USE OF SPILLAGE WITH CONCENTRATING PHOTOVOLTAICS: SIMULATION AND EXPERIMENTAL CAMPAIGN

Reiner Buck, Rafael Schiewe, Eckhard Lüpfert, Werner Bensch, Luka Lackovic

Why use Concentrating PV (CPV) with a thermal receiver?

- CSP/CST application trend is towards higher temperatures
 - Higher process efficiency
 - High temperature process heat application
- Optimization for high temperature receiver systems
 - Trade-off between
 - Thermal losses ⇒ decrease with reduced aperture area
 - Intercept losses ⇒ increase with reduced aperture area
- Higher receiver temperature
 - higher impact of thermal losses tends to reduce aperture area
 - ⇒ higher spillage losses
- Use of CPV is a promising way to capture spillage radiation for cost reduction

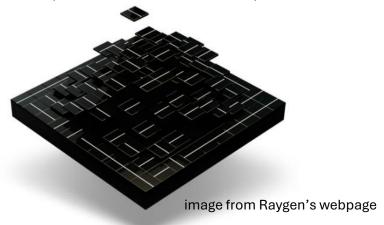
Techno-Economic Analysis of Solar Hybrid Systems (Thermal Receiver + CPV)

- Analysis of cost reduction options
 - Improvements vs. reference case
- Reference case:
 - Multi-tower configuration:
 - 12 modules, each 41.6 MW @ design point
 - receiver outlet temperature: 1000 °C
 - site: Daggett, USA, annual DNI: 2719 kWh/m²a
- New configurations:
 - "Street-size" centrifugal particle receiver:
 - aperture diameter fixed at 3.1 m (maximum size for factory-assembled receivers)
 - Smaller heliostats: 8.1 m²
 - Receiver power and number of solar modules optimized

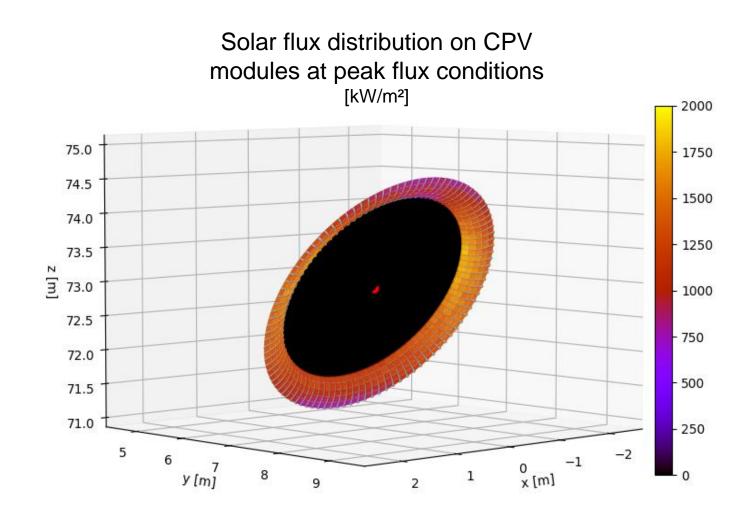
Reference System

- Taken from paper "Techno-economic analysis of multi-tower solar particle power plants", Buck & Sment, Solar Energy Vol. 254, 2023⁽¹⁾
- Solar particle system, 100 MW_e sCO₂ cycle, (part of G3P3 project)
 - Multi-tower system: 12 identical subsystems
 - Receiver thermal design power: 41.6 MW
 - Transport of energy with insulated containers to central power block
- Selected case: "1000 LL"
 - Receiver exit temperature: 1000 °C
 - Low primary HX cost
 - Low tower cost
- Cost assumptions: G3P3, based on DoE input
- LCOE: 50.46 USD/MWh

Optimization Procedure


- optimization using genetic algorithm
- For each configuration during optimization:
 - Create oversized field
 - Evaluate annual yield per heliostat
 - Select best heliostats for new design power
 - Evaluate efficiency map: eta_{field} = f(sun elevation and azimuth)
 - Evaluate annual energy yield (using hourly time series)
 - Evaluate cost and LCOE

- "Direct": recalculation for optimized configuration
 - Calculate each (solar) time step with raytracing


Integration of CPV Modules into Radiation Shield

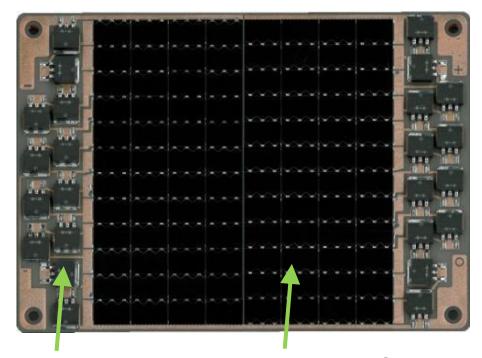
Example: CPV module of Raygen (about 10 cm x 10 cm)

- Evaluation for 5 CPV module rings
- Raytracing on specific receiver and CPV design
- Hourly time series to get annual yield of receiver and CPV modules
- CPV + inverter cost: 46'000 \$/m²

Results of Techno-Economic Analysis

- LCOE results are relative values compared to reference system
 - under common assumptions are quite optimistic (former DoE assumptions from G3P3)

case	LCOE optimized [\$/MWh]	P _{th} of receivers per tower [MW _{th}]	Number of modules	Maximum flux CPV [MW/m²]
Reference (paper)	50.5	41.6	12	
SS 1R	49.7	18.4	31	
SS 2R	46.2	35.5	17	
SS 1R CPV	43.4	25.8	23	1.88
SS 2R CPV	41.6	41.0	15	1.49


SS: "street-size" receiver; 1R/2R: number of receivers per tower; CPV: integration of CPV modules into front shield

Test of CPV Modules in HEHTRES Receiver

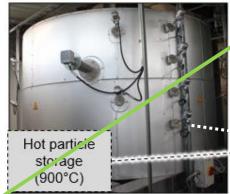
- Test of CPV modules: 6 ADAM modules integrated into HEHTRES receiver aperture shield
- ADAM modules: previous cell and module technology of AZUR SPACE
- Bypass diodes protected with water-cooled casing, with integrated air channels for dust removal
- Solar tests ongoing in solar tower Jülich
- ADAM CPV module main specifications:
 - Cell material: GaInP/GaAs/Ge on Ge substrate
 - active CPV area: 11.8 cm x 12.1 cm = 142.4 cm²
 - Power output: 3.2 kW (DP: 700 suns, MPP)
 - DP efficiency: 32%
 - DP parameters: I_{MPP} = 50 A; U_{MPP} = 64 V

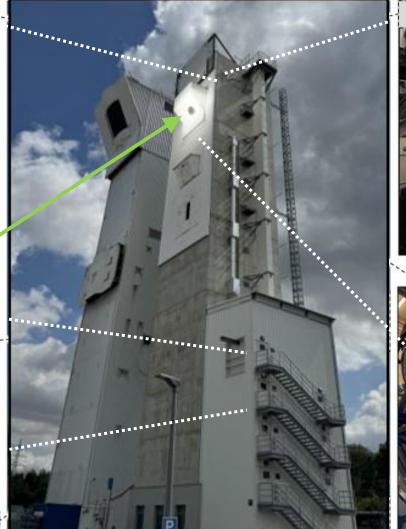
Advanced Dense Array Modules (ADAM) from AZUR SPACE for demonstration tests

96 triple-junction CPV cells

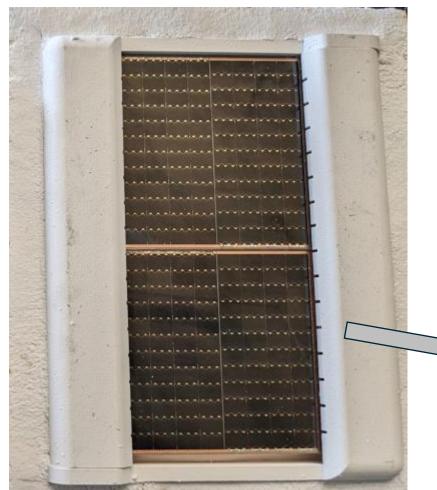
bypass diodes

DLR HEHTRES facility in Jülich


High Efficiency High Temperature REceiver System


Test facility HEHTRES with complete particle loop

- Receiver:
 - Centrifugal particle receiver CentRec
 - 1 MW_{th} design power
 - 400 °C ⇒ 900 °C
- Hot and cold storage, 8 t capacity
- Particle lift bucket elevator, 400 °C
- Particle cooler
- CPV modules integrated into aperture shield of receiver




CPV Integration Details

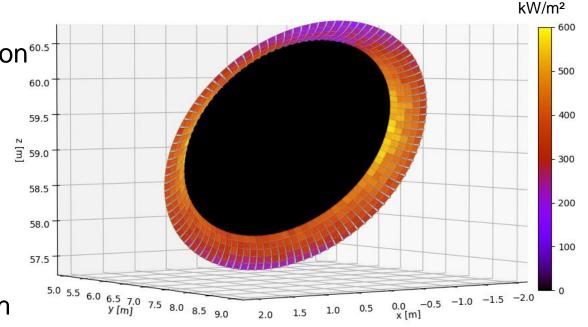
3 CPV units in HEHTRES radiation shield

2 ADAM modules in water-cooled casing

Test Results

- First solar test
 - initial sensor problems solved
 - tests are ongoing
- Experimental data to be compared to predicted power output
 - Power from CPV modules calculated from:
 - Datasheet information from Azur Space
 - Average solar flux on CPV module (from raytracing)
 - Solar flux inhomogeneity
 - CPV module temperature

Conclusions and Outlook


Use of CPV modules to capture spillage can

■ significantly increase annual energy production 60.5

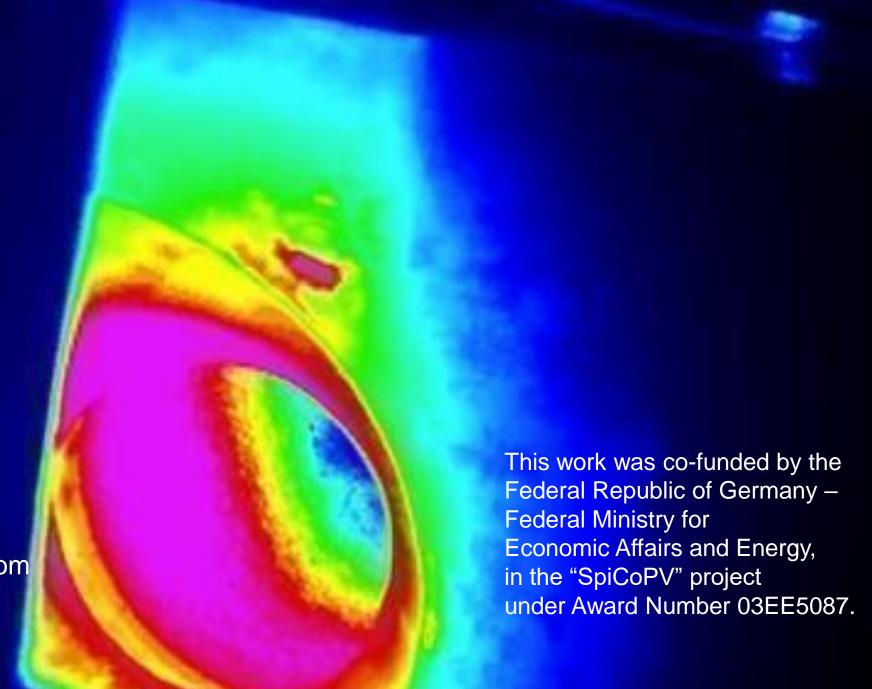
significantly reduce LCOE

 6 CPV modules have been integrated into the aperture shield of HEHTRES receiver

 CPV integration is a promising option for any high temperature receiver system

Thank you for your attention!

Contact:


Reiner.Buck@dlr.de

Eckhard.Luepfert@dlr.de

www.dlr.de/sf

Werner.Bensch@azurspace.com

www.azurspace.com

