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Turbulence plays a decisive role in the dispersion of particles during respiratory events such 
as breathing or coughing. Computational fluid dynamics (CFD) provides an efficient frame-
work for predicting particle transport, which is useful for assessing the risk of, for example, 
SARS-CoV-2 transmission in aircraft cabins or train compartments. However, due to their 
high computational cost, direct numerical simulation (DNS) and large-eddy simulation (LES), 
which fully or largely resolve turbulence, are not practical. Instead, the most feasible ap-
proach is to use Reynolds-averaged Navier–Stokes (RANS) simulations with point-like (La-
grangianI) particles. In this context, choosing the right particle dispersion model (PDM) is 
critical for accurately capturing the spread in such turbulent environments. 
 
In our previous study [1], we introduced the limited particle–eddy interaction (LPI) model, 
which improves the prediction of exhalation-induced particle dispersion when applied to an 
exponentially smoothed DNS velocity field. In this study, we extend the application of the LPI 
model to a RANS simulation, evaluating its performance against the commonly used mean 
particle–eddy interaction time (MPI) model implemented in OpenFOAM using the DNS data 
from our previous study as a reference. 
 
The steady incompressible RANS equations coupled with temperature and vapour transport 
equations via the Boussinesq approximation were solved in OpenFOAM using second-order 
central differences. Turbulence was modelled using the RNG k–ε model. The computational 
mesh comprised 4.5 million cells with a maximum size of 1.4 cm, with local refinements down 
to 3 mm near the pipe and room walls. Once the velocity field had converged, particles of 
various sizes were injected from the mouth and tracked for 5 seconds under three conditions: 
without a dispersion model, with the MPI model and with the LPI model using an optimal re-
laxation factor of 4. 
 
As Fig. 1 shows, the RANS simulation without a dispersion model underpredicts the particle 
spread. In contrast, the MPI model produces erratic overdispersion for 1 μm particles. By 
contrast, the LPI model provides the most consistent performance for both small (1 μm) and 
large (32 μm) particles. For a quantitative evaluation, we examined the convex hull volumes 
(CHVs), which are defined as the smallest convex volume enclosing all particles. As shown 
in Fig. 2, the MPI model significantly overpredicts CHV for small particles, but performs well 
for larger ones. In contrast, the LPI model accurately reproduces dispersion for both particle 
sizes. These findings demonstrate that, when applied in a RANS framework, the LPI model 
achieves performance comparable to that of exponentially smoothed DNS velocity fields and 
clearly improves dispersion prediction relative to the RANS simulation with the MPI model. 
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Figure 1: Predicted particle clouds 4 seconds after particle injection begins. The results for 
the DNS and RANS simulations are shown without a dispersion model and with the LPI and 
MPI models. Particle sizes of 1 and 32 µm are compared. 
 
 

  
 
Figure 2: Convex hull volumes (CHVs) of particle clouds, as predicted by the RANS using 
the MPI and LPI models and without a dispersion model, are compared with DNS results. 
Results are shown for particle sizes of 1 µm (left) and 32 µm (right). 
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