SOURCES OF THE HIGH LATITUDE **IONOSPHERE VARIABILITY DURING WINTER NIGHTTIME**

Pelin lochem¹, Claudia Borries¹, Samira Tasnim¹, Jürgen Kusche², Anita Aikio³, Lei Cai³, Ilkka Virtanen³, Nada Ellahouny³

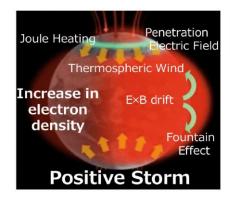
German Aerospace Center (DLR), Institute for Solar-Terrestrial Physics, Neustrelitz, Germany
 Rheinische Friedrich-Wilhelms University of Bonn, Bonn, Germany
 Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland

Solar wind impact on the ionosphere: from high-latitudes to global scale

Solar energy is dissipated into Earth in:

- 1) solar EUV radiation
- 2) solar wind kinetic energy (Prölss et al., 1988)

With M-I couples, part of solar wind energy is dissipated into Earth's ionosphere as:

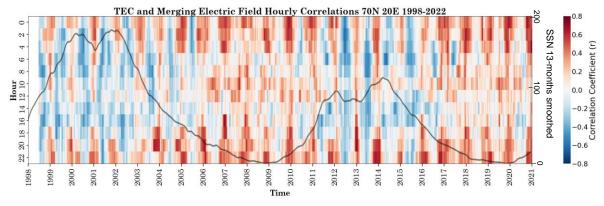

- 1) electromagnetic energy
- 2) precipitation of energetic particles (Cai et al., 2014)

Source	Power (GW)	Energy flux (mW m ⁻²)	Altitude (km)
Solar EUV radiation (variation)	600 to 1400	1.5 to 4.5 (subsolar)	100 to 500 km
Precipitating particles			
Magnetospheric protonsMagnetospheric electrons	1–15 40 to 100	3–6 0 to 250	100–150 km 70 to 150 km
Joule heating	70–1000	0-100	100-250 km
Solar wind			
- Kinetic $1/2pv^3$ - Electromagnetic ExB/ μ_0	14 000 800	0.5 0.03	Magnetospheric cross section of 15 R _I

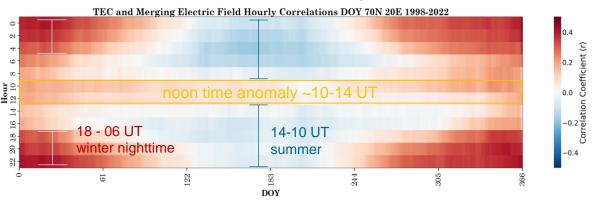
Credit: Sarris et al. (2020)

The electrodynamic conditions in high latitudes impact the T-I system on a global scale via:

- 1) heating in the polar zone,
- 2) increase in the thermospheric circulation,
- 3) delayed generation of disturbance dynamo electric field,
- 4) changes in the atmospheric composition (Kakoti et al., 2023).


Credit: NICT

How does the high latitude thermosphere-ionosphere system respond to solar wind variation?



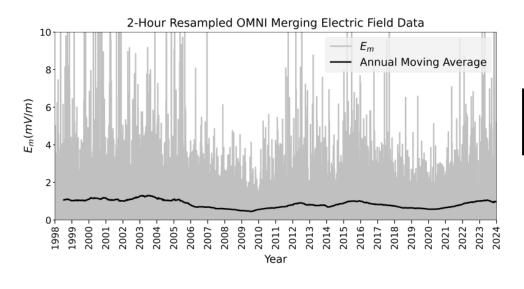
- Solar wind forcing causes a systematic and persistent response of the HL ionosphere, which varies depending on local time, season, and solar cycle (Borries et al., 2024).
- This response is recently studied by analyzing different ionospheric parameters and solar wind coupling function with a cross correlation method of 90-days moving window at HL Tromsø location.
- Modification of the electron density at HL:
 - 1) polar cap plasma transport
 - 2) auroral particle precipitation
 - 3) Joule heating (Evans et al., 1972; Labelle et al., 1989; Sojka and Schunk, 1994; Consolini et al., 2021).

a) temporal evolution of TEC and E_m correlations

b) annual variation of TEC and E_m correlations

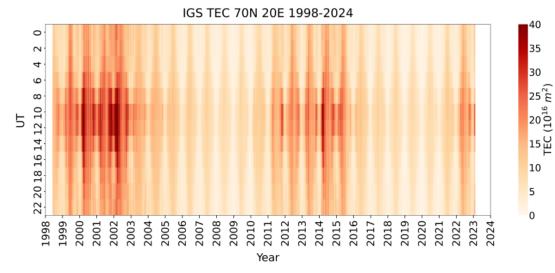
 E_m : merging electric field

Motivation of the study



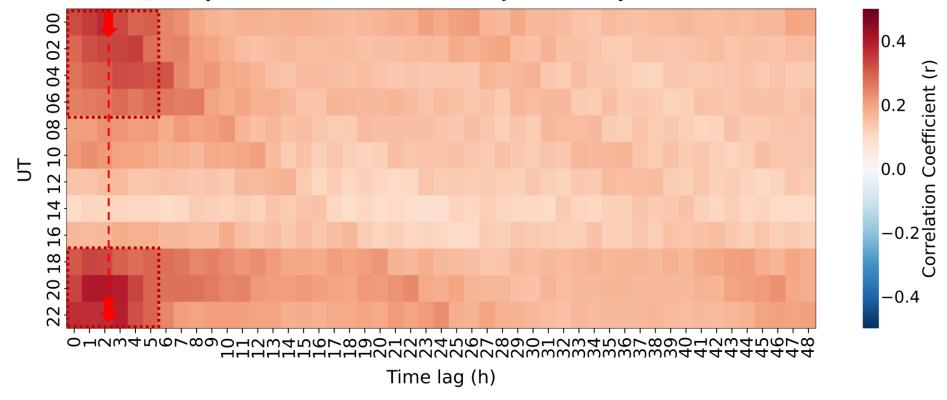
High-latitude ionosphere persistently responds to the variation in the solar wind during winter nighttime.

■ The sources of this response can be characterized by their difference in the response time to solar wind perturbations.


Solar wind forcing at Tromsø location and response time

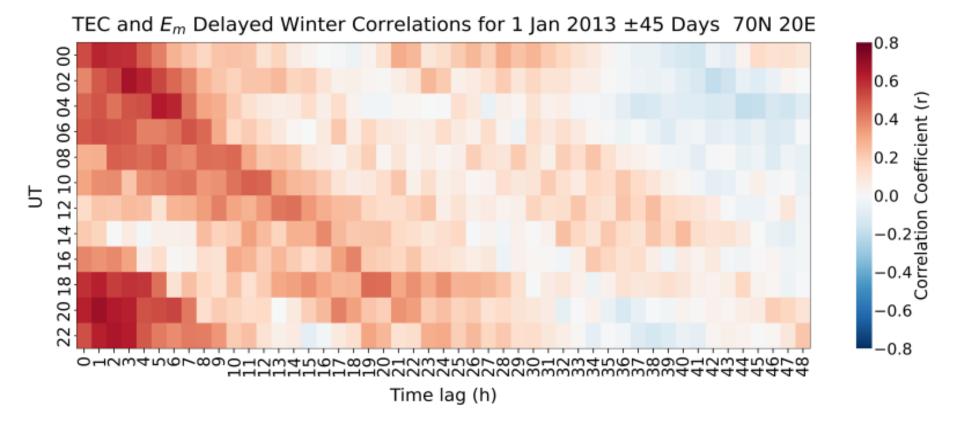
$$E_{\rm m} = v_{\rm sw} B_{\rm t} \sin^2\left(\frac{\theta}{2}\right)$$

Kan & Lee (1979)


Lagged cross correlation

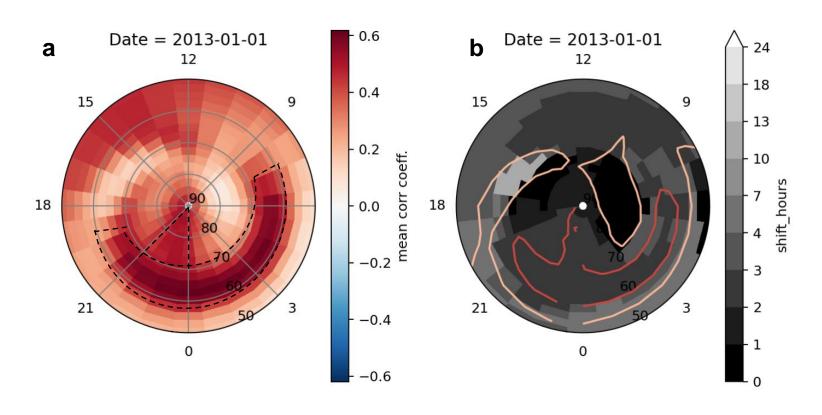
- I. TEC and E_m datasets from 1998 to 2024 are separated into 12 UT groups.
- II. A lag on the E_m is applied from 0 to 48 hours
- II. Pearson correlation between TEC and E_m during 90 winter days (1 Jan \pm 45 days) is calculated for each lag hour.

Solar wind forcing at Tromsø location and response time: 1998-2024 winters averaged


TEC and E_m Delayed Winter Correlations for 1 Jan ±45 Days 1998-2024 70N 20E

- \succ TEC and E_m correlation values up to ≈ 0.5
- ➤ enhanced positive correlation → 18 UT to 06 UT
- time lag of the highest correlation ≈ 2 hour

Solar wind forcing at Tromsø location and response time: 15 November 2012 – 15 February 2013



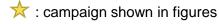
- \succ *TEC* and E_m correlation values up to ≈ 0.8
- ➤ enhanced positive correlation → 18 UT to 06 UT
- time lag of the highest correlation ≈ 2 hour

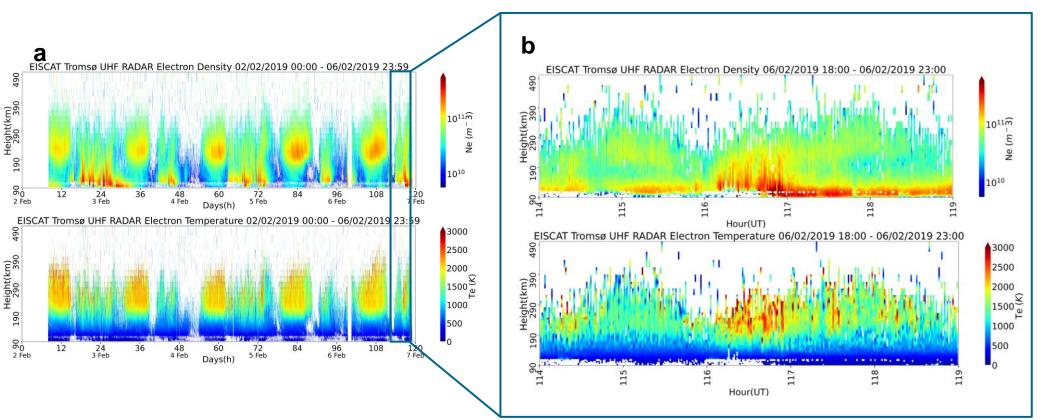
Solar wind forcing at high latitudes (NH) and response time: 15 November 2012 – 15 February 2013

- > TEC and E_m high correlation values up to ≈ 0.8 ($\sim 21\text{-}06$ MLT) in the auroral oval \rightarrow auroral particle precipitation
- ➤ nightside polar cap (~21-00 MLT) enhanced correlation →
 Polar cap plasma convection
- time lag ≈ 2 hour for highest correlations

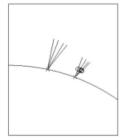
- a) Maximum correlation between IGS TEC and Em at each grid point of the IGS TEC maps in the time period of 01.01.2013 ± 45 days, computed for a shifted solar wind by lag hours ranging from 0 to 48 hours.
- **b)** The corresponding lag for the maximum correlation between IGS *TEC* and *Em*.

EISCAT Tromsø UHF radar campaigns: particle precipitation

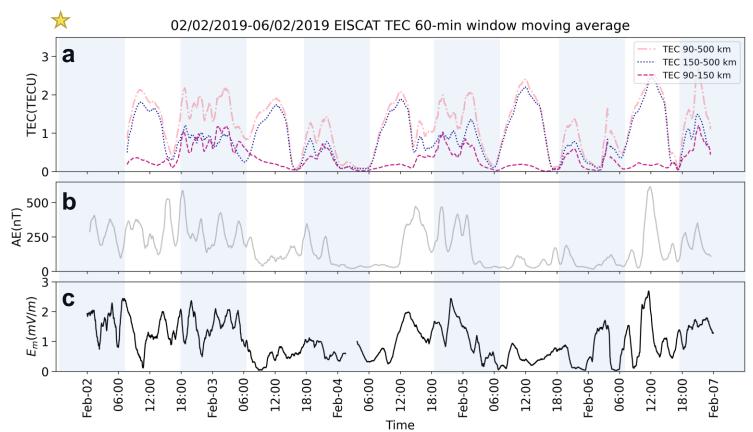

	1
4	
	DLR


Campaign	Experiment Type	Experiment Date
1	beata (CP2)	9-12 January 2013
2	beata (CP2)	2-6 February 2019
3	beata (CP2)	19-29 January 2010
4	tau2pl (CP2)	6-9 February 2007

Large peak at \sim 110 km of Ne in the E-region \rightarrow auroral electron precipitation (> keV).

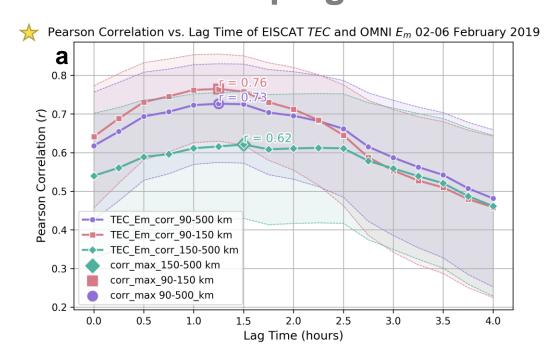

Weaker peak in the F-region → soft-particle precipitation at ~250 km (few hundred of eV) and/or plasma patches/blobs (higher than ~ 250 km)

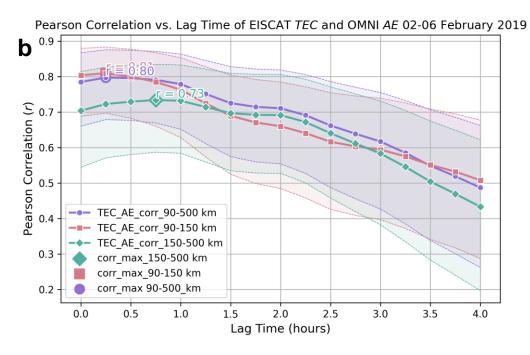
Oyama et al., (2014)


CP2 beata experiment 49-693 km range span

Credit: EISCAT

EISCAT Tromsø UHF Radar measurements: Campaign #2




- enhanced TEC during nighttime (18–6 UT)
- higher E-region TEC during nighttime than during the daytime
- TEC on some nights as high as during daytime
- ➤ Substorm activity is identified → AE index > 250 nT

- a) 60-min moving averages of EISCAT TEC (E, F, combined regions)
- **b)** OMNI AE index and
- c) OMNI merging electric field in the time period of 2–6 February 2019

Correlation of EISCAT TEC with an offset applied to Em and AE: Campaign #2

Lagged Pearson correlation values between the time range of 18 and 6 UT on 2–6 February 2019 of: **a)** 1-hour resampled EISCAT *TEC* and OMNI merging electric field *Em* **b)** 1-hour resampled EISCAT *TEC* and OMNI AE

TEC & Em

- \triangleright E-region: r = 0.76 when t = 75 min
- \rightarrow F-region: r = 0.62 when t = 90 min
- \triangleright Combined: r = 0.73 when t = 75 min

TEC & AE

- \triangleright E-region: r = 0.81 when t = 15 min
- \rightarrow F-region: r = 0.73 when t = 45 min
- \triangleright Combined: r = 0.80 when t = 15 min

Results: ionospheric response observed at EISCAT Tromsø UHF radar

a

	90–150 km		150-500 km		90–500 km	
Campaign	Offset (min)	Max corr.	Offset (min)	Max corr.	Offset (min)	Max corr.
		(r_{max})		(r_{max})		(r_{max})
1	90	0.80	90	0.77	90	0.81
2	75	0.76	90	0.62	75	0.73
3	75	0.60	135	0.75	135	0.74
4	45	0.69	90	0.58	90	0.63

b

	90–150 km		150-500 km		90–500 km	
Campaign	Offset (min)	Max corr.	Offset (min)	Max corr.	Offset (min)	Max corr.
		(r_{max})		(r_{max})		(r_{max})
1	45	0.81	60	0.62	60	0.68
2	15	0.81	45	0.73	15	0.80
		0.60	7.5	0.60	15	0.60
3	0	0.60	75	0.68	15	0.68
4	15	0.63	30	0.49	15	0.52

a) EISCAT TEC & OMNI Em

- shorter time lag (45-90 minutes) → E-region
- E-region response covers the time period from the arrival of the solar wind until it results in substorm activity (magnetospheric loading-unloading processes)
- longer time lag (90-135 minutes) → F-region
- F-region response is similar to the ≈120 min IGS TEC response

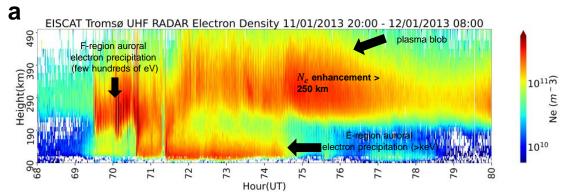
b) EISCAT TEC & OMNI AE

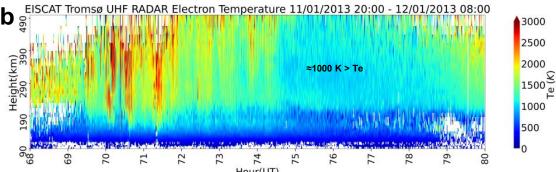
- 0-45 min time lag → E-region
- almost immediate/fast ionospheric response in the Eregion to the substorm activity
- 30-75 min time lag → F-region
- response cannot be solely due to substorm activity in the F-region → polar cap plasma convection

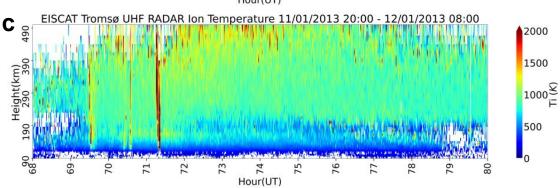
Summary and conclusions

This study investigates the processes driving the high-latitude ionospheric response to the solar wind forcing during winter nighttime conditions.

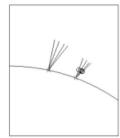
- **1.** There is a persistent ionospheric response to solar wind variability in the high-latitude ionosphere during winter nighttime with a lag of \approx 2 hours.
- **2.** Delay in the E-region *EISCAT TEC* and *Em max* correlations is ≈ 71.25 min → magnetospheric processes (loading and unloading) and particle precipitation
- **3.** ≈101.25 min delay in the F-region *EISCAT TEC* and *Em max* correlations → plasma convection processes
- **4.** 120 minutes delay of the IGS TEC and *Em max* correlations during ≈ 25 years is driven mainly by the plasma convection processes in the F-region.
- → Manuscript in review (lochem et al., JSWSC)


Thank you for your attention ©




Extra slides

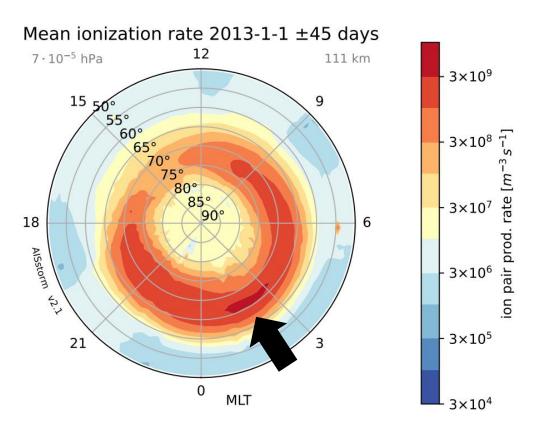
EISCAT Tromsø UHF radar campaigns: plasma blobs

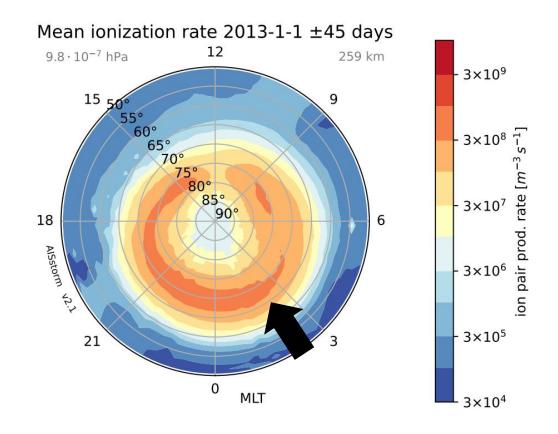


EISCAT Tromsø UHF radar 1-min **a)** electron density, Ne, **b)** electron temperature, Te and **c)** ion temperature, Ti in the time period of 11–12 January 2013.

CampaignExperiment TypeExperiment Date1★beata (CP2)9-12 January 20132beata (CP2)2-6 February 20193beata (CP2)19-29 January 20104tau2pl (CP2)6-9 February 2007

* : campaign shown in figure

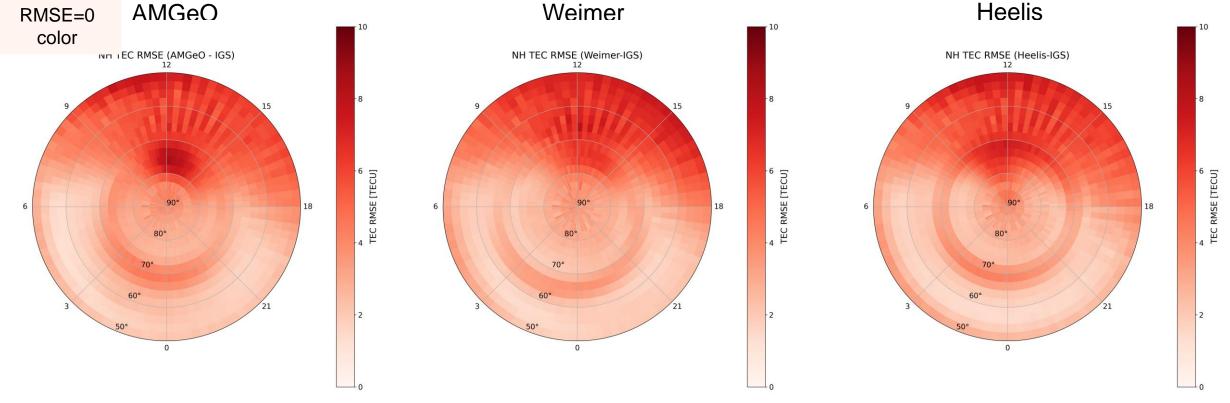

CP2 beata experiment 49-693 km range span



Credit: EISCAT

AISStorm ion pair production - AIMOS

Future work


Define TIE-GCM model capabilities: Which TIE-GCM electric potential driver (T+AMGeO, T+Heelis, T+Weimer, T+AMIE, T+MAGE) performs the best to represent ionospheric response at winter nighttime HL? What is the offset of best model from real data? How it could be improved within the model?

Final goal of this task:

- -TIEGCM run with the best electric potential driver during 90 days of winter, 1 Jan 2013 \pm 45 days.
- -Compare the observed ionospheric response.

TIE-GCM+AMGeO // TIE-GCM+Weimer // TIE-GCM+Heelis RMSE from IGS TEC at NH 15.11.2012-15.02.2013

