h= 0.1 and ζ = 0.5
(with α being the only parameter which is varied within this work, in sections 4 and 5). Aside from these
parameters, the parametrization of the interspecific competition and the parametrization of the Allee effect
deserve special consideration (see below).

Competition type I—standard setup: Through most of this work (sections 3 and 4), we stick to the
commonly applied competition of mean-field type [6]. In this approach, it is assumed that each species within
one guild competes with every other species in the same guild in a uniform manner, i.e. every pollinator
competes with every other pollinator and every plant with every other plant (see left side of figure 8(a)). To
obtain a stable desired state X0 for networks of different size (see table A1), we assume that the strength of
competition between two species is mitigated in accordance with the total number of competitors within the
network—i.e. βP

il = β0/(NP − 1) for i ̸= l (βA
jo = β0/(NA − 1) for j ̸= o), where NP and NA are the total

number of plant and pollinator species in the network and β0 = 1.5.

Competition type II—multilayer setup: In section 5, we consider an alternative competition topology (see
right side of figure 8(a)) which we derive from the network of mutualistic interactions in the following
manner: A competitive link is drawn between two distinct species (i ̸= l) from the same guild if they share at
least one mutual partner (βil > 0), otherwise no link is drawn (βil = 0). For the sake of simplicity, we assume
that the strength of competition is the same for every pair of competing species—i.e. either βil = 0 or
βil = 0.001 for i ̸= l (applies to both plant competition βP and pollinator competition βA).

The Allee effect: Species with lower abundance P∗i (A
∗
j ) in the desired state X0 generally have a higher chance

of obtaining a low absolute abundance Pi(t= 0) (Aj(t= 0)) after the shock perturbation (see section 2.2).
Since the Allee effect qi depends on the species abundance Pi (see equation (6)), species with low P∗i would be
disproportionately penalized if we would use the same θi for all species i. In order to avoid this, we derive an
individual θi for every species i which depends on the species’ abundance P∗i in the desired state. To achieve
this, we divide the parametrization into two stages. In the first stage, we set up a provisional system without
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an Allee effect (corresponds to setting qi = 1 for all i) and numerically determine the corresponding
provisional desired state X̃0. In the second stage, we obtain θi as

θi =
−0.1P̃∗i
ln(0.5)

, (B.1)

where P̃∗i is the abundance of species i in the provisional desired state X̃0. Since P̃∗i ≈ P∗i , the Allee effect qi
now depends on a species’ relative abundance Pi/P∗i (insert equation (B.1) into equation (6)). Due to the
choice of θi, qi takes a value of 0.5 when species i is at 10% of its abundance P∗i in the desired state.

Appendix C. Peripheriness vs. endangerment rankings for plants

For the sake of completeness, we conducted the same analysis for comparing endangerment rankings and
different peripheriness rankings, as outlined in section 3.2, for the plant species as well. The only difference
between the results presented in figure 4 and the ones in figure C1 is that, in the latter, the unique plant
species instead of the unique pollinator species are considered (see appendix A for information on the
networks considered).

Figure C1. Goodness of fit between node rankings obtained from peripheriness indices (inversed centrality) and simulated
species endangerment for the plant species. (a)–(c) Comparison for one exemplary plant–pollinator network: Peripheriness rank
based on degree k (a), eigenvector centrality EV (b) and eigenvector centrality type II EV2 (c) versus endangerment rank. Each
point corresponds to one node/species in the network. The closer the points are to the diagonal, the better the agreement between
the two rankings. (d)–(g) Comparison for 11 empirical plant–pollinator networks: The evaluation is based on the rank
correlation coefficient Kendall’s tau τ (angle) and the precision ϵ (radius). Each colored point displays τ and ϵ for the comparison
between the species endangerment and one specific peripheriness index for one network. The line displays the mean value of all
11 τ and ϵ and the fan the range of all 11 τ that are obtained based on the same peripheriness index. In (d), the peripheriness
indices are based on degree (blue), eigenvector centrality (yellow) and eigenvector centrality type II (orange). In (e)–(g), the
peripheriness indices are based on k-shell index ks (e), neighborhood coreness Cnc (f) and neighborhood centrality CN (all
depicted in green). The closer the points (and the tip of the line) are to the bottom right corner where τ = 1 and ϵ= 1, the better
the agreement between the two rankings.
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The results for the plant species (figure C1) look qualitatively similar to the ones for the pollinators
(figure 4), although there are some minor differences that can be attributed to the overall smaller number of
plant species (see table A1) and to the slightly different distribution of plants within the mutualistic networks
(e.g. fewer specialists). As for the pollinators (figure 4(d)), degree (blue), eigenvector centrality (yellow) and
eigenvector centrality type II (orange) all show a good agreement with the endangerment ranking, with the
EV2 achieving the best fit out of those three (figure C1(d)). Overall, the best approximation of the plant
endangerment is provided by the two variants of the k-shell index, the neighborhood coreness Cnc

(figure C1(f)) and the neighborhood centrality CN based on the k-shell index (figure C1(g)). Accordingly,
the peripheriness of species/nodes is a good estimator for plant endangerment as well.

Appendix D. Allee effect induces degree-dependence

In the following, we demonstrate that if we assume that mutualism is obligatory (fi < 0) and that any species
can go extinct if perturbed strong enough (Allee effect qi), a dependence of the endangerment on the degree
is inherent in the model of mutualism (equation (1)). To this end, we reduce the model to the necessary
ingredients allowing for an extinction threshold and obligatory mutualism. As a first step, we neglect the
interspecific competition, gi = 0. Moreover, we assume that a species obtains the full mutualistic benefit as
long as it has any partner species left. This effectively reduces the mutualistic benefitmi to an ON–OFF
function which reads

mi =

{
const if any γP

ijAj > 0

0 else.
(D.1)

It should be noted that this form ofmi can be obtained by assuming an extremely efficient mutualism,
γ0 →∞, in which case the constant in equation (D.1) is h−1.

Under the assumption that we only consider connected networks, the extinction of a species in this
simplified model can initially be induced only due to its own density falling below the Allee threshold.
Further extinctions can occur if a species loses all its partners due to such initial extinction events.
Accordingly, the extinction process following a single large shock perturbation can be reformulated by two
simple probabilistic rules which denote primary and secondary extinctions.

(1) Primary extinctions: Each species has a probability pi of going extinct due to the shock.
(2) Secondary extinctions: After the initial shock, species which remain without any mutualistic partner are

lost as well. The probability for this to occur is the product of the primary extinction probabilities pj of
the neighbors Γi of species i.

Accordingly, the probability of species i to go extinct due a single shock perturbation can be denoted as

Ωi = pi +(1− pi)
∏
j∈Γi

pj . (D.2)

For the sake of simplification and in accordance with the parametrization of the Allee effect (see
appendix B), we assume that the probability of falling below the primary extinction threshold is the same for
all species and thus pi = p ∀ i. This allows us to derive an analytic solution for the extinction probability for
each species which solely differs in terms of a species’ degree ki

Ωi = p+(1− p)pki . (D.3)

Accordingly, in this simple model, each species holds a certain basal-endangerment p, which yields the
minimum for the Ωi of any species, and an additional endangerment term, whose contribution to Ωi

decreases with increasing degree ki according to the power law pki .
In the following, we test whether the extinction probabilities Ω calculated for the complete dynamical

model generally follow the dependency described by equation (D.3). To this end, we need to derive a
basal-endangerment p for the simplified model (equation (D.3)) based on the extinction probabilities
obtained for the complete model. We determine two instances of p, representing an upper limit pup and a
lower limit plow (upper and lower edge of gray boxes in figure D1(a)). The upper limit pup is obtained by
solving equation (D.3) for the median of the extinction probabilities Ω of all species with a degree k= 1 in
the exemplary network, while plow is set to the median of the extinction probabilities Ω of all species with a
degree k> 7, as pk → 0 for p≪ 1 and k≫ 1.
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Figure D1. Comparison between the endangerment in the complete and the strongly simplified model. (a) Dependence of the
extinction probability Ωi on the degree. Yellow dots correspond toΩi of species in the dynamic model of the exemplary
mutualistic system (M_PL_044 in table A1). Blue squares represent the median ofΩ for all species with the same degree. Gray
boxes correspond to theΩi provided by the simplified model (equation (D.3)), where the upper edge is determined by adaptation
to the specialists (k= 1) and the lower bound by adaptation to the generalists (k> 7). (b) Rank correlation between peripheriness
(inverse centrality) measured by degree and endangerment measured byΩ.

The comparison shows that the endangerment distribution obtained from the complete dynamical
model generally follows the dependency described by equation (D.3) (figure D1(a)). Accordingly, the degree
is an important driver of a species’ endangerment. However, we observe that species with the same degree
strongly differ in their endangerment and that the simple approximation is not able to capture the
exceptional endangerment of some species (especially in the specialist class). Accordingly, the degree is an
important but not the only driver of a species’ endangerment.

We furthermore find that, if adapted to the endangerment of generalists (plow), the simplified model
underestimates the endangerment of specialists. This indicates that the simplification might not capture all
aspects which cause the particular endangerment of specialists—for instance, the simplified model does not
take into account that shock perturbations affect the mutualistic termmi (equation (4), but see appendix E).

Appendix E. Mutualistic benefit after a shock

The relation between the degree of specialization and the endangerment of a species, as derived in
appendix D, was based on the assumption that mutualistic benefits were fully present (saturated) as long as
any partner species was left. This does of course neglect an integral element of the mutualistic system, which
is the term describing the actual mutualistic benefitmi a species obtains from the interaction with its
partners (equation (4)).

The mutualistic benefitmi depends on the number and abundance of partner species. Accordingly, since
the abundances of species constitute the state variables of the system, the mutualistic benefit is a dynamic,
time-dependent quantity,mi(A(t)). However, for the sake of simplicity, we considermi at one particular
point in time, t= 0, which is the time at which the shock perturbation has just hit the system. In other words,
we simply examine how the perturbation shapes the mutualistic benefitmi. At t= 0, the abundance of each
species can be considered as a random variable drawn from a uniform distribution in the interval [0,N∗

j ],
where N∗

j is the abundance of species j in the desired or pre-disturbance state (see section 2.2). Assuming for
now that N∗

j is the same for all species (N∗
j = N∗), we can derive a probability distribution for the mutualistic
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Figure E1. Probabilistic description of the mutualistic termmi at t= 0. (a) and (b) probability distribution of the mutualistic
benefit for different degrees k for N∗ = 1.0 (a) and N∗ = 2.0 (b). (c) Correlation between the EV2 and the abundance of species
N∗ in the desired state in the exemplary mutualistic system (M_PL_044 in table A1).

benefitmi using a transformation of the Irwin–Hall distribution [96]. The resulting probability density
function is

fy =
1

(k− 1)!

⌊
y

γN∗(1−hy)

⌋∑
j=0

(−1)j
(
k

j

)
1

γN∗ (1− hy)2
·
(

y

γN∗ − γN∗hy
− j

)k−1

, (E.1)

with γ = γi = γ0/k
ζ
i and ⌊·⌋ being the floor function.

Admittedly, equation (E.1) is a little difficult to read. Therefore, to understand the impact of the degree k
and the abundance of partners N∗ on the mutualistic benefitmi which remains after a perturbation, the
inspection of exemplary probability distributions for specific k and N∗ is instructive (figures E1(a) and (b)).
Regarding the impact of the remaining mutualistic benefit on the endangerment of a species, it can be
assumed that very lowmi(t= 0) are particularly dangerous since they can cause an overall negative growth
rate (equation (1)) at the time of the shock perturbation (t= 0).

Regarding the impact of the degree k, we note that the degree affects both the position and the shape of
the probability distribution of the mutualistic benefitmi(t= 0) (figure E1(a)). Due to the specific shape of
the distribution for low degrees, especially for k= 1, very lowmi(t= 0) are way more probable for specialists
than for less specialized species (k> 1). The way in which the mutualistic benefitmi is affected by the shock
perturbation thus reveals another aspect amplifying the particular endangerment of specialists.

In contrast to the degree, the abundance of partners N∗ mainly affects the position of the probability
distribution ofmi(t= 0)—an increase of N∗ leads to a distortion of the probability distribution towards
larger mutualistic benefitsmi, while the specific shape of the curve is basically maintained (see change from
figures E1(a) and (b)). This means that the chance of receiving a very lowmi right after a perturbation
decreases significantly for species whose partners have a high abundance in the undisturbed system state.
However, the abundance N∗ is not the same for all species but relies on the species’ position within the
network. In fact, we find a strong correlation between the abundance N∗

i and the centrality of the
corresponding node, a relation which is well captured by the EV2 (figure E1(c)). Accordingly, species whose
partners show a low EV2 score—corresponding to peripheral nodes—have a higher chance of receiving a low
mutualistic benefit after the shock perturbation than species which are linked to species in the core of the
network (high EV2).
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