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EPS-AEOLUS END-TO-END-SIMULATIONS

. Table 1: Overview of parameters used for the EPS-Aeolus end-to-
The End-to-End Simulator (E2S) developed for . - o ror thie study
the Aeolus mission is aligned with the

EPS-AEOLUS

Based on the success of the first wind lidar in space, the Earth Explorer
mission Aeolus by the European Space Agency (ESA), the European

Parameter Value
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and specifications of EPS-Aeolus to access the e Ol alifus 465 km
ESA are jointly developing the follow-on mission EPS-Aeolus planned to be performance of EPS-Aeolus. Duration 462x12's ( = one orbit)
launched in 2034. With substantial improvements in instrument design - The E2S generates raw data as downlinked by Laser energy 150 m)

such as a bi-static optical design, a more powerful laser, and an enhanced
detector technology - EPS-Aeolus aims to achieve a higher vertical and
horizontal resolution, to extend the wind measurement coverage into the
stratosphere, and deliver more accurate wind measurements with smaller
random error as achieved for Aeolus. octio”
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One import parameter for the reduction of the wind random error is the off-nadir angle.
With a larger off-nadir angle, a larger fraction of the horizontal wind speed component can
be observed (see Figure 1). It is currently studied with the E2S, if an increase of the off-
nadir angle is beneficial for EPS-Aeolus.
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Figure 1: Schematic illustration of the
EPS-Aeolus line-of-sight geometry for a

off-nadir angle of 35° and 42°, as well
A2S = - as, illustration of the solar geometry and
Ground track at DEM-intersection components of the solar background.
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Figure 3: Rayleigh HLOS wind random error (std) profiles (a), Rayleigh SNR (b), and the SEA (c) for EPS-Aeolus for an orbit at
summer solstice (21t June, maximum solar background) with range bin thickness of 1000 m, PIN=20/30, an off-nadir angle of
35° a solar background integration time of 625 us, FOV=55 urad and IF=0.5 nm (for Aeolus it was 18 urad and 1 nm,
respectively). Observations with SNR < 15 are set to invalid in the L1B processing of the Rayleigh HLOS wind.

* Larger off-nadir angles lead to thinner altitude bins, reduce the data coverage with altitude
and decrease the absolute Rayleigh Useful Signal, about 2.0% to 2.5% per degree off-nadir
angle. This decrease Iin Rayleigh useful signal will influence the quality of the retrievals of
aerosol and cloud optical properties.

* A relative change of Rayleigh useful signal is obtained when the satellite range correction is
applied. The relative Rayleigh signal maximum shifts upward in altitude, yielding relatively
larger Rayleigh useful signals in the stratosphere for larger off-nadir angles.

* Thinner bins at larger off-nadir angles also increase the Rayleigh HLOS wind random error,
thus requiring a bin thickness normalization.

* The optimum of the off-nadir angle is shallow, altitude-dependent and noise-dependent.
The largest improvement of the Rayleigh HLOS wind random error is found around off-nadir

angles of 40°-44°:

> 3% to 8% improvement of the Rayleigh HLOS wind random error possible at 42°.

* The E2S is capable of reproducing the development and magnitude of the solar
background signal along an orbit when the Solar Elevation Angle (SEA) is smaller
10°. The amplitude and variability of the background are strongly influenced by
cloud cover. However, the maximum solar background, especially over the
poles where the ice and snow albedo is enhanced in the UV, is not yet
sufficiently represented in E2S and will be addressed in future updates.

* The amount of solar background sampled depends i.a. on the Field-of View

(FOV) and Interference-Filter Width (IFW) of EPS-Aeolus. The random error will

be increased and the data coverage reduced for Rayleigh winds depending on

the solar elevation angle and the atmospheric and ground albedo.
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