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Abstract— We introduce NealAl, the first AI chat assistant
to support astronauts with question answering during a space
telerobotics experiment. In the Surface Avatar mission, an ISS
crew member controlled a heterogeneous team of four robots
in a simulated Martian environment. NealAlI uses a Retrieval-
Augmented Generation (RAG) approach, enabling a Large Lan-
guage Model (LLM) to dynamically retrieve relevant context
about the experiment and its robots, and deliver accurate,
context-aware responses. To adhere to privacy requirements
and computational costs, NealAl is based on a single small-
scale LLM running locally. We assessed NealAI’s performance
in different evaluations, including a preliminary experiment
with an ISS crew member teleoperating the robots, as well as
a set of offline tests to evaluate the LLM context selection, the
response correctness, and when (and why) hallucinations occur.
Results demonstrate the feasibility and limitations of using a
small-scale LLM on a RAG-based chat assistant during a space
telerobotic experiment. Finally, we report some conclusions and
lessons learned.

I. INTRODUCTION

Progress in Lunar and Martian exploration has brought
a need for robots to be deployed in-situ for resource uti-
lization and local infrastructure support. Future missions
will require robot teams with complementary capabilities,
as well as user interfaces for humans to understand and
command them effectively. Our DLR-ESA Surface Avatar
Telerobtic Experiment [1], conducted between 2022 and
2025 aimed to develop and test new technology enabling
a member of the International Space Station (ISS) crew
to command a heterogeneous team of robots on ground,
including a humanoid, two quadrupeds and a rover. These
robots operate on different levels of autonomy, and perform
tasks for environmental investigation and sample return.

Managing such a diverse robotic team requires a high
cognitive load. Despite thorough pre-mission training, astro-
nauts may forget specific instructions or lose the overview
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ISS Crew Member:
"(...) how can I pick up a sample
container?"

NealAl:
(...) to pick up the sample container,
first, localize the handover station,

B then navigate to it. Afterwards, the
"pick up sample container" command
should be available (...)"

B
@f—

NealAl

(Ground)

Fig. 1: NealAl overview deployed for the Surface Avatar mission. The crew
member communicates with NealAl via a built-in chat panel; a snippet from
a real interaction is shown. Mission components (see Section m include
four robots—the humanoid Justin (J), quadrupeds Bert (B) and Spot (S), and
the Interact (I) rover—and four objects: (1) ELAFANT lander, (2) SPUs,
(3) handover station, and (4) cave.

of the robots’ actions, the mission goals or the user interface
(UI) features, so they would benefit from an Al assistant to
support them, for instance in natural language. Furthermore,
as future missions target more remote environments such as
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Mars, support from humans on ground will be limited. To
address these challenges, in this letter we introduce NealA
an Al workflow [2] prototype tailored for the third DLR &
ESA Surface Avatar Session, illustrated in Fig. m NealAl
uses an LLM to reply to astronaut questions about mission
goals, robot commands and UI. As the internal robot beliefs
are subject to change within the mission, Neal Al obtains the
mission context through RAG [3] method based on LLM
tool usage. As the state of the robotic assets is constantly
evolving during the missions, NealAl retrieves its context by
generating summaries of the robot’s state at query time [4].
Furthermore, due to strict privacy requirements, NealAl
runs entirely on local LLMs beside the robotic systems. To
prepare for limited resources in future on-orbit missions, it
employs a small-scale model.

Our focus is not only on whether it is possible to design
a RAG workflow with a relatively small language model.
We also conduct an empirical study with two goals: (1)
identifying the strengths and limitations of the method,
particularly where it comes to so-called ‘“hallucinations”,
i.e. factually wrong responses. And (2) identifying relevant
question types during operation of the robots. With this
goal, we conducted a preliminary experiment with an ISS
crew member commanding the robots on sample return and
planetary inspection tasks. We further conduced an offline
evaluation of the system with a digital twin of the robots.
We used the experimental results to draw some lessons
learned for future RAG-based assistants in a space context,
summarized at the end of the paper.

To summarize our contribution, (i) we present NealAl, the
first on-orbit RAG based question-answering LLM workflow
for complex telerobotic space missions with a distributed
and dynamic knowledge base about the robots state, robots
control, user interface and mission protocol. NealAl cate-
gorizes the astronauts’ questions, extracts question-related
information, and provides an answer; (ii) an offline ex-
periment studies NealAI’s capabilities and limitations; and
(iii) an online experiment with an ISS crew member asking
questions to NealAl while teleoperating the robots.

II. RELATED WORK

Previous efforts to deploy Al assistants aboard the Interna-
tional Space Station (ISS) include CIMON (Crew Interactive
Mobile Companion [5], [6], which utilized IBM Watson’s
rule-based Al [7] to assist astronauts during structured tasks.
Since the advent of LLMs, there have been reports about
their in space in the context of the ISS [8], but literature of
their developments and findings is scarce. One such assistant
systems is the Mars Exploration Telemetry-Driven Informa-
tion System (METIS) which is being developed to conduct
autonomous spacecraft operations and monitoring in human
missions [9]. To increase reliability in knowledge-intensive
tasks, it has been suggested [10] to enhance Al assistants
like METIS with knowledge representations and retrieval-
augmented generation (RAG, [3]) methods. Our paper builds

'The name is inspired by our principal investigator Neal Y. Lii, who
supports our astronauts on the voice loop during the Surface Avatar missions.

upon RACCOON, our previous work for explainability in as-
sistive robotics [4]. RACCOON is a framework for question-
answering with two steps: first the required modules to
answer a user question are selected given by an embeddings-
based retrieval framework. Then, information by the robot
is retrieved with so-called state summaries of the robot
modules, which summarize the robot beliefs.

LLM tools: NealAl retrieves the state summaries by
following a so-called LLM workflow paradigm, defined by
Schluntz and Zhang as “systems where LLMs and tools are
orchestrated through predefined code paths” [2]. Here, tools
reference a standard LLM paradigm for allowing the model
to call external functions made available to it [11], [12],
which we use to enable the LLM to request information
from any mission component. For example, if the astronaut
asks about their goals, the LLM may call a tool with
the day’s protocol. Note that a tools-based system does
not utilize embeddings-based reasoning, unlike traditional
RAG or RACCOON. This choice improves scalability, as
RACCOON would require a labeled dataset with example
queries for every query type the system can handle, which
becomes difficult to maintain.

III. BACKGROUND: MISSION OVERVIEW

NealAl was introduced in the third DLR-ESA Surface
Avatar Prime Session, where an ISS crew member takes
command over a heterogeneous robot team located at the
German Space Operations Center in Wessling on July 21-24,
2025. Fig. [1] depicts the operator side, the NealAl interface,
and the Mars environment with all relevant assets. In the
“Distributed and Dynamic Knowledge base” part, the Mars
environment and mission assets are shown. Four distinct
robots participate in the mission:

e Rollin’ Justin (J) [13], a humanoid robot.

o Bert (B) [14], a small-sized quadruped for exploration
of constrained areas such as caves.

« Spot (Sﬂ a large quadruped also equipped with a
manipulator.

o Interact (I) [15], a rover platform with a manipulator.

These robots perform collaborative tasks such as collecting
sample containers for return and exploring the environment.
The astronaut is able to issue commands on different levels of
autonomy, from supervised autonomy to direct teleopration
[1]. The Martian environment includes:

o« ELAFANT (1): a robotized lander for inspecting and
storing samples, and a camera platform.

e SPU (2): Smart Payload Units simulating communica-
tion and energy modules

o« Handover Station (3): a location where robots ex-
change sample containers.

o Cave (4): an exploration area for BERT

+ Watchtower (not depicted): a camera platform.

On the operator side of Fig. [I] the astronaut aboard

the ISS interactes with the mission assets through a laptop

running a mission-specific knowledge-driven UI called Oper-
atorUI [1] (marked as U in the figure). The GUI enables the

Zhttps://bostondynamics.com/products/spot/, last accessed 06.08.2025



astronaut to command and monitor the robots and mission
environment, switching control between robots and manag-
ing operations concurrently. The GUI also enables chats with
NealAl, using a chat panel and keyboard input. In order
to teleoperate the robots, the astronaut can use a joystick
and a 7 DoF force reflection input device (SIGMA)(sigma.7,
Force Dimension, Nyon, Switzerland) E] to control the robot
cameras, manipulators and mobile bases. The Joystick and
the SIGMA are marked with T (teleoperation) in figure

IV. NEALAI: AN LLM-BASED QUESTION-ANSWERING
WORKFLOW.

NealAl must handle information from multiple sources,
such as the OperatorUI, the mission protocol, and the robotic
systems, each with distinct characteristics and requirements.
One aspect of this challenge is the separation between
components: questions about the OperatorUl and mission
protocol can be answered with standard documentation,
while the robots operate on different systems, possess distinct
world models [16] and belief systems, and involve unique
tasks, commands, and error-handling processes [17]. Thus,
the information is of distributed nature, and can be dynamic
as the robot states evolve continuously during a session as
robots interact with the environment and receive user inputs.
To give an example, our humanoid robot Rollin’ Justin may
or may not enable the astronaut to grasp a sample container
at a given time, for instance if the object requires localization
first. Our RAG system must capture this dynamic infor-
mation, in order to provide not only contextually relevant
responses, but also up-to-date responses.

We propose a multi-step tools-based LLM workflow based
on a local LLM. We enable the LLM to take decisions
and request information by using so-called structured tools
(e.g. [11], [12]), i.e., the ability to serialize functions within
an Application Programming Interface (API), and call them
via text, a task for which modern LLMs are trained. In
our case, the API is a set of functions that we provide
for retrieving information from the different assets in the
system, obtaining a “retrieved context”, i.e., text snippets
that contain relevant information about the query [4], such as
summaries from the robot internal models. Specifically, our
query-answering framework consists of three steps: selecting
information sources to retrieve information; obtaining a text
snippet from them; and using them to generate an answer for
the user in natural language, also using an LLM. The steps
are described in detail below.

A. Step I: selecting the information source

As illustrated in Fig. 2} the LLM’s goal is to select one
of five mission-related classes based on the prompt: Specific
Robot Action (questions about actions in the dynamic state
summary), General (about the robot, mission, or situation),
Teleoperation (how to teleoperate the current robot), Op-
eratorUl (the astronaut GUI), and Mission Protocol (the
mission’s procedural).

To aid the LLM, we provide a prompt with additional
context, also shown in Fig. 2] To construct the prompt, we

3https://www.forcedimension.com/products/sigma, last accessed

06.08.2025
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Fig. 2: Visualization of the Step I prompt showing the selected robot in the
OperatorUl—Justin (J), Bert (B), Interact (I), or Spot (S)—and the context
using the Dynamic State Summary (green) and Static Robot Information
(blue). Also shown are the class categories used in the RAG-based tool-
selection process.

first obtain the robot being operated by the astronaut in the
UL which provides the robot’s name and specific contextual
information. We then generate three text snippets to assist
the LLM in tool selection: (1) a static description of the
selected robot (blue in Fig. ; (2) a dynamic state summ
listing the actions the robot can currently execute (green
in Fig. 2)); and (3) the general mission context and the role
of NealAl. We study the effect of this additional context
in the experiments in Section Finally, the prompt also
explains the tool selection task.

B. Step II: retrieving a specialized state summary

After the LLM categorizes the question in Step I, we aim
to create a text snippet that includes ground truth information
specific to the astronaut query, and which will be used in the
following step to generate an answer. This is analogous to
summarizing context chunks in classical RAG frameworks,
and is illustrated in the pink snippets in Fig. 3]

This specific context for the question depends on the
categorization from Step I. For each categorization, different
information is provided to the LLM as shown in the figure.
We distinguish two types of prompts: static text i.e., informa-
tion that does not change during the mission; and dynamic
text, i.e information that changes during the mission, and has
to be retrieved accordingly.

1) Retrieving dynamic snippets for specific robot actions:
In our mission, we use dynamic snippets to provide the
astronaut with instructions about a specific robot action. For
instance, if the astronaut wants instructions for executing an
action, we find out if the action can only be executed after
certain prerequisites, and if so, derive instructions for it.

The procedure to retrieve this dynamic snippet is summa-
rized in Fig. [ including an example. First, we collect the set

4Not to be confused with the retrieved state summary in the next step



OperatorUl Step II: Main Prompt

Information about the LLMs role & mission

Robot Name
Dynamic state summary ; 3
I Static robot specific information“»-m_”,_;"
Astronaut question
S l—» Specific context for question
Question Specific context for question :
Classification : P q

"screen’; "Surface Avatar GUI", i static
"elements”: [ :

{

"type”: "CameraView',

“label": "Main Camera View',

“position": ‘center’,

“description”; "Displays the video feed from the selected robot [...]"

OperotorUl

Mission Part 1: Rock sample container collection
Protocol Part 2: Aim to test dynamic user intervention
()
Detailed description of the three protocols of today: (...)
Teleoperation Teleoperation prompt of

Static

General "Use the information of the prompt to answer the question."

Specific

:  Dynamic
Robot Action :

Action Instructions for

Fig. 3: The Step II prompt includes the selected robot in the OperatorUI;
the context using the Dynamic State Summary (green) and Static Robot
Information (blue); the astronaut’s question. The table shows the specific
ground-truth context for each class category (pink).

of all actions that the astronaut can execute for the current
robot during the mission. These actions could be either
available, meaning that it’s preconditions (e.g. localization)
are met, and the action can be issued right away; or blocked,
meaning the action would require instructions. This list varies
for each robot due to their unique capabilities.

The process begins with the LLM receiving the astronaut’s
question and the list of all available and blocked action
names. The LLM matches the question to one action from
the list, using RAG selection. If this action is available, the
returned context is simply “/action] is directly available in
the OperatorUI”’. However, if the action is blocked, the next
steps depend on the robot. For example, with Spot, actions
such as dock and undock cancel each other out. If Spot is cur-
rently docked or not localized, actions like move to handover
are blocked. Interacts provided actions are implemented in
a similar way. There are only primary reasons that cause an
action for Interact or Spot to be blocked. Consequently, a
dictionary-based method is employed to identify and return
the specific reason why the requested action is blocked.

In contrast, the commanding approach of Justin is more
complex, the robot uses a symbolic planner to achieve a

LLM Tool: Action Instructions

Dynamic State Summary 1 -—» Relax

Pick Up ...
Astronaut Question = Navigateto.. — > ActionK
Choose Question
Match refers to
Available Actions List —— Action K is directly available in the OperatorUl
Action K <
Blocked Actions List —— Action K is blocked. Use the  Instructions

Mission Example of  Instructions
ActionK is blocked

|
DL tion K?—*Condition
Do Action1 Action2 Action3
| I —

ActionK 'is blocked. ActionK 'is blocked.

Use the output of the Symbolic Planner as
as ground truth to guide the astronaut:

Use the output of the Dictionary as
as ground truth to guide the astronaut:

Action1 Action2 Action 3 Condition

Fig. 4: From the Dynamic State Summary (green), the LLM selects the
action matching the question. Blocked or available actions yield different
ground-truth context (pink). In the Surface Avatar mission, this covers Justin
(), Spot (S), and Interact (I): a symbolic planner generates valid paths for
Justin, while a dictionary provides context for Spot and Interact.

desired goal state. [18]. For instance, to pick up an object
on a table, the robot needs to have located the object and have
navigated to the table, and for this the table must be located
first. To provide instructions, we use the symbolic planner to
compute and return a plan that solves the preconditions of
the specific action requested by the astronaut.

2) Retrieving static smnippets: Static types of categories
include Mission protocol, OperatorUl, Teleoperation, and
General. The snippet includes static information that does
not change over the course of the mission. Specifically:

e OperatorUl: a detailed description of the Operator’s
GUIL, including positions on the screen. Example query:
‘‘How do I switch robots in the UI?'’.

o Teleoperation: robot-specific explanation for operating
the cameras and manipulators. Example: *‘How do I
move the robot camera?’’.

o General: No specific context is added to the summary
in Fig. 3] Ex: *‘List the robot commands.’’.

o Mission protocol: A summary of the astronaut goals.
Example: ‘What are today’s goals? ’’.

C. Step IlI: providing an answer

Last, the LLM is queried to provide an answer in natural
language (i.e., without using the tools) given the retrieved
context. The prompt shown in Fig. [3| consists of several
parts: Firstly, a short text describes the LLM’s function as
an assistant for the astronaut and the mission design, which
involves multiple robots controlled by the astronaut from the
ISS using the OperatorUI. To provide a ”safety net” in case of
a failed retrieval, we also provide the ”general” dynamic state
summary from Step I (the green snippet in Fig. [2). Finally,



the astronaut’s question and the specific context retrieved in
Step II are added to the prompt. An example final generation
from our ISS session is shown in Fig. m Here, the LLM used
the “Mission protocol” tool.

a) Guardrails: We implement additional checks to ver-
ify that the LLM’s response stays within the scope of the
mission. Taking inspiration from the LLM community, we do
this with a further “LLM hop” [19] with a description of the
mission and relevant topics. The original answer generated
by the LLM is also included in this prompt, but not the
astronaut’s query, such that the LLM self-checks its own
response. While this guardrails the system for the mission,
it entails that the LLM is blocked from answering general-
purpose question, making it less interactive and restraining it
from being useful outside of mission contexts. This can limit
the interactions. During our ISS session, for instance, the
astronaut tried to test the system with arithmetic questions,
but the system filtered out these answers.

D. Implementational notes

We utilized the Mistral Small 3.2 model [20], a lightweight
model, served via Ollama on a system with dual 48GB
NVIDIA RTX 6000 Ada GPUs. We employed Ollama’s de-
fault quantized model, which ran significantly faster than the
full-precision version without noticeable performance loss,
with a mean inference time of 4.5 seconds. As preliminary
tests showed reduced answer quality with longer contexts,
we disabled follow-up queries, meaning crew queries could
not access previous chatbot interactions.

V. OFFLINE EVALUATION WITH DIGITAL TWINS

In order to get a more in-depth look at NealAl's per-
formance, we conducted an offline assessment with digital
twins of the robots on the same artificial martian environment
as the ISS crew member. We conducted four experiments,
presented in Sections to [V-E|: the first three parts
evaluate the automated tool-selection accuracy, and the fourth
part the end-to-end correctness of the answers.

A. Data description

1) Query datasets: In order to evaluate the system, we
collected datasets with queries about the mission. A first
evaluation dataset D; consists of a set of queries provided
by the Surface Avatar team members (all of them in the
authors list), and extended with a set of questions the ISS
crew member asked during the online experiment, described
in Section D; contains a total of 161 questions, in-
cluding questions about the OperatorUI (14), teleoperation
(22), mission protocol (20), general topics (23), and specific
robot actions (82). The questions about specific robot actions
are distributed between robots as follows: Justin (31), Bert
(9), Spot (26), and Interact (16). To obtain more data, we
also augmented the queries by asking an LLM to rephrase
them and return different formulations without changing the
meaning nor adding new information. To reduce LLM bias,
we used a different LLM for data generation (ChatGPT,
OpenAl, San Francisco, California). To evaluate different
aspects of NealAl, the dataset was split into Daygmented_1, CON-
taining 110 questions on OperatorUl, teleoperation, mission

protocol, and general topics, but not specific robot actions;
and D,yemented 2, containing 309 questions about robot actions
(some of them involving the objects in the environment)
distributed along the robots. Each question is labeled with
a ground truth tool-selction classes provided by a human
expert (in the authors list).

2) NealAl answer scenarios : In order to provide NealAl
answers to the questions in Daygmented 1> Paugmented 2 and Dy
we evaluated the system across all four robots. Because the
environment and robots evolve over time through astronaut
manipulation and control, each evaluation part is conducted
across four distinct scenarios derived from the surface avatar
artificial martian environments.

Each scenario below is evaluated from different robot
perspectives, considering all five question classifications es-
tablished in the Phase I prompt (see Fig. [2).

e Scenario I: Justin is not localized, Bert is deactivated,
Interact operates normally, and Spot is docked to charge.

e Scenario 2: Justin localized to the handover station,
Bert is deactivated, Interact positions Bert in front of
the cave, and Spot autonomously searches for sample
containers.

o Scenario 3: Justin localized to ELAFANT, Bert operates
normally while inspecting the environment, and both
Interact operates normally and Spot lost localization.

e Scenario 4: Justin localized to SPU3, Bert unable to
walk due to malfunction, Interact and Spot operate
normally.

B. Exp. 1: Tool-selection accuracy of non-action questions

Can NealAl correctly classify queries about the operator
GUI, teleoperation, the mission protocol and surface avatar
in general? We asked NealAl each question of Daugmented_1
twice for each robot’s selection, and for all four scenarios, a
total of 110 * 4 * 4 * 2 = 3520 interactions. From these, 89
(2.5%) were incorrectly flagged as off-topic, and discarded.
Thus this resulted in 3,431 pairs containing a ground-truth
class and NealAI's classification result. Fig. [5] summarizes
the accuracy of NealAI’s categorization.

Categorization of not-action-specific questions: Step |
100

Correct Categorization (%
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Mission Protocol

Interact Aggregation

Teleoperation ---- Mean
General Question

Fig. 5: Tool-selection accuracy for Daygmented.1 across all robots and
scenarios (totaling 3,431 questions). Accuracy is presented for each robot
individually as well as aggregated.

Discussion: The aggregated results indicate an overall
accuracy of 84%, with performance on OperatorUl and
Teleoperation questions falling below this average. When
NealAl selects an incorrect tool, it predominantly defaults



to the general tool, leading to a lack of knowledge in Step
IT to address the question. Additionally, questions about
the robots Justin and Interact exhibit lower performance
compared to Bert and Spot. Given that the question sets are
identical across robots, these discrepancies can be attributed
to differences in the dynamic state summaries and robot-
specific information incorporated into the Phase I prompt
(see Fig. ). This suggests that the additional information
may introduce noise, affecting the tool-selection process -
further evaluated in Section

C. Exp. 2: Tool-selection accuracy of action specific ques-
tions

Can NealAl, using the Step I prompt in Fig. |2| correctly
classify queries about robot-specific actions? Can NealAl
choose the action according to the query? We evaluated
(1) the tool-selection accuracy for the class specific robot
action, and (2) the accuracy of selecting the correct action
within the robot’s overall list of actions (see Fig. ). We
asked each question twice for all four scenarios, noting that
the questions were robot-specific, thus yielding a total of
309 * 4 x 2 = 2472 interactions. From these, 38 (1.5%)
were incorrectly flagged as off-topic, and discarded, yielding
2,434 tuples including the ground-truth class (robot-specific
actions), the ground-truth action the query is referring to,
NealAI’s Step-I classification, and Neal AI’s action selected
within the pool of possible robot actions. We report NealAI’s
accuracy in Fig. [f]

Categorization of Action Specific Questions: Step | & Il
100
B "a specific robot action" Classification Rate
Chosen Action Accuracy

80 74%

60

Correct Class Categorization (%)

Fig. 6: Tool-selection accuracy for the specific robot action class, alongside
the accuracy of selecting the correct action. Correct action selection is
conditional on accurate initial classification.

Discussion: The overall tool-selection accuracy of Step I
for the class specific robot action is 74%, which is lower
compared to other classes, given that (as in the previous
experiments) NealAl defaults to the general tool. If NealAl
selects “robot specific actions”, the accuracy in the action
matching step is 78%, resulting in an overall accuracy of
57.7%. For instance, a question regarding how to pick the
sample container should be classified as specific robot action
with the corresponding action pick up sample container.
This does not imply that NealAl fails to provide an answer,
as a dynamic state summary is repeated in Step II (see
prompt in Fig. [3), and NealAlI could still reply the action is
available or blocked. However, for blocked actions, accurate
tool selection is critical to accessing the key information
needed to resolve the astronaut’s issue.

D. Exp. 3: Step I prompt ablation

What is the effect of the additional robot-specific context
in Step I's prompt? As shown in Figure |Z|, we add to the
Step I prompt snippets containing a Dynamic State Summary
(green) and Static Robot-Specific Information (blue). To
study the effect of this prompt, we repeat the experiments
in Sections [V-B] and [V-C|under the same conditions, with the
only difference being the prompt ablated these two snippets.
The results in Table I summarize the results aggregated by
robot, where the first row summarizes the results from Figs. [3]
and [6] and the second row presents the new results with the
ablated prompt.

Mission Specific
General Teleoperation OperatorUI Robot
Protocol .
Actions
With context 82% 71% 89% 74% 74 %
Without context 93% 90% 97 % 92% 48%

TABLE I: Evaluation results of Step I tool-selection accuracy with and with-
out context (Dynamic State Summary and Static Robot Specific Information)
in %

Discussion: as Table I shows, all tools except Specific
Robot Actions perform better when the context is omitted
from the Step I prompt during tool selection. Compared
to the strategy including context, this approach achieves a
6% absolute increase in overall tool-selection accuracy. The
ablated prompt snippets (Dynamic State Summary and Static
Robot-Specific Information act as a bias towards making
the LLM specifically answer questions about robot specific
actions. Thus, using can lead Neal Al to be more accurate on
a specific mission area selected.

E. Exp. 4: Human expert judging generation quality

Can NealAl generate truthful responses? Can it recover
and produce correct answers, even with the wrong context?
D1 questions on OperatorUI, teleoperation, mission protocol,
and general topics are asked from the perspectives of each
of the four robots, while questions related to robot-specific
actions are asked on one specific robot, as described in
Section[V-AT] resulting in a total of 387 questions. A human
expert (in the authors list) was provided with the question
and NealAl’s response, without access to information about
the tools used. An answer was considered correct if it was
free of hallucinations and contained ground truth information
relevant to the question. We report the results in Fig. [7] and
we further split the answers whether the correct tool was
chosen or not.

Discussion: Aggregated results in Fig. [7] indicate that
NealAl answers a large percentage of the queries with
truthful answers without hallucinations (76%). As expected
in a RAG system, correct answers are highly correlated on
correct context (tool) selection, as this already predicts 86%
of the correct answers.

But why did NealAl still answer 43% of wrongly-sorted
questions correctly? An analysis by category reveals distinct
patterns. As illustrated in Figure fig. 3] the Step III prompt
includes the dynamic state summary and robot-specific infor-
mation, providing NealAl with knowledge of available and
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Fig. 7. Human expert evaluation of D; where answers are classified as
correct or not correct. The figure displays the percentage of overall correct
answers per category, along with the accuracy of correct answers given the
use of the right or wrong tool.

blocked actions, as well as general details about the robot and
mission. For questions about available actions, the informa-
tion remains largely constant across scenarios (see Fig. [3). A
similar situation applies to general questions, which do get
additional contextual data provided. Consequently, NealAl
can often produce correct answers to general questions or
questions regarding specific robot actions despite incorrect
tool selection. This explains the relatively small difference
in accuracy between correct answers given with the right or
wrong tool selection for both the specific robot action and
general categories. In contrast, questions concerning Oper-
atorUI, Teleoperation, and Mission Protocol demonstrate a
strong dependence on accurate tool selection. Notably, the
correctness rate for OperatorUI questions answered with the
wrong tool is only 5%. This low rate reflects that the source
of UI information available to NealAl is accessed via the
correct tool. We refer to this in the discussion in Section [VII}

VI. ONLINE EVALUATION WITH AN ASTRONAUT

The evaluation presented is complemented by qualitative
feedback gathered from an ISS crew member who asked
queries to NealAl from space, while teleoperating the robots
on Surface Avatar’s Prime Session 3. The real-world deploy-
ment provides insights into the system’s practical strengths
and limitations that extend beyond quantitative metrics. Dur-
ing the session, the astronaulE] was given five predefined
questions ask “in his own words”. These included one query
about the mission protocol, a general question on the robotic
team’s capabilities, one regarding blocked actions of the
robot Justin, instructions for unblocking these actions, and
an open question on NealAl’s general assistance capabilities.
These queries aligned well with the available tools and, as
expected, received the required ground-truth information to
produce accurate responses.

Following this, the astronaut was given some minutes
to ask unstructured, open world questions with the system,
revealing several key strengths and limitations of NealAl:

1) For general knowledge questions like ”"Which robots
resemble dogs?”, NealAl correctly identified Bert and
Spot as quadruped robots. However, the subsequent
question "Which robot can move the fastest?” was

5The ISS crew seemed to be eager to interact with the AI system, and
expressed he wanted to explore the system.

incorrectly answered with “Bert, the quadruped robot
designed for exploration, can move the fastest.”

2) The follow-up question "And how fast is that?” was
filtered as out of scope due to the lack of chat history
integration.

3) A question about UI issues, "How fto realign the
overlays?”, was misclassified in Step I, resulting in
an hallucinated answer.

4) Further questions about unavailable information, such
as the speed of Bert or which robot has the most
cameras, were correctly answered with responses indi-
cating that the information was not available to NealAl.

After interacting with NealAl, the ISS crew member

completed a questionnaire to rate the system’s helpfulness
and knowledgeability, providing the answers in Table
The crew member was asked to rate the knowledge and
the helfpulness of the system on a scale from 0 (less
knowledgeable/less helpful) to 6 (more knowledgeable, more
helpful), where we note that 3 corresponds to the mid-scale.

Was the Al assistant helpful in
providing appropriate information about:

Knowledge* ‘ General OperatorUI Robots Mission
3.00 ‘ 5.00 4.00 4.00 3.00

Astronaut

TABLE II: Post-session questionnaire ratings (0—6 scale). *) Question: Was
the AI assistant sufficiently knowledgeable about the mission?

The astronaut’s ratings ranged from 3-5, with highest for
General (5) and lower for Knowledge and Mission (3).

VII. DISCUSSION, FINDINGS, LESSONS LEARNED

This paper’s evaluation combines both offline experiments
and a real-world online deployment with an ISS crew mem-
ber, providing complementary insights into NealAI’s capa-
bilities and limitations. Overal, the results show that NealAl
is able to retrieve context from a complex and distributed
knowledge base (from 71% to 97% in Table [, depending on
the conditions), and generate end-to-end answers to queries
(76% in Fig. , even arbitrary, open-world ones from an ISS
crew member with above-average qualitative astronaut rating
(Table . Nevertheless, we note two main limitations:

First, the tool selection accuracy (e.g., for the Teleoper-
ation class in Experiment 1, see Section shows high
variance, which can lead to hallucinations. This partly stems
from the Dynamic State Summary, whose action names may
confuse the LLM, causing misclassifications in Step I (e.g.,
interpreting teleoperation as an action). As shown in the
ablation of Section teleoperation accuracy improves
from 71% to 90% when this summary is removed. This
underscores a limitation in LLM tool selection accuracy.
We hypothesize that handling such specific contexts may be
constrained by the small model size, and plan to evaluate
a larger LLM in future work. For scale, the largest open-
weights LLM, Kimi-K2, has 1 trillion parameters—about
41.7x larger than Mistral Small 3.2.

Second, the tool-selection accuracy in Step I differs signifi-
cantly between Experiments 1 and 2 compared to Experiment
3 (see Table [[). Notably, the accuracy for Specific Robot



Actions questions drops to 48%, representing a trade-off
between including or excluding larger context in the Step
I prompt. Omitting the action list reduces the likelihood that
questions align with the Specific Robot Action classification
space. However, as shown in Figure the overall accuracy
for Specific Robot Actions answers remains at 79% even if
the tool is wrongly selected. Therefore, a lesson learned
is that omitting the dynamic state summary results in a
better performance of NealAl in general (6% increase in the
overall tool-selection accuracy.), with only loses for specific
robot actions. However, this would entail that detailed Action
Instructions would not be provided in some cases.

The online session with the ISS crew member confirmed
many of these findings. Key observations from both evalua-
tions include:

o NealAl effectively filters out-of-scope questions, but
this filtering can restrict user interaction beyond
mission-related topics, as noted by the astronaut.

« Misclassification of certain question types leads to hal-
lucinated or incorrect responses, as seen in the overlay
realignment query.

o The lack of chat history integration limits the system’s
ability to contextualize follow-up questions, affecting
conversational flow and user satisfaction. However,
adding history would add more context, which could
reduce the system’s overal accuracy.

o The online evaluation showed that NealAl can correctly
indicate when information is unavailable, though it
occasionally produces hallucinated answers.

These limitations contributed to the astronaut’s assessment
of NealATI’s overall mission knowledge as moderate (about 3
on a 0—6 scale). In contrast, Neal Al scored higher for provid-
ing general information, robot-specific data, and OperatorUI-
related responses, according to the astronaut’s questionnaire
feedback. The findings highlight the need for future work on
improved question classification, where traditional search-
based knowledge and embedding-based retrieval could en-
hance context selection. Finally, the qualitative results should
be validated with a larger user population, for example
through a multi-subject user study.

VIII. CONCLUSION

NealAl supports commanding a heterogeneous robotic
team by identifying key question types and providing ground
truth information to the astronaut, as demonstrated in of-
fline and ISS crew experiments. However, the limitations
of this early prototype include misclassification of open
questions and hallucinations arising from queries about non-
selected robots. Feedback from the ISS crew member and
the user study offered valuable insights into user needs.
Our experiments highlighted both strengths and limitations
of the system. Future work should focus on improving
question classification and enabling queries about all robots
regardless of selection. Nonetheless, NealAl demonstrates
that a small-scale LLM can effectively manage a RAG-
based tool-selection approach for heterogeneous information,
spanning robot internal states to the OperatorUI. This was
further supported by the astronaut’s hands-on interaction with
the system.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

N. Y. Lii, P. Schmaus et al., “Introduction to surface avatar: the first
heterogeneous robotic team to be commanded with scalable autonomy
from the iss,” in Proceedings of the International Astronautical
Congress, IAC, vol. IAC-22. International Astronautical Federation,
IAF, September 2022. [Online]. Available: https://elib.dlr.de/189618/
E. Schluntz and B. Zhang. (2024) Building effective agents.
https://www.anthropic.com/engineering/building-effective-agents. En-
gineering at  Anthropic  blog.  [Online]. Available: |https:
/Iwww.anthropic.com/engineering/building-effective-agents

P. Lewis, E. Perez et al., “Retrieval-augmented generation for
knowledge-intensive nlp tasks,” in Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, ser.
NIPS °20. Red Hook, NY, USA: Curran Associates Inc., 2020.

S. Bustamante Gomez, M. W. Knauer et al., “Raccoon: Grounding
embodied question-answering with state summaries from existing
robot modules,” in 2025 IEEE International Conference on Robotics
and Automation, ICRA 2025. IEEE, 2025. [Online]. Available:
https://elib.dlr.de/214144/

Airbus, “Cimon-2 makes its successful debut on
the iss,” https://www.airbus.com/en/newsroom/press-releases/'
2020-04-cimon-2-makes-its-successful-debut- on- the-iss,

Apr. 2020, accessed: 2025-07-30. [Online].
Available: https://www.airbus.com/en/newsroom/press-releases/
2020-04-cimon-2-makes-its-successful-debut- on-the-iss

T. Eisenberg, G. Reichert et al., CIMON — The First Artificial Crew
Assistant in Space, 2025, pp. 149-163.

Y. Chen, J. D. Elenee Argentinis, and G. Weber, “Ibm watson:
How cognitive computing can be applied to big data challenges
in life sciences research,” Clinical Therapeutics, vol. 38, no. 4,
pp. 688-701, Apr. 2016, copyright © 2016 The Authors. Published
by Elsevier Inc. All rights reserved. [Online]. Available: https:
//doi.org/10.1016/j.clinthera.2015.12.001
B. A. Hamilton, “Deploying a large language model
in space,” https://www.boozallen.com/insights/ai-research/
deploying-a-large-language-model-in-space.html, 2025, accessed:
2025-07-30.

C. Hartmann, F. Speth et al., “Metis: An ai assistant enabling
autonomous spacecraft operations for human exploration missions,”
in 2024 IEEE Aerospace Conference, AERO 2024. Institute of
Electrical and Electronics Engineers (IEEE), May 2024. [Online].
Available: https://elib.dlr.de/210422/

O. Bensch, L. Bensch et al., “Towards a reliable offline personal
ai assistant for long duration spaceflight,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.16397

T. Schick, J. Dwivedi-Yu et al., “Toolformer: Language models
can teach themselves to use tools,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.04761

Y. Qin, S. Liang et al, “Toolllm: Facilitating large language
models to master 16000+ real-world apis,” 2023. [Online]. Available:
https://arxiv.org/abs/2307.16789

C. Borst, T. Wimbock et al., “Rollin’ justin - mobile platform with
variable base,” in 2009 IEEE International Conference on Robotics
and Automation, 2009, pp. 1597-1598.

D. Seidel, A. Schmidt et al., “Toward space exploration on legs:
ISS-to-earth teleoperation experiments with a quadruped robot,” in
Proceedings on IEEE Conference of Telepresence. 1EEE, 2024.

T. Krueger, E. Ferreira et al., “Designing and testing a robotic
avatar for space-to-ground teleoperation: the developers’ insights,” in
71st International Astronautical Congress, IAC 2020. International
Astronautical Federation, 2020.

R. Sakagami, F. S. Lay er al, “Robotic world models -
conceptualization, review, and engineering best practices,” Frontiers
in Robotics and Al, vol. 10, November 2023. [Online]. Available:
https://elib.dlr.de/198741/

N. Batti, L. Mayershofer et al., “Toward intuitive robot-to-human error
reporting to enhance user awareness in space (tele) operation,” in 2025
IEEE Aerospace Conference. 1EEE, 2025, pp. 1-13.

D. Leidner, A. Dietrich et al., “Object-centered hybrid reasoning for
whole-body mobile manipulation,” in 20/4 IEEE ICRA. Hong Kong,
China: IEEE, May 2014, pp. 1828-1835.

M. Mathys. (2025, Jun.) You shall not pass: the spells behind
gandalf. Lakera AI. Last updated: June 3, 2025. [Online]. Available:
https://www.lakera.ai/blog/who-is-gandalf|

MistralAl, “Mistral-small-3.2-24b-instruct-2506,” https://huggingface.
co/mistralai/Mistral-Small-3.2-24B-Instruct-2506, 2023, accessed:
2025-07-30.


https://elib.dlr.de/189618/
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://elib.dlr.de/214144/
https://www.airbus.com/en/newsroom/press-releases/2020-04-cimon-2-makes-its-successful-debut-on-the-iss
https://www.airbus.com/en/newsroom/press-releases/2020-04-cimon-2-makes-its-successful-debut-on-the-iss
https://www.airbus.com/en/newsroom/press-releases/2020-04-cimon-2-makes-its-successful-debut-on-the-iss
https://www.airbus.com/en/newsroom/press-releases/2020-04-cimon-2-makes-its-successful-debut-on-the-iss
https://doi.org/10.1016/j.clinthera.2015.12.001
https://doi.org/10.1016/j.clinthera.2015.12.001
https://www.boozallen.com/insights/ai-research/deploying-a-large-language-model-in-space.html
https://www.boozallen.com/insights/ai-research/deploying-a-large-language-model-in-space.html
https://elib.dlr.de/210422/
https://arxiv.org/abs/2410.16397
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2307.16789
https://elib.dlr.de/198741/
https://www.lakera.ai/blog/who-is-gandalf
https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506
https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506

	Introduction
	Related Work
	Background: mission overview
	NealAI: an LLM-based question-answering workflow.
	Step I: selecting the information source
	Step II: retrieving a specialized state summary
	Retrieving dynamic snippets for specific robot actions
	Retrieving static snippets

	Step III: providing an answer
	Implementational notes

	Offline Evaluation with Digital Twins
	Data description
	Query datasets
	NealAI answer scenarios 

	Exp. 1: Tool-selection accuracy of non-action questions
	Exp. 2: Tool-selection accuracy of action specific questions
	Exp. 3: Step I prompt ablation
	Exp. 4: Human expert judging generation quality

	Online evaluation with an astronaut
	Discussion, findings, lessons learned
	Conclusion
	References

