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Abstract—Synthetic Aperture Radar (SAR) systems are in-
creasingly at risk of Radio Frequency Interference (RFI), driving
the need for effective mitigation techniques to maintain data
quality in challenging operational settings. This paper introduces
a lightweight and effective framework designed to mitigate the
impact of RFI directly on raw Radio Frequency (RF) SAR data.
Given the scarcity of publicly labeled raw SAR data with inter-
ference events, a synthetic RFI dataset is created using a realistic
RF-level SAR emulation tailored for spaceborne scenarios. A twin
U-Net model is developed to mitigate RFI in affected segments,
inferring clean SAR data from contaminated RFI inputs. The
model’s mitigation performance is quantitatively validated on
unseen synthetic data. This approach has the potential to enhance
the quality of SAR imagery impacted by RFI with the advantage
of operating directly in the raw signal domain.

Index Terms—Radio frequency interference, RFI mitigation,
synthetic aperture radar.

I. INTRODUCTION

Spaceborne Synthetic Aperture Radar (SAR) is an essential
tool for high-resolution Earth observation independent of light
and weather conditions. SAR provides valuable data for a
diverse range of applications, including environmental mon-
itoring, disaster response, and defense operations. However,
due to the inherent use of Radio Frequency (RF) spectrum,
SAR is increasingly susceptible to Radio Frequency Inter-
ference (RFI), posing significant challenges to the reliability
of SAR data. RFI, caused by other transmitters overlapping
with the SAR operating band, corrupts the data and introduces
impairing artifacts. A common form of RFI is Narrow-Band
Interference (NBI), characterized by its narrow Power Spectral
Density (PSD) and often appears as saturated lines that obscure
critical features in the data. Mitigating such unexpected RFI
is challenging due to its unpredictable location and nature,
rendering traditional filtering techniques insufficient for effec-
tive mitigation. Addressing these challenges is essential for
maintaining the integrity and utility of SAR imagery.

Deep Learning (DL) offers transformative solutions to com-
plex RFI challenges in SAR applications, leveraging architec-
tures such as deep residual networks [1], Generative Adversar-
ial Network (GAN)-based frameworks [2], DL-based filtering
algorithms [3], and deep segmentation networks [4], [5] (also

explored in other radar signal processing domains [6]). While
these models outperform traditional methods, their application
to Time-Frequency Domain (TFD) data involves significant
preprocessing and computational demands, limiting real-world
scalability. Hybrid approaches like Prior-induced Interfer-
ence Suppression Network (PISNet) [7] combine DL with
semi-parametric techniques, achieving strong results at the
cost of extensive tuning. Feature decomposition models such
as Multi-dimensional Calibration and Suppression Network
(MCSNet) [8] and Combined-Attention Restoration Network
(CARNet) [9] enhance RFI suppression but depend on refer-
ence images and focus on processed rather than raw SAR data,
limiting practical utility. Detection-focused models like Canny
Edge Detector and Vision Transformer (CEVIT) [10] address
raw data but overlook mitigation, while [11] underscores the
challenges posed by the reliance on large labeled datasets.

Although some work [4] has addressed the need for datasets
by introducing Multi-scale Interference Detection (MID) (for
RFI detection) and Polygonal-Annotated Interference Segmen-
tation (PAIS) (for RFI segmentation), which consist of Single-
Look Complex (SLC) products and corresponding Ground
Range Detected (GRD) quick-looks from Sentinel-1 [12],
a significant gap persists: the absence of publicly available
labeled datasets specifically for raw RFI SAR data. This
limitation highlights the pressing need for such datasets along
with methods capable of directly process real contaminated
raw SAR data without relying on extensive preprocessing or
manually labeled datasets.

This paper introduces a twin U-shaped Network (U-Net)-
based model designed to directly mitigate RFI from raw SAR
data, eliminating the need for a detection step or hand-crafted
features. The proposed model is trained on emulated raw SAR
data synthesized using a realistic spaceborne emulator. By
generating data at the RF level, full control is maintained over
the injected RFI signals, ensuring precise ground truth data for
training. The model’s performance is rigorously evaluated on
an unseen synthetic test dataset, demonstrating its ability to
achieve superior interference mitigation while preserving data
fidelity. The primary contributions of this work include: (i) a
systematic approach for generating synthetic datasets tailored
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Fig. 1: The RFI mitigation framework utilizing the proposed
twin-U-Net architecture. The diagram illustrates the prepro-
cessing steps for both magnitude and phase components, in-
cluding scaling, wrapping, and down-sampling, before passing
the processed data to the respective U-Net models. The outputs
are combined to reconstruct the raw predicted clean data.

for DL-based RFI mitigation, (ii) the development of a twin U-
Net architecture for direct RFI mitigation from raw SAR data,
and (iii) a quantitative validation using the simulated data.

II. METHODOLOGY

Similar to conventional Machine Learning (ML) applica-
tions, the proposed framework operates in two phases (i) a
training phase using labeled synthetic data (generated auto-
matically with the simulation engine), and (ii) a testing phase
involving unseen labeled synthetic data, as illustrated in Fig. 1.
Dataset preparation and the model architecture are detailed
below.

A. Raw Synthetic Dataset

The synthetic dataset was generated from emulated raw
SAR data using SAR EMUlator for Spaceborne Applications
(SEMUS) [13], an RF-level emulator developed to replicate
realistic spaceborne scenarios. To enhance realism, the dataset
generation targeted regions with historically high RFI oc-
currences, identified through European Space Agency (ESA)
RFI maps along with urban and coastal hotspots prone to
interference [14].

For this experiment, parameters from a real, commonly
used sensor of Sentinel-1 were employed to create realistic
synthetic data for selected 612 cities globally, with each city
imaged in a single swath scan. To optimize computational
efficiency, scans were limited to one second, producing 2D
raw SAR data with dimensions of 1871 x 5565 pixels in
azimuth and range directions. Diverse RFI scenarios were
simulated by introducing NBI, modeled as randomized Linear
Frequency Modulated (LFM) chirps, based on realistic inter-
ference patterns observed in TerraSAR-X [15] and Sentinel-
1 [16]. For further details on generating the RFI, please
refer to the research in [5]. Each clean sample was paired
with eight RFI-contaminated variations, yielding 4,896 total

TABLE I: EMULATION PARAMETERS [5]

Parameter Symbol Value
Eccentricity e 7.9928 x 10~*
Argument of periapsis w 90°
Inclination ) 98.176°
Right ascension of the ascending node Q [—180°,0°]
True anomaly v [—180°,0°]
Radar centre frequency fo 5.405 GHz
Radar bandwidth B 100 MHz
RFI center frequency shift Af [—0.01f5, 0.01f5]
RFI bandwidth B1 [0.1B, 0.3B]
RFI duty cycle Dy [70%, 90%]
RFI Pulse repetition frequency PRF7 [1, 5] kHz
RFI pulse width To; D1 /PRF;
RFI chirp rate B B1 /Ty,
RFI transmitter latitude shift A AT [—0.03°,0.03°]
RFI transmitter longitude shift Abr,oN [—0.02°,0.02°]
RFI transmitter gain (Isotropic) G 0dB
PSD-SIR ol [-5,5] dB

samples. The orbital configurations, SAR parameters, and RFI
characteristics are detailed in Table 1.

The dataset comprises both magnitude and phase compo-
nents saved in the quadrature format s,q = A - e/?, where
A and ¢ represent the contaminated magnitude and phase
components, respectively. The magnitude data was scaled by
a factor of 1 x 10! to align its amplitude range with real
SAR data of Sentinel-1. In contrast, the phase data, bounded
within [—27, 27|, was wrapped to the range [—m, | using
modulo arithmetic and normalized by dividing by 7 to ensure
consistency and stability during training.

Furthermore, to reduce the computational burden in this pro-
totype study, both magnitude and phase arrays are downsam-
pled to a shape of 256 x 256 pixels using bilinear interpolation
(which is performed after the magnitude is scaled and the
phase is wrapped). The dataset was randomly split into 400
cities (3,600 samples) for training, 50 cities (400 samples) for
validation, and 162 cities (1,296 samples) for testing. This
split ensures that cities used for training, along with all their
RFI variants, are excluded from both validation and testing
datasets. Contaminated samples were used as model input,
while clean samples served as ground truth in the supervised
setting.

B. Model Architecture

The proposed approach employs twin U-Nets, indepen-
dently processing the magnitude and phase components. Since
RFI manifests differently on each component, this separation
prevents phase channel features from dominating magnitude
predictions, ensuring balanced and effective model perfor-
mance. Consequently, the magnitude U-Net predicts clean
amplitude values, while the phase U-Net refines the phase
information. The outputs are combined to reconstruct the clean
signal using 5,4 = A - ei?, where A and qAb represent the pre-
dicted clean magnitude and phase components, respectively.

The utilized U-Net architecture incorporates multiple down-
sampling stages to extract features from the signal at different
scales. Each stage employs ConvNeXt blocks [17] for feature



TABLE II: ARCHITECTURE OF THE PROPOSED U-NET MODEL FOR SAR RFI MITIGATION

Layer Name Details

Purpose

Downsampling Path
ConvNeXt Block 1
ConvNeXt Block 2
Residual Block 1
Downsample Block
1

ConvNeXt Block 3
Residual Block 2
Downsample Block
2

ConvNeXt Block 4
Residual Block 3

Conv2d: kernel size = 7x7, stride = 1, padding = 3, groups = 1
Conv2d: kernel size = 7x7, stride = 1, padding = 3, groups = 64; Residual connection
LinearAttention + LayerNorm
Conv2d: kernel size = 4x4, stride = 2, padding = 1

Conv2d: kernel size = 7x7, stride = 1, padding = 3, groups = 128; Residual connection
LinearAttention + LayerNorm
Conv2d: kernel size = 4x4, stride = 2, padding = 1

Conv2d: kernel size = 7x7, stride = 1, padding = 3, groups = 256; Residual connection
LinearAttention + LayerNorm

Initial mapping of input data
Extracts and refines features
Attention mechanism
Reduces spatial dimensions

Captures deeper features
Refines feature representation
Further reduces spatial dimension

Extracts complex hierarchical features
Attention mechanism

Middle
Bottleneck Block

Conv2d: kernel size = 7x7, stride = 1, padding = 3, groups = 512

Bottleneck for processing features

Upsampling Path
Upsample Block 1
ConvNeXt Block 5
Final Conv Layer

ConvTranspose2d: kernel size = 4x4, stride = 2, padding = 1
Conv2d: kernel size = 7x7, stride = 1, padding = 3, groups = 64; Residual connection
Conv2d: kernel size = 1x1

Upscales spatial dimensions
Final refinement of features
Reduces channels to match output size

extraction process that are subsequently injected into the corre-
sponding upsampling stages, allowing uninterrupted informa-
tion flow from the input signal to the reconstructed output. The
implementation of skip connections bridges the encoder and
decoder paths, preserving critical spatial information and en-
abling efficient feature reuse. Linear attention is incorporated
to capture long-range dependencies in the input data, allowing
the network to effectively identify and mitigate interference
patterns that may be spatially or temporally distant within the
contaminated SAR signal. The output layer generates a single-
channel prediction map of the clean magnitude and phase data.
The U-Net architecture is summarized in Table II, explaining
the downsampling path, middle bottleneck, and upsampling
path, clearly showcasing the role of each block within the
network.

The network is optimized to minimize pixel-wise differ-
ences between the predicted and clean data using Mean
Square Error (MSE) loss, computed separately for magnitude
and phase, with the combined metric given as MSE =
é (MSEmagnitude + MSEphase). Coefficient of Determination
(R2) score assesses how well the predictions capture variance
in the clean data for both components, ensuring reliable
performance across magnitude and phase.

III. RESULTS AND VALIDATION

A. Experimental Setup

Training was conducted on a system equipped with an Intel
Core i9-12900 CPU and an NVIDIA GeForce RTX 3060 GPU.
The model was optimized using the Adam optimizer with a
learning rate of 1 x 10~* for a maximum of 50 epochs with
a batch size of two. Early stopping with a patience of 20
epochs based on the validation MSE was employed, along with
gradient clipping (value of 1.0) and mixed-precision training
to enhance stability and ensure robust convergence.

TABLE III: TEST SET EVALUATION METRICS

Metric Contaminated After RFI Mitigation
JRaw Mag MSE 1.413 0.033

JMasked 1.545 0.028

JRaw Phase MSE 0.000314 0.000096

JMasked 0.000355 0.000098

JFocused MSE 0.00238 0.00051

1Focused SSIM 0.78324 0.90889

B. Quantitative Analysis on Synthetic Data

Evaluation has been performed by applying the model
saved with a checkpoint corresponding to the lowest MSE
validation loss. Table III demonstrates the added value of
applying the trained mitigation model on unseen data. The first
two rows report the MSE associated with the raw magnitude
representation, including errors within the masked regions
indicating interference. The results reveal a substantial im-
provement in quality , with the MSE dropping from over
1.413 in the contaminated data to 0.033 after applying the
mitigation model. This effect is even stronger over the Masked
Interference region.

The next two rows detail the MSE reduction for the raw
phase signal. Once again, the mitigation model effectively
reduces the error, further validating its capability to reconstruct
the clean signal. Finally, the last two rows summarize the
MSE and Structural Similarity Index (SSIM) metrics over
the focused SAR image formed using the magnitude and
phase components. The MSE is notably reduced, and the
SSIM metric increases from 0.78324 for the contaminated
data to 0.90889 after mitigation, indicating enhanced structural
similarity to the clean data.

This improvement in visual quality, as reflected by the
increased SSIM, aligns with the qualitative observations from
the formed images in Figure 2. The first row (a) shows the
contaminated raw data magnitude, while the second row (b)
presents the corresponding formed images with interference.



Fig. 2: Visualization of the RFI mitigation process. (a) Raw contaminated data magnitude, (b) corresponding focused
contaminated data, (c) raw filtered (predicted) magnitude data, and (d) focused filtered (predicted) data. The images were
formed using the RDA algorithm. Each column corresponds to a distinct test sample, representing different urban environments.

The last two rows (c-d) depict the same data after applying the
mitigation model. While interference is not entirely eliminated,
it becomes subtle and difficult to detect visually, even in cases
with high levels of contamination in the input data.

IV. CONCLUSION

This study proposed a robust framework for RFI mitigation
in SAR systems, by training a twin U-Net model to process
both the magnitude and phase of raw SAR data. To address
the lack of real-world labeled RFI-SAR datasets, the frame-
work employed controlled training using synthetic emulated
data, which allows to generate virtually unlimited amounts of
training data for the task of interference removal. Trained on a
single GPU for only 50 epochs, the model gains the capability
to generalise to previously unseen data in the test dataset
and was consequently proven to act as an effective tool for
interference removal, as demonstrated by the improved error

and structural similarity metrics reported in the quantitative
analysis.

This work lays the foundation for building interference
mitigation models that can automate the process of cleaning
the contaminated data directly in the raw format. While the
context here focused on the simulated data, it is expected that
the next steps of this work will explore how the same model
could be applied in a real-world setting to contaminated SAR
data acquired by physical sensors.
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