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Approach

Sensor Limitations:
• Low spatial resolution restricts detail capture in aerial and satellite images.
• Limited spectral information hinders material and feature identification.
• Poor radiometric sensitivity reduces signal detection in low-light conditions.
• Infrequent revisits limit timely monitoring of dynamic events.

Complex Noise Artifacts:
• Hot/Dead Pixels: Defective pixels stuck at R, G, B (bright) or black (dark) values in

both aerial and satellite sensors.
• Banding Noise: Gradient-like readout or amplifier glow artifacts, prominent in

long-exposure dark frames.
• Fixed-Pattern Noise (FPN): Column/row variations from sensor non-uniformity,

affecting both platforms.
• Random Noise: Dark current (thermal), shot, and read noise degrade low-light

signals.

Impact of Noise:
• Reduces signal-to-noise ratio, impairing classification, detection, and damage

assessment.
• Exacerbates challenges in low-light aerial and satellite imagery analysis.

Traditional Methods Fail:
• Filtering (e.g., Gaussian, median) cannot address diverse, ill-posed noise patterns.
• Scarcity of paired noisy-clean datasets limits training for denoising models.

Significance of Night-time Imagery Challenges :

Real-World Processing

DNN Denoiser

Noise Degradation

Global Relevance: At any moment, half of Earth’s surface is in night-time, yet most
remote sensing focuses on daytime imaging.

Human Activity Insights: Artificial lighting drives night-time activities, reflecting social
factors like wealth and urban development.

Environmental Impact: Night-time light emissions reveal light pollution, affecting
ecosystems and energy consumption.

Dark Frame Analysis: Analyzed aerial dark frames to pinpoint noise: hot/dead pixels (R, G,
B), banding, FPN, and random (dark current, shot, read).

Noise Degradation: Simulated realistic noise (hot/dead pixels, banding, FPN, random) for
8/12/16-bit depths with diverse patterns.

Lightweight DNN Design: End-to-end trainable deep neural network (DNN) with 20K
parameters optimized for low-light denoising and suitable for real-world deployment

Noise Injection: Aerial images injected with varied noise combinations and intensities
during training; online injection creates unique mini-batch patterns, boosting
generalization.

Native Noise Removal: Post-training, the DNN efficiently processes raw test images,
effectively removing native noise artifacts to enhance image quality.
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Dark Frame: Closed-shutter image
capturing noise (hot/dead pixels, banding,
FPN, random) in low-light.

Noise Patterns: Reveals specific noise types
(e.g., FPN, banding) for realistic modeling.

Intensity Data: Offers noise amplitude and
distribution for varied simulation intensities.

Sensor Artifacts: Highlights sensor-specific
defects (e.g., hot pixel, sensor degradations)
to refine degradation parameters.
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Results
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• Raw night-time images are adjusted via exposure or percentile stretching for proper
exposure, enabling downstream tasks like street lamp classification.

• The DNN denoiser removes noise and enhances images, allowing direct use in
downstream applications with improved quality.
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