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Graph neural network

*  Human ecological disruption and unsustainable Output

consumption drive pandemic risk*
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*  Mathematical modeling can help to explore
potential outcomes to guide decision makers

*  Many different modeling approaches exist?:34>:6.7
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*  Decision makers need reliable assessment
of the situation immediately or in very short time
frame

* |Infectious disease spread is often
heterogeneous on a spatial scale, stressing
the need for correspondingly resolved
models and local information

APPROACH & SOLUTION
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* Use complex models as a simulator to generate

h|gh-qua||ty and meiIity-awa re input data for Fig 2. Randomized data input corresponding to spatially heterogeneous disease spread on the German counties.
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* Vary model parameters and interventions schemes ‘s o] 1o S\
to generate a large space of potential outcomes RS 5. RN =

*  Precompute thousands to millions of simulator :
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Fig 3. Randomized trajectories of infectious disease spread in one spatial entity.

* Train a Graph Neural Network (GNN)
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to a spatially resolved model that can be o Bloos oo
executed in a fraction of a second
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* Use the GNN within a low-barrier - |

webpage to allow decision makers
explore potential outcomes
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Fig 4. Grid search for GNN layers. o i
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Fig 6. Test MAPE (original scale) for different prediction horizons
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