
INVESTIGATING THE POTENTIAL OF
SUPER-RESOLUTION FOR ROAD

SEGMENTATION IN SENTINEL-2 IMAGES
Sandeep Kumar Jangir , Corentin Henry , Nina Merkle

Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
sandeep.jangir@dlr.de, corentin.henry@dlr.de, nina.merkle@dlr.de

Abstract—Road segmentation from Sentinel-2 imagery is chal-
lenging due to its coarse 10 m spatial resolution, yet its global
coverage makes it valuable for applications like disaster relief
and infrastructure monitoring. Traditional segmentation meth-
ods rely on high-resolution data, but recent approaches have
explored super-resolution to enhance the spatial resolution of
Sentinel-2 images. This study investigates the potential of super-
resolution to perform road segmentation at 62.5 cm resolution
from single-image Sentinel-2 RGB data, bridging the resolution
domain gap. Both the super-resolution and the segmentation
models are trained on high-resolution data, making the task
more difficult. We demonstrate that these models can generalize
to low-resolution data and deliver usable results for various
applications, particularly in regions lacking up-to-date high-
resolution imagery.

Index Terms—Road segmentation, Sentinel-2, Super-
resolution, Deep learning, Image enhancement

I. INTRODUCTION

Using Sentinel-2 imagery to perform road segmentation
presents unique challenges and opportunities due to its low
spatial resolution but short revisit period and multispectral
capabilities, making it well suited for large-scale monitoring
and mapping applications. Road segmentation from these
images can provide valuable insights into infrastructure devel-
opment, particularly in remote or underdeveloped areas where
high-resolution data might not be available. While Sentinel-
2 does not capture fine-grained details, its global coverage
and spectral richness make it an essential tool for large-scale
mapping, disaster response, or environmental monitoring.

The recent advancements in deep learning models [1], par-
ticularly in terms of image quality, have made deep learning-
based approaches the preferred choice for various image
enhancement tasks, such as Super-Resolution (SR). Deep
learning-based SR methods can be categorized into two types:
Single-Image Super-Resolution (SISR), which uses informa-
tion from a single image for upsampling, and Multi-Image
Super-Resolution (MISR), which aggregates and merges data
from multiple images to produce a higher-quality result. How-
ever, the low-resolution data of satellites such as Sentinel-2
makes resolving fine features challenging. Many methods [2–
4] use time series to upsample the 20 m and 60 m bands to
10 m. In contrast, SISR methods rely on a single observations
to generate SR images. For instance, Lanaras et al. [5] and
Salgueiro et al. [6] upsample the 60 m and 20 m bands to

(a) Sentinel-2 image (b) Road segmentation results
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Fig. 1. Road segmentation with and without super-resolution over Japan.

10 m using information from the original 10 m band and
single observations. In Galar et al. [7] a SR model is trained
on high-resolution satellite data, such as WorldView, and
applied to super-resolve Sentinel-2’s 10 m bands. However,
the primary challenge of achieving a resolution finer than
10 m lies in the absence of Sentinel-2 bands with a lower
GSD. To address this, one approach is to train SR networks
on higher-resolution satellite images which share overlapping
image profiles, similar to Sentinel-2’s.

Road segmentation is usually performed on imagery ac-
quired at 1 m GSD or below, but rarely above, as streets
are no longer distinguishable in cities at coarser resolutions.
Most datasets focus on images acquired between 1 m and
10 cm GSD, e.g. SpaceNet 3 [8] at 30 cm and DeepGlobe18
at 50 cm [9], where the roads width makes them easier to
detect for machine learning models. Nevertheless, Ayala et al.
[10] extract roads at 2.5 m GSD from native 10 m GSD
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Sentinel-2 RGB images, using a U-Net-like architecture with
a ResNet34 encoder backbone. They obtain the final 2.5 m
output resolution via 4× bicubic upsampling of the input
images. Trier et al. [11] also present a U-Net-based method
to extract forest roads using 10 spectral bands of Sentinel-2
images at 10 m and 20 m GSD, upsampling the latter to 10 m
via bilinear interpolation. They report getting a high rate of
false negatives and false positives when using single images,
and suggest using time series instead. Looking similarly for
unofficial roads in the Amazonian for forest monitoring and
therefore with a focus on non-urban areas, Botelho et al.
[12] purposefully use the SWIR1, NIR, and red bands from
10 m Sentinel-2 images and optical Green-Red-NIR Landsat
images. Using a modified U-Net model and a post-processing
algorithm for road reconnection and vectorization. In contrast,
Jia et al. [13] do not rely on hyperspectral bands and instead
use settlement footprints to inform their model as to the likely
proximity of roads. They train their model on Sentinel-2 RGB-
NIR images at 10 m GSD. A final upsampling module learns
to classify the roads at a 2.5 m GSD. Aiming at a 50 cm
GSD, Sirko et al. [14] train a teacher HRNet model fed with
single frames of 50 cm GSD satellite imagery and distill its
knowledge into a student modified HRNet model fed with 32-
layer multi-temporal 10 m GSD Sentinel-2 13-band imagery.
The latter directly predicts the roads at a 50 cm GSD from the
10 m input image, achieving qualitatively high results.

In this study, we investigate the potential of super-resolution
techniques to improve the performance of road segmenta-
tion models applied to Sentinel-2 RGB imagery. Neither
the applied SR model nor the road segmentation network
have been trained on low-resolution data, which presents a
significant challenge in achieving optimal results. Our aim is
to investigate whether these models can generalize to low-
resolution Sentinel-2 imagery to support applications such as
humanitarian aid with up-to-date road maps in areas where
current high-resolution imagery is not available in time. To this
end, we test the ability of the segmentation model to generalize
to four areas worldwide and discuss the impact of SR on road
segmentation model performance.

II. METHODS

To extract the road network from Sentinel-2 imagery, we
follow a two-step approach. In the first step, we use a SR
framework to improve the spatial resolution of the Sentinel-2
images (see Section II-A). As a second step, we extract the
road network from enhanced Sentinel-2 images using a deep-
learning based approach (see Section II-B).

A. Single Sentinel-2 image super-resolution

We use U2D2 [15], a generalized framework for enhancing
aerial and satellite imagery. U2D2 comprises three compo-
nents: the Degradation Module (DM), which simulates degra-
dations like noise, blurring, and artifacts to generate Low-
Quality (LQ) images for training; the DL-Upsampler (DLU),
a lightweight CNN for 2× SR which upscales and enhances
images; and DiffRef, an adapted diffusion model based on

TABLE I
OVERVIEW OF THE UPSAMPLING STRATEGIES TO REACH 0.625 m, FROM

THE NATIVE 10 m GSD OF SENTINEL-2.

Exp. 10→ 5 m 5→ 2.5 m 2.5→ 1.25 m 1.25→ 0.625 m

#1 Bicubic Bicubic Bicubic Bicubic
#2 Bicubic Bicubic SR Bicubic
#3 Bicubic SR Bicubic Bicubic
#4 Bicubic SR SR Bicubic
#5 SR SR Bicubic Bicubic
#6 SR SR SR Bicubic

SR3 [16], refining 2× upsampled images for sharper, more
detailed outputs. U2D2’s modular structure decomposes the
enhancement task into distinct stages, allowing the DLU and
DiffRef networks to operate independently and produce en-
hanced images. During training, the DM processes datasets by
simulating degradations online at varying GSDs (15 cm–1.5 m)
using bicubic downsampling. The DLU network removes
these degradations while performing 2× upscaling. Its output,
combined with the bicubic-upsampled input, is refined by
DiffRef to produce enhanced SR images with sharper details
and fewer artifacts. U2D2 effectively generates enhanced
images (2× SR, denoising, and detail restoration) for aerial and
satellite data outside its training distribution, achieving consis-
tent performance across GSDs below 1.5 m. This consistently
benefits downstream applications compared to both original
data and other SR methods. In this study, we evaluate U2D2
on Sentinel-2 data, enhancing the 10 m RGB bands to a lower
GSD without retraining. Previously, we showed that 2× SR
balances preserving image details and generating new features.
To evaluate enhanced Sentinel-2 images on a road segmen-
tation network requiring high-resolution inputs, we target a
GSD of 1.25 m. We explore an approach combining SR and
bicubic interpolation to enhance Sentinel-2 images to 1.25 m
GSD step by step: 10 m→5 m→2.5 m→1.25 m (as summarized
in Table I). This strategy preserves original information while
achieving the resolution required for downstream applications.

B. Road segmentation

We use a OneFormer segmentation model [17], a model
architecture that enables us to benefit from the learning capa-
bilities of vision transformer networks which were empirically
shown to converge faster and reach a performance equivalent
or higher to convolutional models on large-scale training
sets [18]. It is made of a Swin-Tranformer Tiny encoder back-
bone [19] and a Multi-Scale Deformable transformer-based
Attention module (MSDeformAttn) [20], followed by another
multi-scale transformer-based decoder learning to predict more
fine-grained spatial and semantic details. The model outputs
a road segmentation mask at a 1

4
resolution compared to the

input image, necessitating a bilinear resampling to obtain the
final full-resolution map. This architecture, when trained for
road segmentation, has been shown to generalize well to com-
plex areas throughout the world. For comprehensive details on
the architecture, please refer to our original study [21].



III. RESULTS & DISCUSSION

In the following, we provide an overview of our test
areas and the corresponding annotations (Subsection III-B),
the training parameters of the SR framework, the road seg-
mentation model (Subsection III-A), and our results (Subsec-
tion III-C & Subsection III-D).

A. Test areas and ground truth data

We selected Sentinel-2 L2A image patches from four coun-
tries as our test images and use the 8-bit RGB bands:
● T30TVK 20241223T110623 (Spain)
● T32UPU 20241101T102059 (Germany)
● T37MBU 20240805T075902 (Kenya)
● 54SUH 20240620T013529 (Japan)
To provide a quantitative evaluation of the performance of

our approach, we manually labeled all four images with vector
road centerlines, using existing OpenStreetMap (OSM) data
as an indication of the presence of roads. Roads missing in
OSM but visible in the Sentinel-2 images are added to our
annotations. In the case where roads are not visible, or are
identified as dirt paths by looking at high-resolution satellite
imagery from Google, they are not included in our annotations.

Since the road segmentation model has been trained on
images acquired with a GSD mostly between 1 m and 30 cm,
we apply a 2× bicubic upsampling to 62.5cm to the SR-
enhanced images before generating the prediction, as shown
in Table I. After resampling, the evaluation effectively uses a
patch size of 1024 × 1024 px with an overlap of 102 px. The
logits for the overlapping regions are merged via an extrema
operator before the probability calculation, so as to take the
strongest predictions into account in the final road map.

B. Training parameters

The U2D2 model [15] was trained on aerial images from
the open-source EAGLE dataset [22], with GSDs from 5 cm
to 45 cm, plus two WorldView-4 (WV4) RGB images with
a 30 cm GSD. To simulate varying levels of degradation, the
training images were downsampled to generate LQ images
(i.e. with GSDs from 10 cm to 1.5 m). The DLU network was
trained over 500k iterations, starting with a learning rate of
2e−5, reduced to 2e−6 for the final 50k iterations. The DiffRef
model uses a modified U-Net architecture for denoising during
the diffusion process and was trained for 4.5M iterations. A
linear noise schedule is applied across 500 time steps, with
noise levels increasing gradually from 1e−4 to 1e−2, ensuring
a smooth and stable progression through the diffusion process.
For further details, please refer to the U2D2 paper [15].

Our OneFormer model is pre-trained on the ADE20K
dataset [23] and trained on 6 aerial and satellite image
datasets for road extraction with a worldwide coverage [21]:
Massachusetts Roads [24], DeepGlobe18 [9], SpaceNet 3 &
5 [8, 25], RoadNet [26], and City-Scale [27]. We use an
AdamW optimizer with an initial learning rate of 5e−5 and
an exponential decay factor of 0.89 after each of the 20
training epochs. We use bootstrapped cross-entropy, binary
cross-entropy and dice losses [28] with weights of 2, 5, and 5,

TABLE II
EFFECT OF UPSAMPLING STRATEGIES ON ROAD EXTRACTION RESULTS.

Exp. Ups. Strategy Quality ↑ Completeness ↑ Correctness ↑

#1 B-B-B-B 46.53 % 51.45 % 86.94 %
#2 B-B-SR-B 53.30 % 67.89 % 71.84 %
#3 B-SR-B-B 59.91 % 77.45 % 72.77 %
#4 B-SR-SR-B 56.30 % 69.15 % 76.20 %
#5 SR-SR-B-B 60.97 % 76.46 % 75.48 %
#6 SR-SR-SR-B 55.12 % 69.38 % 73.26 %

respectively. We compensate OneFormer’s non-deterministic
optimization by training each epoch 4 times separately, pro-
ceeding with the checkpoint with the highest validation IoU.

C. Super-resolution enhancement of Sentinel-2 images

Figure 2 presents the results of SR enhancement for
Sentinel-2 images, improving the GSD from 10 m to 1.25 m
using the U2D2 framework with the SR-SR-B-B strategy.
This ×8 resolution enhancement introduces significant new
information in the final image. While smaller objects and
structures that were indistinguishable in the original obser-
vation are rendered as blobs in the SR-enhanced image,
larger isolated structures such as roads, buildings, and fields,
which are vaguely distinguishable in the original 10 m image,
are resolved with clear boundary definitions, though without
detailed texture. Aliasing artifacts on roads are eliminated,
resulting in improved roads definition that facilitates their
detection by road segmentation algorithms. As the U2D2
framework is trained to remove artifacts commonly found in
satellite images, RGB artifacts caused by stacking individual
RGB bands are also eliminated. This improvement is visible
on linear structures such as roads in Figure 2. However,
in some cases, the framework may unintentionally remove
color information, such as on rooftops, as the network might
perceive them as artifacts, which is particularly noticeable
in row two of Figure 2. Despite these minor limitations, it
is worth noting that the U2D2 network was not specifically
trained on Sentinel-2 or lower-resolution data. Nevertheless,
this SR enhancement of low-resolution Sentinel-2 images has
the potential to support downstream applications which can
then provide a preliminary extraction of larger objects without
requiring any model fine-tuning. For the road segmentation
task, we aimed at finding the optimal strategy for upsampling
native Sentinel-2 RGB image bands, ensuring that SR en-
hancement not only improves image quality but also increases
the segmentation performance. We provide the corresponding
analysis in the part below.

D. Road segmentation results

We report our results in terms of road quality, completeness,
and correctness [29], metrics similar to IoU, recall, and preci-
sion, respectively, but adapted to road centerline labels. They
convert the predictions into centerlines via morphological
thinning, then estimate the relative proximity of the predictions
and the labels within a controllable buffer distance. Here we
choose a buffer diameter of 30 m, hence 3 pixels at the original



(a) Sentinel-2 (b) enhanced Sentinel-2 (c) pred. on Sen2 (d) pred. on enhanced Sen2 (e) road buffer labels

Fig. 2. Qualitative comparison of bicubic upsampling (a) and SR as in Exp #5 (b) of Sentinel-2 optical RGB images, with corresponding road segmentation
labels and results (d-e) at 62.5cm GSD. The selected image patches were acquired over Spain (row 1), Kenya (row 2), and Japan (row 3).

10 m GSD of Sentinel-2 images, to account for the fact that the
roads may be located up to 10 m away from their location as
visible in the images. Moreover, to accommodate the relatively
lower confidence of the model on the target data, we apply a
35% probability threshold on the road predictions. Using a
total of 16× bicubic upsampling on the original Sentinel-2
images, we obtain a baseline quality of 46% with a medium,
conservative completeness of 51% and a correspondingly high
correctness of 87% (Exp. #1 in Table II). Replacing any of
those 2× upsampling operations by our SR model yields better
results in quality and completeness, though correctness, while
still high, logically decreases as our segmentation model is
able to predict more roads but includes some false positives.
We observe that applying a 2× bicubic upsampling as a first
step leads to the least performance increase overall (Exp. #2-
4), lagging 1-7.5% behind the best performing model in terms
of quality (Exp. #5). The latter uses two 2× SR upsampling at
the first steps, followed by successive 2× bicubic upsampling
until reaching a 62.5 cm GSD, and achieves a 61% quality,
a 76% completeness, and a 75% precision. While other
strategies helped the model get slightly better completeness
or correctness (around 1% higher), they significantly under-
perform in the complementary metric (around 3-7% lower),
which effectively leads to a lower quality score. On the
other hand, adding too many 2× SR operations in a row
creates artifacts, which confuse the model, leading to poor
performance improvements with only 55% quality (Exp. #6).

Figure 2 shows results for pure bicubic resampling of Sentinel-
2 images and the approach of Exp. #5, with a clear increase
in the level of details and road extraction comprehensiveness
for all test areas: main roads, streets and services roads were
successfully detected in the enhanced images whereas they
were only partially detected, if at all, in the original images
upsampled via bicubic interpolation.

IV. CONCLUSION & FUTURE WORKS

In this study, we demonstrated the effectiveness of com-
bining SR and road segmentation for enhancing Sentinel-2
imagery, improving spatial resolution from 10 m to 1.25 m.
Despite not being trained on low-resolution data, the SR-
enhanced images were shown to support road segmentation
tasks, yielding better performance compared to conventional
bicubic interpolation. Our experiments showed that a bal-
anced combination of SR and bicubic interpolation led to the
best segmentation quality and completeness. The proposed
approach provides a valuable solution for applications like
humanitarian relief and infrastructure monitoring, where high-
resolution imagery is often unavailable. Future works should
focus on refining the SR model for low-resolution data for
10 m and 20 m bands and exploring its application for the
improvement of other downstream applications on diverse
regions and domains with limited access to timely high-
resolution data.
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