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Introduction
The development of energy-efficient, propeller-driven
small aircraft and Advanced Air Mobility (AAM) ve-
hicles faces challenges due to high noise levels, partic-
ularly in urban environments. This research proposes
a reduced-order, data-driven semi-empirical model that
combines physics-based and empirical approaches to pre-
dict tonal noise levels for isolated and installed propeller
configurations. The model will integrate findings from
computational aerodynamics (CA) and computational
aeroacoustics (CAA) simulations at varying fidelity lev-
els, along with empirical data from flight tests and wind
tunnel experiments, to improve prediction accuracy. The
framework involves selecting an appropriate propeller
noise source model, validating it against measured fly-
over data, identifying key noise-influencing parameters,
and training an artificial neural network (ANN) to cap-
ture complex relationships between inputs and noise lev-
els. This integrated approach aims to reduce computa-
tional costs while improving the accuracy and efficiency
of noise predictions, supporting informed design decisions
for noise reduction in early development stages.

Propeller Noise Source Model
The development of a data-driven AI-trained reduced-
order model necessitates the selection of an optimal pro-
peller model, striking a balance between accuracy and
computational efficiency. Among various options, we
opted for the DLR’s Unsteady Panel Method (UPM)
[4], leveraging its ability to simulate unsteady aerody-
namics at lower computational cost compared to conven-
tional methods like unsteady RANS with actuator disc
(URANS-AD). The UPM’s design allows it to maintain
the structure of the propeller wake for a longer duration,
thanks to its absence of dissipation effects associated with
refined volume grids. This property renders the vortex
method an ideal choice for generating multiple simula-
tions, essential for creating a large dataset for training
an AI model.
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Figure 1: Representation of acoustic hemispherical far-field
[1]

We employed Formulation 1A from F.Farassat [2], treat-
ing the propeller blade and wing geometry as the pri-
mary noise source under non-permeable surface assump-
tions. However, due to its first-principle based nature,
the panel method code is unable to produce pressure
fluctuations in the near-field associated with permeable
surfaces, thus restricting its application to the propeller
blades and wing surface. The loading on the blade and
wing, represented by surface pressure, was used as input
to the Ffowcs-William-Hawking (FW-H) equation for cal-
culating loading noise. The volume of air displaced by the
rotating propeller blade and moving wing generated pres-
sure fluctuations, which in turn produced sound waves.
This phenomenon is calculated using the thickness noise
with spatial coordinates of the panels, discretized from
the blade and wing geometry. The resulting time-domain
noise signal was then converted to frequency domain us-
ing Fast Fourier Transform (FFT), representing the far-
field acoustic radiation depicted in Fig. 1. A detailed
explanation of the computational methodology deployed
is provided by Manghnani et al. [1].

Figure 2: Computational Methodology [1]

The simulations was conducted for a half-wing installed
with a single propeller, requiring validation for the full
aircraft. APSIM-generated hemisphere data is pro-
cessed in DLR’s parametric aircraft noise analysis mod-
ule, PANAM [6], which adds 3 dB to account for the
second propeller and wing half. An additional 6 dB is
included to account for ground reflection effects, as the
microphone was ground based, plate-mounted [5]. Fi-
nally, Doppler effects are incorporated, and the results
are compared to measurements. This methodology en-
ables efficient dataset generation for AI training while
ensuring realistic noise predictions. The complete com-
putational framework is illustrated in Fig. 2.

Verification with BEMT-Hanson coupling
The noise levels on an acoustic hemisphere for an iso-
lated propeller configuration are verified using BEMT-
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Hanson coupling [7, 1]. The directivity of noise levels
is plotted for both formulation-1A of APSIM and the
Hanson model on an acoustic hemisphere with a radius
of 156.07m. The results demonstrate symmetry in az-
imuthal direction (Φ) for both cases, with the SPL val-
ues obtained using formulation 1A (FW-H) in APSIM
closely matching those determined by the Hanson model.
However, interfering patterns are observed in Farassat
1A result due to the larger step size used in aerodynamic
simulations, which leads to interfering effects at extreme
ends of the hemisphere, as depicted in Fig. 3.
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Figure 3: Noise directivity on acoustic hemispherical far-
field (a) Hanson model [7], (b) Farassat 1A [3]
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Figure 4: Noise directivity in polar coordinates at azimuth
angle (Φ = 0◦)

The polar noise directivity at azimuthal angle Φ = 0◦

is also plotted in Fig. 4 for three cases: isolated pro-
peller configurations using Hanson and APSIM, and in-
stalled propeller without wing in the CAA simulation us-
ing APSIM. The results indicate a difference in SPL val-
ues between Hanson and APSIM of 1 dB to 2 dB, which
increases to 3 dB to 5 dB towards the hemisphere’s ex-
treme for isolated propeller configurations. Notably, the
installed propeller configuration with the wing excluded
from the CAA simulation exhibits a larger difference of
10 dB to 12 dB at the hemisphere’s extreme due to back-
loading effects from the wing onto the propeller, as shown
in Fig. 4.

Validation using DO-228 fly-over data
The noise levels obtained from isolated and installed pro-
peller configurations are validated using data from DO-

228 fly-over measurements [5]. For the installed config-
uration, two vortex methods - Vortex Filament Method
(VFM) and Vortex Particle Method (VPM) - are em-
ployed to model the propeller wake. In VFM, a quad
wake filament is utilized with a vortex core defined on
lateral and longitudinal filaments [4], whereas in VPM,
particles are used to represent the propeller wake with a
vortex core assigned to each particle. The results for both
methods were compared to the measured data from DO-
228 fly-over measurements in two plots: non-weighted
level time history and A-weighted spectrum, as depicted
in Fig. 5.
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Figure 5: Level time history plot validating Lp values for
isolated and installed propeller with fly-over data

The comparison in Fig. 5 reveals that for non-weighted
plots, both isolated propeller simulated using VFM and
installed propeller configurations using VPM simulations
demonstrate good agreement with the measured data.
However, installed configuration simulated using VFM
overpredicts the noise levels by a range of 15 dB to 17 dB
compared to VPM, which provides a closer match. In
contrast, when considering A-weighted plots, the differ-
ence between the measured data and isolated propeller
configurations simulated using the Hanson model and
Formula 1A increases to a range of 10 dB to 12 dB.
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Figure 6: Spectrum plot validating Lp values for different
propeller configuration to fly-over data
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The discrepancy in A-weighting is attributed to its ef-
fect on low-frequency tones, which are suppressed, and
mid-frequency harmonics, which are amplified. While
VFM simulations exhibit increased noise levels after the
second blade pass frequency due to panel wake devel-
opment, VPM offers a more accurate representation of
the noise levels, particularly in capturing the interaction
effects and closely matching the measured data up to 1
kHz frequency as shown with the spectrum plot in Fig. 6.
The reason for this deviation is that VFM fails to adhere
to the tangential flow boundary conditions at collocation
points, causing the wake from the propeller to enter the
wing surface and interact with the doublet singularities
defined at the camber of the airfoil. This leads to in-
creased noise levels, as described in detail by Manghnani
et al. [1], and shown in Figs. 5 and 6. Conversely, VPM
applies boundary conditions to each particle, preventing
it from interacting with the wing surface and resulting in
a more accurate simulation.

Given these findings, VFM is recommended for cases
where there is no interaction between the propeller wake
and source/doublet singularities, such as the wing, due
to its computational efficiency. In contrast, VPM is pre-
ferred for scenarios involving wake-structure interaction
due to its capabilities to handle interaction effects.

Reduced order modeling
Mathematical domain for ML model
Following successful validation of results from the pro-
peller noise source model, coupled with the FW-H equa-
tion solver, the next step involves down-selecting param-
eters that significantly influence the noise emitted to the
far-field. The parameters selected for the reduced or-
der model (ROM) are specified in Table 1, which is lim-
ited to single diameter propellers and constant angle of
attack due to simplification to facilitate computation-
ally efficient analysis. A sensitivity study was conducted
to identify the most influential factors, resulting in this
down-selected dataset.

Table 1: Parameter selected for reduced order model

Parameters Range

Angle of Attack [0.0]
Propeller Diameter [2.5]
Wing Thickness [0.8, 1.0, 1.2]
Number of blades [3, 4, 5, 6]
Propeller RPM [1300.0 ... 2000.0]
Propeller blade pitch [0.0 ... -20.0]
Flight velocity (Knots) [100.0 ... 200.0]
x-installed distance [0.2 ... 0,8]
y-installed distance [0.0]
z-installed distance [-0.5 ... 0.5]

To create a comprehensive dataset, a generic geometry
for a propeller installed with a wing is defined as shown
in Fig. 7. The Dornier DO-228 propeller and wing geom-
etry are used, but the sweep of the wing is eliminated to
adopt a simplified box-shaped design with constant thick-
ness and chord length throughout its span. The DO-228

Figure 7: Generic geometry of propeller installed with the
wing

wing airfoil is employed to create this generic test case,
ensuring accurate representation of the wing’s aerody-
namic properties. The installation distance in longitudi-
nal, lateral, and vertical directions is set at x = 0.9 m,
y = 2.55 m, and z = 0.35 m, which matches the instal-
lation location of the propeller in the actual aircraft ge-
ometry. This configuration serves as the reference for
further testing with random test points generated inside
the computational domain using Halton sampling.

The test points are generated to cover the entire mathe-
matical domain, including boundary points, to ensure a
comprehensive representation of the effects of various pa-
rameters on propeller noise emission. The dataset char-
acteristics include five parameters defined in continuous
space and two parameters: number of propeller blades
(B) and wing thickness ( t

C ), defined in discrete space.
This is done to accommodate enough cases for different
numbers of propeller blades while maintaining computa-
tional efficiency by avoiding the generation of panel mesh
for the wing geometry for each case. The dataset is cre-
ated based on Halton sampling inside the mathematical
domain defined, resulting in a comprehensive set of data
to study the effects of various parameters on propeller
noise emission.

Future work will focus on expanding the dataset by in-
corporating variations in propeller diameter, sweep angle,
and twist, allowing for comprehensive analysis of different
propeller geometries under various operating conditions.
Additionally, exploring distinct angles of attack for both
installed and isolated propellers will help model ground
noise emissions during takeoff and landing phases.

Data-Driven Machine Learning model
The final step in developing a data-driven machine learn-
ing model involves formulating a mathematical function
to predict aircraft propeller noise. This function depends
on parameters listed in Table 1 and the noise directivity
on an acoustic hemisphere, defined using a virtual mi-
crophone grid with polar angles (Θ) ranging from 10◦ to
170◦ and azimuthal angles (Φ) ranging from −90◦ to 90◦,
as shown in Fig. 1. Due to wing-wake interactions and
propeller backloading, the noise directivity exhibits az-
imuthal asymmetry for installed propeller configurations.
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The data output from the aeroacoustic simulations are
processed and stored in look-up tables, with the first five
SPL harmonics obtained via the Farassat 1A solution.

A supervised learning model is trained on this dataset,
employing a fully connected neural network (FCNN) for
regression. The FCNN maps input parameters to SPL
values using multiple layers of weighted neurons. Reg-
ularization (L2) prevents overfitting, while an adaptive
learning rate with exponential decay ensures stable con-
vergence. The Adam optimizer is used to capture com-
plex, nonlinear patterns arising from wing-wake inter-
actions, and min-max scaling normalizes SPL values to
improve training efficiency.

Figure 8: Isolated propeller: comparison of SPL values for
Farassat 1A and ANN predictions

Figure 9: Installed propeller: comparison of SPL values for
Farassat 1A and ANN predictions

Figs. 8 and 9 compare Farassat 1A and ANN-predicted
SPL values for isolated and installed propeller cases. The
ANN accurately captures noise directivity trends, with
deviations at the microphone directly below the propeller
(Φ=0◦ and Θ=90◦) within 1 dB to 3 dB for both config-
urations. For the isolated case, the ANN correctly pre-
dicts azimuthal symmetry but does not reproduce nu-
merical interference patterns at the hemisphere’s edges,
as these are filtered out by the weighting function. In the
installed configuration, the AI model captures the loss
of azimuthal symmetry but smooths out pressure fluc-
tuations from wing-wake interactions, missing fine-scale
variations present in the Farassat 1A solution.

Conclusion
This study concludes that the AI model, trained on data
from a first-principles-based panel method (UPM) sim-
ulations coupled with the FW-H equation based solver
(APSIM) using Formulation 1A from F. Farassat, accu-
rately predicts first five SPL values and noise directivity

trends in the far field for both isolated and installed pro-
peller configuration. As a next step, the dataset will be
expanded to include variations in diameter, sweep, twist,
and angle of attack. The model will also be retrained us-
ing data from high-fidelity simulations and wind tunnel
and fly-over measurements to further improve prediction
accuracy.

Acknowledgment
The authors gratefully acknowledge the scientific support
and HPC resources provided by the German Aerospace
Center (DLR). The HPC system CARA is partially
funded by ”Saxon State Ministry for Economic Affairs,
Labour and Transport” and ”Federal Ministry for Eco-
nomic Affairs and Climate Action”. The HPC system
CARO is partially funded by ”Ministry of Science and
Culture of Lower Saxony” and ”Federal Ministry for Eco-
nomic Affairs and Climate Action”. Furthermore, the au-
thors would like to thank Vincent Domogalla from DLR
AS-HEL Göttingen for his contribution to the work.

References
[1] Manghnani, J., Domogalla, V., Ewert, R., Bertsch,

L., Delfs, J .: A First Principle Based Approach for
Prediction of Tonal Noise From Isolated and Installed
Propeller 30th AIAA/CEAS Aeroacoustics Confer-
ence (2024), 10.2514/6.2024-3382

[2] Farassat, F..: Derivation of Formulations 1 and 1A
of Farassat, NASA Langley Research Center, 2007,
https://ntrs.nasa.gov/citations/20070010579

[3] Delfs, J. W., and Yin, J., .: Improvement of
DLR Rotor Aeroacoustics Code (APSIM) and
its Validation with Analytical solutions European
Rotorcraft Forum, Vol. 29, 2003, https://dspace-
erf.nlr.nl/server/api/core/bitstreams/508342ce-00f7-
4a6b- 8be9-7a924e711398

[4] Ahmed, S. R., and Vidjaja, V. T.: Unsteady panel
method calculation of pressure distribution on BO
105 model rotor blades Journal of American He-
licopter society, Vol. 1, No. 43, 1998, pp. 47–56.
https://doi.org/10.4050/JAHS.43.47.

[5] Feldhusen-Hoffmann, et. al. .: Noise and local pol-
lutants of small aircraft: overview of simulation
activities and of the first flight test within the
DLR project L2INK AIAA AVIATION 2023 Fo-
rum, American Institute of Aeronautics and As-
tronautics, Reston, Virginia, United States, 2023.
https://doi.org/10.2514/6.2023-4171.

[6] Weinke, F and Bertsch, L and Iwanitzki, M and
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