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Highlights

What are the main findings?

e  This study evaluates the temporal variability and algorithm differences in soil moisture
estimates over Europe using ECMWEF and SMAP products.

e The innovation of the study lies within the detailed analyses of impacts of hydromete-
orological conditions on product performance at seasonal and short-term time-scales.

What are the implications of the main findings?

e  This study found an overestimation of the magnitude of absolute soil moisture
variability within both products at most stations due to an overestimation of
short-term fluctuations.

e  The magnitude of temporal variability and accuracy in soil moisture products depend
on site-specific characteristics and the pre-processing of the data.

Abstract

This study evaluates temporal variability and algorithm differences in soil moisture es-
timates over Europe using the European Center for Medium-range Weather Forecasts
(ECMWF) operational analysis and the passive Soil Moisture Active Passive (SMAP) soil
moisture product. While models and satellite retrievals have improved in capturing the
timing of soil moisture dynamics, absolute accuracy and temporal variability magnitudes
still diverge. This study compares the representation of short-term and seasonal variability
of soil moisture in absolute and normalized terms over two different hydrometeorological
growing periods (2021 and 2022). Both datasets exhibit intermediate to high temporal
correlations with in situ measurements at selected stations (median Pearson correlation
coefficients of all stations range between 0.65 and 0.79), confirming previous studies.
However, they overestimate the magnitude of absolute soil moisture variability at most
stations (median interquartile range of all stations at 0.085 (0.10) m®m 3 for ECMWF and
0.072 (0.079) m®m—3 for SMAP opposed to 0.063 (0.072) m®m~3 for in situ in 2021 (2022))
due to an overestimation of short-term fluctuations, especially at dry stations in southern
France and Eastern Europe. The soil wetness index is underestimated, particularly within
SMAP estimates. The performance of both is sensitive to hydrometeorological conditions,
with the 2022 European drought causing strong seasonal and weak short-term fluctuations.
This is easier to capture than conditions with pronounced short-term and weaker seasonal
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fluctuations, as in 2021. Overall, SMAP and ECMWF time series show considerable co-
incident timing, whereas the magnitude of temporal variability and accuracy depend on
site-specific characteristics and the pre-processing of the data.

Keywords: ECMWEF; SMAP; drought; ICOS; ISMN; hydrometeorological conditions

1. Introduction

Soil moisture has been identified as a key component of the Earth system and is,
therefore, recognized as an essential climate variable (ECV) [1]. Understanding the spa-
tiotemporal dynamics of soil moisture is crucial in the context of climate change and
meteorological as well as hydrological extremes because water availability influences
droughts [2], wildfires [3], land—climate interactions [4,5], soil drying [6], plant water
uptake processes [7], and the length and intensity of different environmental processes,
such as heatwaves [8-10]. Further, forecasts of soil moisture dynamics are highly relevant
for climate modeling, including hydrology, meteorology, ecology, agriculture, and water
management on scales ranging from field to continental and even global scales [1,11,12],
and a range of applications across Earth system studies (e.g., wildfire risk assessment, crop
yields, forest decline). A big challenge for these applications is the requirement for spatially
resolved data, which captures the temporal dynamics under different spatially distributed
hydrometeorological conditions for a variety of ecosystems. As an example, sub-seasonal
to seasonal forecasts and climate projections gain forecast strength by accurately initializing
soil moisture and other surface fields [13]. In short-term forecasts, not only do surface flux
calculations respond to different initial soil moisture conditions, but planetary boundary
layer evolution and downstream environmental conditions do as well [14]. Additionally,
the spatial distribution of soil moisture is a crucial factor for capturing the location of con-
vective precipitation events, which contribute between 20% and 50% of the precipitation in
summer over Europe [15], as it co-determines the location of updrafts over dry patches [16].
Precipitation events, in turn, together with the local soil types, impact the spatiotemporal
dynamics of soil moisture.

Over the past decades, two approaches for the derivation of spatially resolved soil
moisture fields have been used to generate a variety of soil moisture products. Firstly, there
is the deterministic model-based approach with and without assimilating observational
data [17]. The former is known as analysis and reanalysis data, and the latter is known as
data from open-loop models to produce transient model simulations. Secondly, there are
satellite remote sensing-based datasets derived from either single sensors or multi-sensor
merged satellite products [17]. Models commonly simulate soil moisture by integrating
differential equations that consider inflows (precipitation and infiltration) and outflows
(root water uptake, bare soil evaporation, runoff, and percolation) of water in multiple
discrete layers. In recent years, fully coupled models have started to be operated at
progressively higher spatial resolutions. This is associated with a requirement for an
increasingly detailed representation of the physical processes in the lower boundary in
the model setup. The model topography, the land cover, and the soil characteristics
are more realistically represented in a simulation with a finer grid. Those factors are
fundamental for the simulation of soil moisture. The soil moisture content, in turn, impacts
the partitioning of the heat fluxes at the land surface by potentially limiting the latent heat
flux, and thus, it is one factor controlling the ratio between moisture and heat entering the
overlying atmosphere (e.g., [18]).
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In addition to models, satellite-based datasets can be retrieved from passive and ac-
tive microwave sensors at different frequency bands [19]. Active sensors (e.g., Sentinel-1,
TerraSAR-X) provide data on high spatial resolution at the expense of temporal resolution
and more complex scattering effects due to, for example, surface roughness and vegeta-
tion [20]. Passive microwave radiometers have a temporal resolution of ~3 days at the
equator, with one morning and one evening overpass, but they have coarse spatial reso-
lution in the order of tens of kilometers (e.g., Soil Moisture Active Passive (SMAP), Soil
Moisture Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer (AMSR2)).
The most promising results for soil moisture are retrieved at the L-band (1.4 GHz) [19] due
to an optimal balance between sensitivity to soil moisture, increased penetration into the
vegetation, and a minimized influence from other aspects, such as surface roughness and
vegetation geometry. The two missions currently retrieving soil moisture from a radiome-
ter at the L-band are the SMOS mission launched in 2010 [21,22] and the SMAP mission
launched in 2015 [23]. Apart from the sensitivity to soil moisture, the advantage of those
missions is that the temporal resolution of products derived from microwave observations
is not hampered by weather, sun glint, and darkness compared to optical remote sensing.
The use of observations for data assimilation in model systems and the use of model-based
temperature in satellite retrievals show that state-of-the-art approaches already exhibit
interdependencies between remote sensing and modeling.

Estimating soil moisture using either models or remote sensing techniques is challeng-
ing due to multiple influences. A key aspect is that they must fulfill quality requirements
and need appropriate validation strategies against ground truth in situ data [24]. Previ-
ous intercomparisons among and between remote sensing-based and model-based soil
moisture products [17,19,25-34] show that despite considerable advancements in the al-
gorithm architecture to improve the retrieval accuracy during recent years, there is room
for reducing errors and achieving even higher accuracies [35]. Both approaches depend on
a suite of assumptions required to produce a fully resolved spatial grid, and both cause
uncertainties in their estimates. Of these assumptions, several factors were reported to
contribute to uncertainty and errors in soil moisture retrievals and simulated products and
thus produce disagreements between satellite and model-based products. This includes
physical factors such as climate, vegetation density, topography [31], and soil texture [36].
Also, technical factors are relevant, like the dielectric mixing model applied [37], the choice
of the algorithm [32], the temporal and spatial resolution, the measuring technique, and
the frequency band used [19,29]. Despite remaining errors, the soil moisture products
usually perform well in representing the timing of temporal variability, e.g., [17], which
is usually due to long-term seasonal patterns. However, previous assessments generally
focused on the timing of temporal soil moisture dynamics within each product (shown
by the temporal correlation coefficient) and errors depicted by root mean square metrics
but did usually not temporally decompose soil moisture signals in seasonal and shorter
time scales. One study performed by [38] evaluated the importance of different time scales
for the assimilation of soil moisture in modeling systems and showed the importance of
considering the variability characteristics at different time scales.

In this study, we conduct a comprehensive assessment of similarities and differences
in the temporal dynamics in terms of both the timing and the magnitude of fluctuations.
All comparisons are conducted for the overall time series as well as the decomposed
seasonal and short-term fluctuation signals for two (2021 and 2022) hydrometeorologically
differing vegetation periods. The years 2021 and 2022 were chosen in order to be able to
compare humid conditions in 2021 and severe drought conditions in 2022 across Central
Europe. We will use these two vegetation period time series for comparison and for
investigating the soil moisture accuracy and the representation of temporal dynamics in
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the chosen datasets. Spatial representativeness errors due to the scale gap are kept in
mind when comparing gridded data with in situ station point measurements. We compare
soil moisture temporal dynamics from the European Center for Medium-range Weather
Forecasts (ECMWEF) operational analysis and the SMAP DCA product at in situ measuring
station networks across Europe from the Integrated Carbon Observation System (ICOS) and
International Soil Moisture Network (ISMN) networks. Europe is chosen as the region of
interest since it is one of the continents with the densest in situ measuring station networks
besides North America and covers a large diversity in climates and eco-regimes, which
makes it an ideal study region.

Thus, in this study, the work focuses on answering the following questions. (1) To
what extent do ECMWEF operational analysis and SMAP retrievals compare regarding their
accuracy and representation of seasonal and short-term temporal dynamics at varying in
situ stations across Europe? (2) In which cases and how do the prevailing hydrometeoro-
logical conditions influence their performance? (3) We also consider site characteristics
(e.g., soil texture or land cover) in the interpretation of the performance of the products.

2. Materials and Methods
2.1. Data

The following sub-chapter introduces the SMAP product, the ECMWEF operational
analysis, and the in situ measurements with their product-specific characteristics. A sum-
mary of the spatial and temporal resolution, along with measurement depth and original
units, is provided in Table 1.

Table 1. Basic information about the datasets under investigation.

SMAP SPL3SMP_E ECMWEF Operational ISMN/ICOS Network
Satellite Remote Sensing Analysis Model In Situ Observations
Horizontal resolution 9 km 0.09° Point scale

Domain size

Europe: 33°N-73.5°N and —27°E—45°E

Original temporal
resolution

Up to ~12-hourly (morning
and afternoon overfly); need
3-day running means to
provide a gapless field

Half-hourly (ICOS),

6-hourly hourly (ISMN)

Time period

March to September 2021 and 2022 (growing periods)

Measurement/simulation
depth

One layer available at 0-5 cm,
extrapolatable to 20+ cm
depending on soil texture and
soil wetness [39]

Four layers are available Usually, five depths
up to 2.89 m in depth are available
Used: first layer 0-7 cm Used: first depth 4-6 cm

Original unit

[m® m~?]

These two gridded products were chosen since they are used very frequently alongside
a few other products (i.e., SMOS, Sentinel-1) and due to the similarity of their spatial
resolution. The ECMWF operational analysis represents the baseline for one of the high-
resolution forecast systems currently available and running at ECMWFE. Considering the
horizontal and vertical model resolution in combination with the usage of a sophisticated
4D-Var data assimilation scheme, ECMWF operational analysis is a representative model
database. The ECMWF operational analysis can be used to initialize and force model
case studies up to large-eddy simulation (LES) scale (e.g., [40,41]). For the remote sensing
approach, SMAP and SMOS are the only two operational satellite remote sensing products
at an L-band frequency that are currently available [42]. Different studies showed that
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SMAP outperforms SMOS in many regions, including Europe, e.g., [17,43]. Since SMOS
is already assimilated in the ECMWF analysis product, we limited the comparison to the
independent (not assimilated) SMAP dataset in this study to avoid statistical issues.

2.1.1. SMAP Satellite Remote Sensing Product

The National Aeronautics and Space Administration’s (NASA) Soil Moisture Ac-
tive Passive (SMAP) mission was designed to retrieve global time series of soil moisture
and freeze—thaw state over the land surfaces [23] and was launched in April 2015. The
space-borne instrument is equipped with a joint L-band radar-radiometer sensor for com-
bined active—passive microwave sensing. This setup leads to a spatial resolution of 36 km
(radiometer only) and a minimum temporal resolution of 2-3 days (if not better), depending
on latitude. A radar instrument failure in July 2015 meant that no further active microwave
observations could be generated, while passive microwave (radiometer) observations con-
tinue to be recorded operationally since its launch. The SMAP data used in this study is the
SPL3SMP_E product [44], which includes morning and afternoon satellite overpasses. Its
9 km gridding is obtained thanks to an enhanced interpolation of the coarser resolution
brightness temperature scenes [45].

Here, we focus on the baseline algorithm of SMAP: Level 3-Dual Channel Algorithm
(DCA; [46]). SMAP algorithms, per se, require static and dynamic ancillary data. Static
ancillary data are permanent masks, e.g., for land versus water, elevation and slope, and
soil properties, while dynamic ancillary data involve precipitation for quality flagging,
surface roughness, and vegetation indices, like the Normalized Difference Vegetation Index
(NDVI). The satellite-based NDVI product is used to constrain the joint soil moisture and
vegetation optical depth retrievals [47-49]. Temperature and precipitation fields used in
the SMAP retrieval originate from a data assimilation system. Other auxiliaries, such as
soil roughness and vegetation scattering albedo, are approximated through fixed values
obtained from the literature or through constant values, which are updated once a year, to
keep the system of equations for the retrieval balanced and solvable. The post-processing of
the SMAP soil moisture deployed here consists of filtering cells with non-optimum quality
flags and surface properties and regridding the remaining data to the ECMWF grid using
nearest neighborhood interpolation and eventually computing 3-day running means from
the orbital fields. This practice ensures continuous, gapless, Europe-wide maps of soil
moisture from the satellite remote sensing data.

2.1.2. ECMWEF Operational Analysis

The Integrated Forecast System (IFS) of ECMWF is a global numerical weather predic-
tion system. The data used in this study is based on the configuration of Cy47r3. It consists
of a spectral atmospheric model with a terrain-following vertical coordinate system applied
at a horizontal resolution of 0.09° and 137 vertical levels. The analysis serves as the initial
condjition for the high-resolution 10-day forecasts from ECMWEFE. The ECMWEF operational
analysis investigated in this study is the output of a 4D-Var data assimilation system. The
system merges an earlier forecast of the model with newly approaching observations to
provide 6-hourly analysis fields at 00, 06, 12, and 18 UTC daily [50]. Physical processes too
small to be explicitly resolved by the model grid need to be parameterized [51]. Processes
in the atmosphere relevant for computing soil moisture are parameterized in the short-
and longwave radiation schemes [52], convection is parameterized by a modified version
of the Tiedtke scheme [53,54], and the cloud microphysics scheme is based on [55] with
several improvements implemented [56,57]. Soil moisture itself is numerically determined
in the land surface scheme (HTESSEL), which uses a tiled approach representing different
sub-grid surface types for vegetation, bare soil, snow, and open water. It distinguishes
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four soil layers, of which the first three receive input from observations via data assim-
ilation [58,59]. The computation of soil moisture involves assimilating surface synoptic
observations (SYNOP) from weather stations, like relative humidity and temperature, as
well as soil moisture from the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) Meteorological Operational satellites (MetOp-A and MetOp-B),
Advanced Scatterometer (ASCAT), and NASA’s SMOS [50].

The model only determines the vertical movement of water in the unsaturated zone of
the soil, while lateral movements of water between the soil columns are not considered.
The top boundary condition is precipitation less evaporation and surface runoff, and the
lower boundary is free drainage. The impact of the land cover on the water budget is
considered with an interception reservoir, which can store a small part of the precipitation
at the vegetation level. Additionally, the high and low vegetation fractions extract water
from the soil via their roots and release it into the atmosphere. The integration of the
equations for the calculation of soil moisture requires the specification of the hydraulic
diffusivity and hydraulic conductivity of the soil, which are parameterized as functions
of the soil water content and soil texture. For both soil properties, minimum values are
assumed for permanent wilting point conditions, below which the soil moisture cannot
drop. The land surface scheme ecLand uses the dominant soil texture class for each grid
point from the FAO dataset [60]. The soil properties are tabulated for the 11 soil classes
of the US Department of Agriculture soil classification. When the liquid precipitation at
the surface exceeds the maximum infiltration rate or a fraction of the pixel is considered
saturated, the excess water is put into direct surface runoff.

2.1.3. In Situ Observations

For comparison with SMAP and ECMWE, in situ soil moisture measurements from the
ISMN ([61]; https:/ /ismn.earth/en/ (accessed on 22 May 2024)) and ICOS ([62]; https://
www.icos-cp.eu/observations/station-network (accessed on 10 March 2023)) networks
were acquired across Europe. The ISMN, funded by the European Space Agency (ESA),
was established as a community effort to collect and freely share global soil moisture
measurements. Its database contains harmonized and quality-controlled data from more
than 80 networks distributed across the world [61]. In this study, we use data from the
networks REMEDHUS (Spain), SMOSMANIA (France), XMS-CAT (Spain), and RSMN
(Romania) provided by ISMN. Additionally, ICOS is a European research infrastructure
established in 2006 to provide precise data on primary greenhouse gases. It monitors the
atmosphere, land, and ocean using primarily tower-based instruments covering areas of
0.01 to 1 km?2. Moreover, ICOS conducts additional measurements of air, plant, and soil
parameters (including soil moisture) to support studies on factors affecting greenhouse gas
fluxes (https:/ /www.icos-cp.eu/ (accessed on 10 March 2023)). Characteristics of the areas
the stations reside in are presented in Section 2.4 below. Of the original 601 sites in ISMN
and 180 sites in ICOS in Europe, a total of 107 sites provide soil moisture measurements
in a top sensing depth between 4 cm and 6 cm for 2021 and 2022. Here, the sensing depth
was chosen to ensure consistency with that expected from SMAP (~5 cm) and with the top
layer of the ECMWEF soil moisture dataset (0 to 7 cm). Each site contained between 1 and
9 sensors, depending on the individual location (see Table 1).

In the first step, a quality check was performed for all time series. First, data with
quality flags other than “good (G)” in the ISMN network were removed. In terms of
ICOS, a dataset that had already been quality-checked and contains only good data was

3 were screened out due to soil

used. Second, data with soil moisture above 0.6 m®m™—
saturation and potentially soils with high organic fractions. Third, data beyond three

standard deviations above and below the temporal average of each sensor were removed
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to exclude extreme outliers, which were clearly inconsistent with the expected patterns.
Finally, we performed a visual inspection of each individual data take and screened out
specific periods when the following occurred:

e  Alack of data in one or more sensors affected the site average (e.g., when, in a station
with four sensors with mostly continuous data, a break of some weeks occurred in
two or more of these sensors).

e A sensor within a site behaved inconsistently with time trends in its nearby sensors
and with precipitation patterns.

During the first quality assessment, ten stations were completely removed due to
inconsistent sensors and data. In a second step, all sites of one network that lie within
one ECMWEF pixel were averaged as well. This has been performed for REMEDHUS sites,
which are located very close to each other (see Figure 1). For each resulting time series, a
centered 3-day running mean was computed, and data was saved with daily time steps
to derive consistency with the satellite and model data. Finally, we filtered out sites with
data gaps corresponding to more than 10 days of the full record in each year (this removed
29 stations) and sites where only data for one of the two growing periods were available
(this removed 31 stations). This resulted in a final set of 42 stations with continuous data
records in both growing periods, assuring high-quality soil moisture observations for
comparison. Their locations are displayed in Figure 1.

(a)

| 41°20°

41010

I 1= ||
450 500 550 600 650 700 750 800 850 900 950

4100 -5°40° -5°30° -5°20° -5°10°

P
)
3
49° 5
48° g
) Q
47 %
450 5] b 1 46° &
| D 45° 5
el QFsicmcuoco| 4 0.4 (g”_
43° <
‘ o,
350 Sa S v 2 m
EEmERRE . Bk e =
. o R o
Elevation [m]‘ 0 300 600 900 1200 1500 1800 530} £ .
/ 2
Temporal Interquartile Range 520} . 1 0
@ <02 . 2
@ 02-03 51
@ 03-04 -
@ 04-05 z
49° o
(ORI Vit ‘ 0
485 & & 10 120

Figure 1. Cont.

https://doi.org/10.3390/1s18030445


https://doi.org/10.3390/rs18030445

Remote Sens. 2026, 18, 445

8 of 34

70°

65°

60°

50°{-

45°

40°

35°

-10°

10° 20°

3
%

e oy b

[ =
450 500 550 600 650 700 750 800 850 900 950

41°00*
-5°40* -5°30° -5°20 -5°10°

49° B v/, = ‘%‘

480 |

47°

46°

45°

lesternEurope

44°

0.4

43°

\
Elevation [m]l 0

54°

L M
300 600 900 1200 1500 1800 53°

2IN]SIO|\ |I0S UBIPSJ\ POZI|BWION

0.2

® <02
@ 02-03
@ 03-04

@ 04-05

@05

Temporal Interquartile Range

45 520\1, <

44° 51

43° sk 50" B

40° s P -
42° /

48°L o [/ abile

_1° 0° 1° 20 - 3° 4° 5° 4 6° 8° 10° 12°

Figure 1. Normalized temporal median in situ soil wetness index in the top soil layer (0-6 cm) of each
station of the growing periods (March-September). (a) 2021; (b) 2022. Coloring of the markers denotes
the median soil moisture content, whereas the marker size indicates the temporal interquartile range
over the growing period. The background map shows the elevation based on the EU-DEM 25. In situ
measuring stations of the following networks are shown in A: REMEDHUS, B: RSMN, C: ICOS, and
D: XMS-CAT, SMOSMANIA, and ICOS.

2.2. Data Evaluation
2.2.1. Absolute vs. Normalized Dynamics

All data were processed to represent 3-day running means of the absolute and nor-
malized soil moisture. Absolute soil moisture means the volumetric soil moisture content
as provided in all datasets and is expressed in m®m~3. Scaled soil moisture represents
the wetness index of the soil. It was calculated using the following the approach of [63]
but using the minimum and maximum values from the quality-checked time series before
calculating the 3-day running means. This gives us the observed, modeled, or retrieved dy-
namic ranges for the joint vegetation periods 2021 and 2022 for each grid cell or station [33]

Opr = (M)I 1)

Gmux - emin

as follows:

where 6,,; is the normalized soil moisture value at time ¢, 6; is the absolute soil moisture
at time ¢, and 6,,,;, and 0,,,,, are the absolute minimum and maximum values of the time
series used. We note here that this does not indicate representing the full dynamic range, as
there may be sites where neither value represents the corresponding extremes, but it brings
the datasets into the same scaled space.

Absolute values are commonly used in soil moisture product comparison studies, such
as those conducted within the SMAP community (e.g., [26,34,42]), making it a familiar and
widely accepted metric. However, a drawback of the absolute values is that they compare
amounts of moisture without accounting for the soil texture or other site-specific factors,
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which can result in differing value ranges between residual, wilting point, and saturation
soil moisture. This means that users, such as farmers or hydrologists, require additional
external information to contextualize the absolute values to infer the soil wetness index of
a soil and make informed decisions about their specific site. Scaling offers the benefit of
comparing value ranges independent of upper and lower limit assumptions, allowing for a
direct assessment of the wetness state in the different datasets.

2.2.2. Statistical Measures

The 3-day running means form the basis for all statistical assessments. These include
comparisons of the temporal medians computed over the growing periods 2021 and 2022,
as well as exploring the periods’ deviations in temporal dynamics using a suite of statistics.
An elegant way to visualize these statistics is through Taylor diagrams [64]. They origi-
nally combined the Pearson correlation coefficient with the unbiased root mean square
difference (ubRMSD) and the standard deviation. The correlation coefficient is essentially a
normalized measure of the covariance between the time series. The ubRMSD provides a
value for the unbiased mean difference between the measured and the predicted values.
The standard deviation quantifies the variability of the values about their mean within the
datasets. However, the ubRMSD and the standard deviation assume normal distribution
in the data, and different soils, such as sand or clay, may cause skewness in the data due
to lags in their wetting and drying phases. To account for this skewness, we replaced the
standard deviation with the interquartile range (IQR) in the Taylor diagrams and showed
the ubRMSD separately. Consequently, the diagrams cease to be Taylor plots in the original
sense, which is why we call them polar plots, but they still provide a visual quantification of
the similarity between the time series measured at the stations and those simulated for the
cell in the ECMWF operational analysis or retrieved within the SMAP product, respectively.
To overlay the reference point of all stations in the diagram, we normalized the IQR by
dividing by the IQR of the respective in situ measurement. The normalized IQR (nIQR) has
the additional advantage of providing a measure of how much the temporal variability is
underestimated (nIQR < 1) or overestimated (nIQR > 1).

In addition to commonly used statistics, such as the difference between gridded and
in situ data (calculated by deriving the differences between the time series and averaging
over the differences), ubRMSD, and Pearson correlation coefficients, we apply a signal
decomposition to disentangle and compare magnitudes of short-term and intermediate-
term fluctuations in all soil moisture time series. These are based on the 3-day running
mean time series for every year individually. The full time series y; can be decomposed
into a long-term trend T; spanning over several years, seasonality S;, and a residual R,
representing short-term fluctuations [65]. Since we investigate seasonal time series, the
long-term trend component is not present in the time series, leaving us with y; = S; + R;.
At first, a 31-day centered running mean is computed from the full time series to derive
the seasonality component and decompose the signals. In a second step, the seasonality is
subtracted from the full time series to isolate the short-term fluctuations. From these two
decomposed time series, we estimate the seasonality strength Fs [66] as follows:

B Var(Ry)
F, = max(O, 1-— VW(St‘FRt)> (2)

This represents the share of the variability in the time series explained by the seasonal-
ity. Hence, a seasonality strength of 0 shows no seasonality, and all variability arises from
short-term fluctuations, whereas a seasonality strength of 1 signifies that all variability
originates from seasonality. These will be used to compare the standard deviations of the
original time series, as well as the seasonality and the short-term fluctuation, to understand
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over which temporal scale the deviations in the representation of the soil moisture temporal
dynamics occur. The IQR is computed for the original and the decomposed time series to
receive insight into the magnitude of over- or underestimation and the origin of deviations
in the temporal dynamics. The composition of statistical measures gives an overview of the
relative skill of the gridded datasets to provide an accurate estimate of the soil moisture
dynamics in the cell each station is located in.

2.3. Growing Periods of 2021 and 2022

Since the aim of the study is to investigate the performance of satellite-retrieved and
simulated soil moisture for years with different meteorological situations, we selected the
two years 2021 and 2022. While 2021 was the first wet year in Europe after the 2018-2020
drought, 2022 was again a drought year characterized by hot and dry conditions in most
parts of Europe. The following two paragraphs summarize the meteorological conditions
of the two years based on the State of the Climate in Europe reports for 2021 and 2022 by
the World Meteorological Organization (WMO) [67,68] and therewith provide the basis for
the discussion of the results.

2.3.1. Hydrometeorological Conditions in 2021

In 2021, Europe underwent an extensive warm anomaly in the 2 m temperature of, on
average, 1.44 K warmer conditions with little spatial variability across Europe compared
to the period 1961-1990 (the official reference period used in the WMO reports changed
from 1981-2010 to 1991-2020 between 2021 and 2022; however, we only refer to 1961-1990).
Only a small region in northwestern Russia saw below-average temperatures. Particularly
large warm anomalies were recorded over the European part of the Arctic and southeastern
Europe [68]. In terms of precipitation, 2021 was wetter than the preceding three years
but with much larger regional differences than in the temperature observations. That
year was dominated by large-scale weather patterns that transported moist Atlantic air
from the west or southwest to Europe, leading to wet episodes, which were alternated
by north to northeastern circulations transporting cooler air to Central Europe, leading
to more pronounced single rainfall events [68]. Dry high-pressure-dominated episodes
occur rarely and only for short periods. Consequently, a wet anomaly was observed in
northern Scandinavia and large parts of Eastern Central Europe. Especially, large amounts
were found in southeastern Europe around the Black Sea. Conversely, dry anomalies were
recorded over the Iberian Peninsula. A variety of extreme precipitation events occurred in
different parts of Europe in 2021. The heavy precipitation event that affected our study area
corresponds to an event that occurred in mid-July over Central Europe, where between
100 and 150 mm of rain fell over an already saturated region, resulting in one of the most
severe recorded floods in Germany and Belgium. Other heavy precipitation events occurred
in 2021, but they happened either outside the growing period or did not occur close to our
measurement sites.

2.3.2. Hydrometeorological Conditions in 2022

Europe overall saw its warmest summer on record in 2022, and record high tempera-
tures were measured in several countries. From the beginning of the growing period in
March until the middle of September, long episodes with either high-pressure systems over
Europe or anticyclonically oriented large-scale weather patterns dominated. The former
led to extended periods of dry and sunny weather, causing prolonged heat and drought
conditions in wide areas of Europe [67]. The latter weakened or re-directed moist distur-
bances, so that they either reached Europe strongly attenuated or even bypassed large parts
of Europe. The year was, on average, 1.83 K warmer than the reference period 1961-1990.
Nevertheless, compared to 2021, the spatial variability of the temperature anomalies is
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larger. While Western and southwestern Europe, as well as northwestern Russia, were
clearly warmer than the reference, Scandinavia and large parts of Eastern Europe faced a
smaller warm anomaly. Cold anomalies were not found over continental Europe. Drought
affected much of Europe throughout the year 2022 [67]. In spring, precipitation and soil
moisture deficits affected broad regions of Europe (apart from the Iberian Peninsula). The
drought conditions reached a peak at the beginning of August. On average, large parts of
Europe received below-average precipitation amounts, making 2022 the fourth dry summer
in five years after three drought years in 2018, 2019, and 2020. The largest precipitation
deficits were found in southern France, and it was the fourth year with a dry anomaly
in a row for the Iberian Peninsula. However, several locations in Southern Europe faced
heavy precipitation and flooding events, but none of them were close to the in situ network
locations chosen for this study, or they occurred outside the principal growing season, such
as the heavy rainfall events in over eastern and central Spain in November 2022.

2.4. Domain and Sub-Region Characteristics

Europe is characterized by a large diversity in climates and eco-regimes [69]. They
range from an Arctic climate in northern Scandinavia over an oceanic climate, which is
influenced by the North Atlantic Current at the Atlantic coast from Portugal to Norway,
and continental climates in Eastern Europe to a Mediterranean climate in the south, where
the Mediterranean Sea provides moisture for precipitation mainly during the winter season
and which is impacted by subtropical winds. Between Scandinavia and Central Europe, the
Baltic Sea provides maritime climates in the lowlands. This section introduces the diverse
conditions, the networks, and stations chosen for reference measurement.

The focus region, Western Europe, covers the entire Iberian Peninsula and southern
France (see Figure 1) and hosts three soil moisture networks, which are frequently used for
the validation of remotely sensed soil moisture: the REMEDHUS network in Central Spain,
as well as the SMOSMANIA network in southern France and the XMS-CAT network in
northern Spain surrounding the Pyrenees. Additionally, it includes the ICOS station Bilos
(listed under Western Europe—Rest). Most of the sub-region has a continental semi-arid
Mediterranean climate [70], which is characterized by warm temperatures, low summer
precipitation, and a weak buffering influence of the Atlantic Ocean [69,71]. REMEDHUS
is considered one of the core validation sites for soil moisture globally [26]. The network
is in the Duero Basin, which is an agricultural area with mostly rainfed crops [70] and
mainly sandy soils [72]. The SMOSMANIA network is in the north of the Pyrenees.
Stations were set up under the avoidance of mountainous areas as much as possible [73]
and dedicated to cover measurements across the transect between the Atlantic coast and
the Mediterranean Sea. The Lusitanian environmental zone close to the Atlantic coast
experiences higher oceanicity, warm to hot temperatures, and more precipitation, which
usually results in sufficient water availability. Stations close to the Mediterranean Sea
experience a Mediterranean climate. All SMOSMANIA stations are located over formerly
cultivated fields, which are now covered with regularly cut grassland [73,74]. The soil
textures vary between sandy soils at the Atlantic coast and the northeastern cluster of the
SMOSMANIA network, as well as rather loamy soils [74]. The XMS-CAT network was
established in the south of the Pyrenees. The climate again is Mediterranean, and the
measurement sites are located either in shrubland or between vineyards in relatively hilly
areas. Soil textures range between loam and clay loam (https:/ /visors.icgc.cat/mesurasols/
#9/42.1765/1.1132, last accessed 16 January 2025).

The stations in Central Europe (as well as those in Davos in the Alps and Hyytidld in
Finland, which are not contained in the Central Europe focus region) are part of the ICOS
network [62]. The focus region generally has flat terrain. The Atlantic climate in the west
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of Central Europe is characterized by strong ocean buffering and thus mild winters and
moist cool summers. Oceanicity decreases toward the east, causing a higher seasonality in
temperature variations. Precipitation largely occurs during the summer months [71]. The
Belgian stations are agricultural areas or forested (Vielsalm). Similarly, the German station
(Hohes Holz) is located within a forest, which itself is surrounded by crop fields.

Finally, the RSMN network in Eastern Europe is distributed across Romania. The
Romanian lowlands, where most of the considered stations are located, are dominated
by a relatively flat, steppic character, exhibiting a warm temperate, continental climate.
Precipitation mainly occurs early in the summer, which can lead to water shortage later in
the year [71]. The highest temperatures and lowest amounts of precipitation occur in the
South and East of the country [36], closer to the coast of the Black Sea. The land cover is
dominated by rainfed agricultural land use with few forests. The remaining stations are
depicted under “Europe-Rest”.

3. Results
3.1. Mean In Situ Soil Moisture and Its Drivers

Figure 1 shows the normalized median and interquartile ranges over time for each
site for 2021 and 2022. The lower median soil moisture in 2022 at all stations, except for
REMEDHUS El Tomillar, SMOSMANIA Pezenas, and XMS-CAT La Cultia d’Areu and
Ribera de Sio, reflects the overall drier conditions in 2022.

The REMEDHUS exhibits the driest conditions across all regions in both years.
The stations show absolute median volumetric soil moisture contents ranging between
0.006 m*m 2 and 0.23 m®m ™2 in 2021 and between 0.003 m*m > and 0.18 m*m 3 in 2022
(see Figure A1). The lowest median volumetric soil moisture contents occur at the stations
with the highest sand fractions (El Coto, El Tomillar, Las Brozas; see Figure A2), and the
higher median soil moisture contents occur at the stations with larger clay fractions (Can-
izal, Guarrati, Las Arenas) in both years. The normalized median soil moisture exhibits
values below 0.5 at all stations but Canizal, suggesting that the REMEDHUS network faced
dry (0.25-0.5) or very dry (<0.25) soil moisture conditions in 2021 (see Figure 1a). In 2022,
all stations except for Canizal showed normalized soil moisture of below 0.2, indicating
very dry soil moisture conditions. Similar behavior occurs at the SMOSMANIA and XMS-
CAT networks located around the Pyrenees. Absolute soil moisture values vary between
0.05 m3m 3 and 0.23 m3m 3 in 2021, which means mildly dry to very dry soil moisture
states across the networks, as indicated by the normalized soil moisture. In 2022, the soils
dry to a range of 0.004 m®m~—2 and 0.2 m®*m—3, which implies very dry median wetness
conditions around those networks in 2022. In Central Europe and Eastern Europe, all
stations show mildly dry to mildly wet soil wetness (the normalized median soil moisture
of the stations varies between 0.43 and 0.67) in 2021. Analogously to the other networks,
soils are drier in 2022, with normalized median soil moisture ranging between 0.17 and 0.47.

3.2. Comparison of Average Soil Moisture Between In Situ Measurements and Cell Data

Here, we examine differences in the median soil moisture content and soil wetness
index between the in situ measurements and the cells of the gridded data, where each
station is located. Figure 2 shows the median absolute soil moisture content plotted
against the difference between the median of the respective gridded cell and the me-
dian of in situ measurements of each station for the soil moisture contents. In contrast,
Figure 3 displays normalized soil moisture, indicating the respective soil wetness index.
Both ECMWEF and SMAP DCA overestimate soil moisture contents at most stations (positive
difference), in particular for drier soils. The wet bias in the ECMWEF operational analysis is
stronger (2021: 0.111 m3m~—3;2022: 0.114 m3m—3) than in SMAP DCA (2021: 0.055 m®m~3;
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2022: 0.053 m®m~2) (see Figure 4a). The maximum difference can reach up to 0.29 m>m—3

for ECMWF at an XMS-CAT station and up to 0.23 m*m~3 for SMAP DCA at the Finnish
station in 2021. The RMSDs and ubRMSDs of SMAP are smaller than those of the
ECMWEF (see Figure 4c,d).
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Figure 2. Median station soil moisture plotted against the difference between the median of the
in situ measurement and the median of the ECMWF time series in 2021 (a) and 2022 (b). Subplots
(c,d) show the same for the difference in medians between in situ and SMAP DCA. The different

markers denote the region and network of each station.
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Figure 4. Detailed statistics of the time series. (a) Differences in absolute soil moisture content
[m3m—3]; (b) difference in normalized soil moisture; (c) RMSD of the absolute soil moisture contents;
(d) unbiased RMSD of the absolute soil moisture contents. The colors indicate the dataset. Blue:
ECMWEF vs. in situ 2021, pale blue: ECMWE vs. in situ 2022, red: SMAP DCA vs. in situ 2021, pale
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plus sign indicates outliers.

A comparison of the soil types classified in the model, the grain size distribution
in the soilGrids dataset used in SMAP, and the grain size distribution assessed at each
station revealed discrepancies (see Figure A2) between the soil types of the in situ, model,
and remote sensing data. This mismatch implies differences in the dynamic ranges of the
datasets and systematic shifts that can be attributed to varying lower and upper limitations
for the soil moisture values. Additionally, the ecLand model applies the permanent wilting
point as a lower limit assumption, whereas in reality, soil moisture values can reach
below the wilting point, extending down to the residual moisture content. To account for
these differences, we normalized the time series data using their respective minimum and
maximum values over both vegetation periods.

Comparing Figures 2 and 3 shows that the discrepancies in soil types and lower and
upper limit assumptions explain parts of the wet errors, as points appear to scatter more
around the zero line (see Figure 3) and show reduced systematic trends. The decrease is
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particularly evident at the stations in Central Europe—Rest, and Eastern Europe. In the
latter case, the majority of points get closer to zero in both years, indicating the removal
of a systematic bias between the soil moisture values at those sites through normalization.
At the sandy stations of the REMEDHUS network, the normalized soil moisture reports
too dry soil wetness indices in SMAP, whereas the ECMWEF data cluster more around
the zero line. In the SMAP data, the absolute error of the normalized data appears even
larger than the non-normalized soil moisture content due to scaling to the dynamic range.
Highlighting the impact of differences between soil types, the stations with the driest
signals (both in absolute and normalized terms) show the biggest positive differences,
which can also be reinforced due to sandy soil type (see Figure A2, e.g., for REMEDHUS),
and the tendency decreases with increasing in situ soil moisture (see Figures 2 and 3).
This behavior is consistent for both ECMWEF and SMAP for 2021 and 2022, regardless
of the region or network. The data points of the different networks and regions nicely
cluster around diagonals, with the strongest clustering in REMEDHUS. This rather sys-
tematic pattern may indicate that the differences are governed by the value distribution of
the observations.

3.3. Comparison of Temporal Variability of Gridded Cells Against In Situ

Figure 5 shows statistical measures comparing ECMWF and SMAP against in situ
averaged over the focus regions and networks, respectively. Figures 6 and 7 present compar-
isons of ECMWEF and SMAP time series for the individual stations. The left column of each
panel depicts the points for 2021, and the right column depicts the points for 2022. Those
plots visualize the comparisons of the decomposed statistics of the soil moisture signals in
terms of the correlation coefficients of the seasonality between in situ measurements and
the respective gridded dataset in the top row and those of the short-term fluctuations in
the bottom row.

The gridded datasets show several common differences in their deviations from the
in situ measurements. Firstly, both gridded datasets show high similarity in the timing
of the temporal dynamics with the in situ measurements. Deviations between the tem-
poral correlations of ECMWF or SMAP with in situ (see Figure 5a) are negligible. The
magnitudes of temporal variability represented by the IQR of the time series of absolute
soil moisture contents are overestimated at 33/42 for ECMWF and 23/42 of the stations
for SMAP (see Figure 5c¢). The largest and statistically significant overestimations of the
temporal variability (p < 0.05) occur in Eastern Europe and SMOSMANIA for both growing
periods in ECMWEFE (see Figure 5¢). In Eastern Europe, the observed temporal variability
is low due to both weak seasonality (see Figure 5e,f) and weak short-term variations (see
Figure 5g,h). Both SMAP and the ECMWF operational analysis show stronger seasonality
and short-term variability (potential reasons will be further discussed in Section 3.4.2). Af-
ter normalization, the IQRs become more aligned. None of the sub-regions and vegetation
periods show statistically significant differences in the comparison of ECMWEF with in situ
data. In comparison with SMAP, REMEDHUS in 2021 and Central Europe in 2022 show
significantly drier soils than measured in situ. The median nIQRs of all regions drop below
1 everywhere apart from Eastern Europe (see Figure 5c,d), which indicates that the over-
estimation of the temporal variability in the gridded datasets can be in part attributed to
differences in the dynamic ranges for normalization. The stations in Central Europe form an
exception regarding the alignment due to normalization in 2022, and the soils show a signif-
icantly drier state, though the absolute soil moisture contents were in a similar range in all
datasets (see Figure 5c,d).
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Figure 5. Statistics of the time series temporal variability. (a) Pearson correlation coefficient;
(b) seasonality strength; (c) interquartile range of the full time series of soil moisture content;
(d) interquartile range of the full time series of the normalized soil moisture; (e) interquartile range of
the seasonality of soil moisture content; (f) interquartile range of the seasonality of the normalized
soil moisture; (g) median absolute deviation of short-term fluctuations—soil moisture content; and
(h) median absolute deviation of short-term fluctuations—normalized soil moisture. The colors
indicate the dataset. Blue: ECMWF 2021, pale blue: ECMWEF 2022, red: SMAP DCA 2021, pale red:
SMAP DCA 2022, in situ 2021: dark orange, in situ 2022: pale orange. In (a), the colors represent
the respective dataset compared against the in situ time series of the same year. Dashed whiskers
represent 2.7 times the standard deviation and plus sign indicates outliers.
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Figure 6. Polar plot depicting the similarity of the full time series of the in situ observations with the

respective cell in the ECMWEF operational analysis. (a) Depicts the comparison in terms of the nor-

malized interquartile ranges and the temporal correlation coefficients of the full time series between

ECMWEF and the in situ observations for the growing period 2021. The different markers indicate

the focus region. In Western Europe, the markers additionally distinguish the three networks. The

colors represent the Pearson correlation coefficient between the seasonality of the in situ observation

and the cell from the ECMWEF analysis. (b) Shows the same data points as (a), but they are colored in

terms of the correlation between the time series of the short-term variability from in situ and ECMWE

analysis. (c,d) Show the same configuration but for the growing period 2022.

A second common feature is that the gridded datasets consistently underestimate

the seasonality strength, with larger underestimations in SMAP than in ECMWF in both

years (see Figure 7b). In the in situ data, the seasonality constitutes the larger part of

the temporal variability, indicated by a median seasonality strength of 0.71 across all in

situ measurements in 2021 and 0.88 in 2022. This reflects the typical intra-annual climatic

changes in the extratropics and high latitudes.
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Figure 7. Polar plot depicting the similarity of the normalized full time series of the in situ observa-
tions with the respective cell in SMAP DCA. (a) Depicts the comparison in terms of the normalized
interquartile ranges and the temporal correlation coefficients of the full time series between SMAP
and the in situ observations for the growing period 2021. The different markers indicate the focus
region. In Western Europe, the markers additionally distinguish the three networks. The colors
represent the Pearson correlation coefficient between the seasonality of the in situ observation and the
cell from SMAP. (b) Shows the same data points as (a), but they are colored in terms of the correlation
between the time series of the short-term variability from in situ and SMAP. (¢,d) Show the same
configuration but for the growing period 2022.

The seasonal trends of all soil moisture time series are mostly in the same range
(see Figure 5e,f) and correlate well in both ECMWEF and SMAP, which is indicated by
the orange and red colors of the markers in the top rows of the Taylor diagram panels
denoting correlation coefficients > 0.7 (see Figures 6a,c and 7a,c). In contrast, short-term
variability is less correlated (blue and green markers showing low to moderate correlations;
see Figures 6b,d and 7b,d). The IQR of the time series in the gridded dataset suggests
too large short-term variations across the stations (see Figure 5g,h). This is a consistent
feature in all sub-regions, which is also present after normalization (see Figure 5g,h).
The overestimation of the short-term variability leads to a shift towards lower season-
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ality strengths in the gridded datasets in all regions, but particularly in XMS-CAT and
Central Europe.

This leads finally to the common differences between the years. The dry and hot
growing period of 2022 is characterized by strong seasonality, weak short-term fluctu-
ations, and thus a large seasonality strength across all focus regions and networks in
the in situ measurements (see Figure 5c-h). The warm and humid growing period in
2021 showed lower seasonality but stronger short-term fluctuations, which resulted in a
weaker seasonality strength. The larger seasonality strength in 2022 could only be captured
by the gridded products at the REMEDHUS and SMOSMANIA stations (see Figure 5b). At
the XMS-CAT and Central Europe stations, the lower seasonality strength observed in 2022
compared to 2021 in the gridded datasets can be attributed to a combination of too weak an
increase in seasonality and a concurrent rise in short-term variability (see Figure 5e-h). In
Eastern Europe, the gridded datasets show a weaker seasonality in 2022 than in 2021 and
minor changes in the short-term variability. Both datasets show mostly larger temporal
correlations and a lower overestimation of the IQR in 2022.

Nevertheless, there are also differences in the deviations of the gridded datasets from
in situ measurements. The overestimation of the magnitude of temporal variability of the
absolute value time series is stronger in ECMWF than in SMAP (see Figures A3 and A4).
In contrast, the evaluation of the ECMWEF data overall shows larger temporal correlations
with the in situ measurements, implying slightly better timing of the temporal dynamics
(see Figure 5a). The exception in both cases is the stations in Central Europe.

3.4. Time Series
3.4.1. Dry Conditions and Dry Down Phase

This section explicitly examines the representation of dry down and drought periods
based on the Concejo del Monte station from REMEDHUS (see Figure 8) and demonstrates
the impact of the lower and upper limit assumptions in the gridded dataset on the absolute
soil moisture time series. The vegetation around the station is rainfed crops, and the
dominant vegetation type in the IFS model is cropland. The area covered by the grid cell in
the model and the satellite product has a 96% crop cover based on Sentinel-2 data [75]. The
homogeneity in land cover allows better comparability between the in situ measurements
and the gridded products. The station was exemplarily chosen as it faced persistent dry
periods where the top soil moisture content approached minimum soil moisture values and
fell below the wilting point in the in situ measurement. For this particular station, the IFS
data was closest to the in situ measurement during wet phases, whereas SMAP performed
better in the dry down and dry phases. Meteorological measurements were provided by
the site hosts for four weather stations in the REMEDHUS area [76].

In 2022, the station experienced a long dry down phase as a consequence of a lack of
precipitation events between the end of April and the beginning of August (see Figure Se).
Both gridded datasets capture a dry down phase. However, SMAP was too dry in the
spring months, approaching the in situ measurements during the dry phase. ECMWEF
was too wet in spring, converged with the measurements in May, and then it diverged
again as it was approaching its parameterized permanent wilting point ([51], Table 8.9).
This assumption prevents the model from drying beyond the wilting point through plant
transpiration. Soil evaporation allows further drying from non-vegetated areas until the
residual soil moisture, leading to a minimum soil moisture for the grid cell corresponding
to the vegetation fraction-weighted average of the wilting point and residual soil moisture
content of the respective soil type [77]. In theory, the model could be initialized below
the wilting point through the data assimilation framework of the IFS. The permanent
wilting point is given for each soil type, and the soil texture map provides the info of which
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type prevails in the cell. Cells covering the locations of the REMEDHUS stations have the
medium soil texture type in the IFS soil texture map with a permanent wilting point of
0.151 m®m 3. Since the cells containing REMEDHUS stations mostly contain crops having
a vegetation fraction of 90%, this is almost the value at which the soil moisture content
evens out in the ECMWEF time series. Similarly, a hard-coded value range exists in the
SMAP product, which provides a relaxation of the boundary conditions for the retrieval
algorithm. This is set to 0 m3m~2 as the lower limit and 0.6 m3®m~2 as the upper limit
independently of the soil texture [44]. Despite this difference, the time series show large
agreements in the seasonality and the short-term variability (see Figure 8c,d,g,h).

REMEDHUS Concejo del Monte

Temperature [°C]
Precipitation [mm]
[o-w (] aimsiow 10s

o

—— in situ SM time series = = in situ SM seas. trend = in situ T time series = = in situ T seas. trend  wlll in situ P

Soil Moisture
Normalized

Soil Moisture

= in situ SM = = in situ SM seas. trend =—= ECMWF SM = = ECMWF SM seas. trend = SMAP SM = = SMAP SM seas. trend

_g 0.2, T T T T T T 8| T T T 0.2
S - 0.1»(d) /,N { . »(h) 401
2 , b\f\ JNAN Fa N Bels aclo DM pn A s / o
EE SsY™ W ¥ N S| VN e
2 T - = =01
<
» 'OMZa:(:n A;;m M;y June JL;Iy Auglus( Septémber - Ma:cn A;;rll M;-.y Ju‘ne JL:I\/ Am_;ust Seplémner -0
= in situ short-term fluctuations SM === ECMWF short-term fluctuations SM = SMAP short-term fluctuations SM
2021 2022
ECMWF SMAP ECMWF SMAP
Mean Bias 0.022 -0.024 0.057 -0.04
ubRMSD 0.046 0.042 0.033 0.041
Corryig 0.74 0.79 0.92 0.87
Corryrend 0.71 0.92 0.96 0.97
COIMghort-term 0.74 0.62 0.47 0.39

Figure 8. Decomposed 3-day running mean time series of soil moisture and air temperature, as well as
daily accumulated precipitation, at the REMEDHUS station, Concejo del Monte. The top row shows
the 3-day running mean in situ soil moisture (black, solid) and temperature (purple, solid), their
seasonality (dashed), and daily accumulated precipitation. The second row shows the normalized
soil moisture time series of the in situ station (black), the cell in ECMWF (blue), and SMAP DCA
(red). The third row shows the in situ soil moisture time series and seasonality plotted against those
of the cells in ECMWE (blue) and SMAP DCA (red), containing the in situ station. The bottom row
shows the short-term variability of all time series plotted against each other. The left plots show the
growing period of 2021 (a—d), and the right plots show the growing period of 2022 (e-h).

3.4.2. Variability Overestimation in Eastern Europe

As reported in the previous sections, the largest deviations in representing the soil
moisture dynamics in gridded datasets occur in Eastern Europe. Both gridded datasets
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overestimate the absolute soil moisture content and the temporal variability compared to
the in situ measurements. This chapter evaluates factors influencing the overestimation
of mean soil moisture and soil moisture dynamics in Eastern Europe based on the station

Satu Mare (see Figure 9).
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Figure 9. Decomposed 3-day running mean time series of soil moisture and air temperature, as well
as daily accumulated precipitation, at the RSMN station, Satu Mare. The top row shows the 3-day
running mean in situ soil moisture (black, solid) and temperature (purple, solid), their seasonality
(dashed), and daily accumulated precipitation. The second row shows the normalized soil moisture
time series of the in situ station (black), the cell in ECMWF (blue), and SMAP DCA (red). The third
row shows the in situ soil moisture time series and seasonality plotted against those of the cells in
ECMWEF (blue) and SMAP DCA (red), containing the in situ station. The bottom row shows the
short-term variability of all time series plotted against each other. The left plots show the growing
period of 2021 (a—d), and the right plots show the growing period of 2022 (e-h).

The in situ measured soil moisture content barely reacts to the meteorological condi-
tions in 2021 and 2022, shown by weak seasonality and low peaks following precipitation
events (see Figure 9a,d). Measured short-term variability is low, which is a common feature
among all the Romanian stations. The gridded datasets both show a stronger seasonality
(see Figure 9b,e) and amplified short-term variability (see Figure 9¢,f). The peaks and lows
of the time series mainly have the right timing, which is supported by intermediate to
high temporal correlations (see Figure 5a), but the amplitude of the fluctuations is severely
overestimated (see Figure 9d,h). The latter is also shown by statistically significantly larger
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median absolute deviations both in the absolute soil moisture content and in the normalized
soil moisture.

Comparing the response of the soil moisture content to the occurrence of precipitation
events between the Concejo del Monte (see Figure 8a,e) and the Satu Mare station (see
Figure 9a,e) results show that the soil moisture content at the Romanian station exhibits
a lower sensitivity to precipitation events in the measured time series. One possibility is
that the local sensor calibration is incorrect, which could be indicated by the measured soil
moisture in general being below the expected wilting point for this type of soil. The soils
at many of the Romanian stations have comparatively high fractions of clay and silt and
should, therefore, have an observed range of higher soil moisture. One factor on the model
side is the soil texture classification and the parameterization of the soil type. In ECMWE,
soils are classified as medium or medium-fine in the grid cells hosting Romanian stations
and, therefore, have medium to high porosity. At two of the four stations, including Satu
Mare, the soil texture does not lie in the span of the classified soil type in ECMWEF (see
Figure A2). Differences in the soil texture also influence, e.g., the hydraulic conductivity
and the infiltration rate to the soil at these stations, which are calculated in dependence
on the soil texture using pedotransfer functions [78]. In ECMWE, the coarser textures
have higher hydraulic conductivities and higher infiltration rates than finer ones [50]. It
is possible that a mismatch between the model’s local soil texture and that at the station
could lead to too much water infiltrating the soil instead of running off at the surface.
With the Hortonian runoff formulation, the land surface scheme of the IFS system uses an
excess infiltration formulation to derive runoff by balancing the rates of precipitation and
melting with the infiltration rate [79]. Amongst other things, the infiltration rate of soils is a
function of the soil water content and decreases with an increasing degree of saturation [80].
Consequently, an initially dry soil with a relatively coarse soil texture will have a high
infiltration rate and soil conductivity, leading to rapid soil wetting in the modeled top
layer and relatively weak losses of water through runoff. In contrast, finer soils, like loams
and clays, have lower soil conductivity and, in reality, can face surface sealing, which
would promote surface runoff [51]. For the stations with a mismatch between local and
parameterized soil texture, this could, in turn, lead to an increased storage of water in
the soil and higher soil moisture dynamics at the affected stations. This would cause an
overestimation of the short-term fluctuations and also the median soil moisture content
itself. Another potential influence in the IFS is the coupled data assimilation scheme, which
may lead to an artificial increase in soil moisture due to atmospheric water demand. In any
case, this highlights that a mismatch in the assumptions of the soil texture information can
lead to significant differences between the two soil moisture products.

4. Discussion

All assessments in this study were conducted for the wet growing period in 2021
and the drought-affected growing period in 2022 across European measuring stations.
Firstly, it must be acknowledged that in situ soil moisture is measured at the point scale,
whereas both the model and the satellite remote sensing products represent a spatially
integrated value for the respective resolution cell. Unless one has a representative soil
moisture monitoring network to properly reflect the mean behavior of the grid area, which
would be prohibitively expensive to achieve due to the spatial heterogeneity of the soil,
uncertainties in the direct comparison among the datasets need to be considered [37].
Furthermore, differences in the actual vegetation at the station and the dominant vegetation
types defined for the grid cell can influence the soil moisture dynamics, in particular dry
down behavior, due to differences in the vertical root distribution and the consequent plant
water uptake from different soil depths. While vegetation types with shallow roots, such as
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most grasses, extract almost all their required water from the topsoil, deciduous forests can
also extract water from deeper soil layers, for example [51]. Large plant water uptake from
the topsoil intensifies the top-layer dry down and thus contributes to discrepancies in the
topsoil moisture timeseries under drought conditions. Another source of uncertainty for
the comparison is the slightly different soil moisture sensing depths. In situ observations
are measured at discrete soil depths between 4 and 6 cm under the soil surface, assuring
the probe is sufficiently covered by topsoil. The modeled values are integrals for one layer
between 0 and 7 cm, and the satellite remote sensing retrievals at the L-band are mostly
sensitive to soil moisture until ~5 cm, although Feldman et al. pointed out that at the
L-band frequency, remote sensing-based soil emission can carry information from deeper
depths if connected [39]. Though these differences are not that large in absolute cm, the
main uncertainty arises from the circumstance that modeling and remote sensing represent
integral values, which also include the top 1-2 cm reacting more sensitively to, e.g., light
precipitation. For this reason, and to improve comparability with remote sensing products,
ECMWF’s next-generation land surface model, ECL, thus introduced a higher vertical
discretization of the soil [58]. The in situ probes measured at a discrete depth below these
1-2 cm can cause weaker variability compared to the integrated soil moisture. Hence, the
limitation of the findings discussed in this study is the assumption that soil moisture does
not change drastically within the shallow soil layer between 0 and 7 cm (i.e., in the order of

0.3 m3m™3

or more). However, following the assumption that anomalies account for these
differences (spatial coverage, measuring depth), we normalized the data and compared
soil moisture in normalized terms (soil wetness index) in addition to the absolute value
time series for comparison against previous studies. In the end, a comparison of topsoil in
situ, model, and satellite retrievals remains the de facto standard for the assessments as
presented in this paper.

Generally, the two gridded datasets show high similarity in their temporal dynamics
and common deviations from the in situ measurements (see Figures 5-7). Ref. [34] showed
that satellite remote sensing-based products improved during the last years and show
similar temporal correlations with in situ data as the model-based data. This was attributed
to substantial improvements in the space-borne soil moisture retrievals, which were also
reported by [35]. In our study, SMAP exhibits a higher accuracy in the absolute values of
the growing periods across Europe, which is shown by consistently smaller differences
and lower ubRMSDs everywhere, except for the SMOSMANIA network in 2021 (see
Figure 4). Both gridded datasets exhibit a wet bias at most stations when comparing the
absolute values, which is, on the one hand, linked to the assumptions (e.g., wilting point
as lower limit), whereas the top soil can dry out, reaching the residual soil moisture in
the end. Additionally, the soil moisture content responds to coupled data assimilation by
compensatively adding or removing soil moisture when and where needed in ECMWE,
which can lead to soils being too wet in the vegetation period [81], for models with too
little transpiration that cannot meet the atmospheric water demand.

Interestingly, grid cells containing stations with low amounts of soil moisture show
positive differences, whereas stations with higher amounts of moisture also show negative
differences in both ECMWF and SMAP (see Figure 2), which was also found by [31] for
several reanalysis datasets. The inverse proportionality of in situ soil moisture and the
difference between gridded data in situ measurement is present in both datasets and within
all focus regions and networks during both growing periods. The same signal, but more
moderate, is also shown in the normalized soil moisture comparisons (see Figure 3). This
implies that stations with generally drier soils are misrepresented in the model as being
too humid, whereas stations with moderately humid conditions tend to be too dry in the
gridded datasets. One factor in this could be the scale mismatch, where model and satellite

https://doi.org/10.3390/1s18030445


https://doi.org/10.3390/rs18030445

Remote Sens. 2026, 18, 445

24 of 34

retrieval pixels generally have the dominant soil type as being the representative one, which
is usually closer to an average condition under the assumption of homogeneity within
the pixel.

The performance of timing is comparable (degree of temporal correlation of SMAP
and ECMWF with in situ). The correlations between ECMWF and in situ are, on aver-
age, slightly higher, but differences between the correlations of ECMWF and SMAP with
in situ are statistically non-significant (see Figure 5a). Good agreement in timing was
also found in previous studies for both remote sensing and model-based soil moisture
products [28,30,31,34,53]. Our comparisons add the magnitudes of the temporal variability
(nIQR), which is predominantly overestimated for the absolute soil moisture contents
but shows a similar degree or an underestimation for the variability in the soil wetness
indices (normalized soil moisture). The stations in Eastern Europe stood out with, in part,
large overestimations of the temporal variability in absolute and normalized terms in both
gridded datasets compared to the in situ measurements (see Figures 6 and 7). Parts of the
deviations may be associated with the missing calibration of the soil moisture sensors at
the measurement sites. However, several studies (e.g., [31,36]) also showed that retrievals
may be challenging over clay-rich soils as present at the stations in Eastern Europe [82].

The tendency towards higher temporal correlations and lower ubRMSD in 2022 demon-
strates better performance in periods with low soil moisture due to a lack of short-term
variability in the time series. In 2022, the persistent heat and drought conditions forced
continuous drying and resulted in a strong seasonality, whereas the rare occurrence of
precipitation events initiated little short-term variability. Conversely, in 2021, short-term
variability mainly initiated by the occurrence of precipitation events (see Figures 8 and 9);
e.g., [83-85] contributed to a larger proportion of the temporal variability, while the sea-
sonality was weaker due to the lack of drought conditions. This suggests that in ECMWF
episodes with strong seasonality, weak short-term fluctuations can be captured better in
terms of both temporal variability and accuracy than wet periods with frequent precipita-
tion events, such as in 2021. For satellite retrievals, the situation is different compared to
the model since remote sensing retrievals are based on the measured radiometer brightness
temperatures. These are employed to estimate soil moisture by emission modeling and
data-injection model inversion. Precipitation events are indirectly recognized as changes in
the emission and reflection of the land surface because of the wetting of the soil and the
subsequent changes to the dielectric constant of the soil. However, for the model, the lack
of short-term variability due to a low frequency of precipitation events in 2022 compared
to 2021 reflects better performance of the retrieval during 2022.

Finally, we must acknowledge that the focus on only two years (2021, 2022) limits the
generalizability of our findings. We are aware that two vegetation periods cannot reflect
the full range of climate variability and thus, hydrometeorological conditions possible at
each location over Europe. The focus in this study was on two diverging years (humid
year 2021, drought-affected year 2022) to allow in-depth analyses at many stations across
Central Europe and due to the varying data availability of remote sensing-based (SMAP),
modeling (ECMWF), and in situ measurements. Another limitation for the generalizability
is the choice of only two gridded datasets. Despite common assumptions with other soil
moisture products from both approaches, the final setup of the ancillary data, such as soil
type, vegetation, topographic maps, and other assumptions (e.g., soil parameters for the
model system or the dielectric mixing model in remote sensing), produces dataset-specific
estimates of the soil moisture [30]. The next steps include, therefore, the analysis of longer
time series (including other drought events and wet years) and more datasets to verify
findings of this study and to increase our knowledge on the temporal dynamics of soil
moisture from remote sensing, modeling, and field observations.
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5. Conclusions

Accurate and spatially comprehensive soil moisture information is required for many
applications, such as agricultural management, hydrological modeling, process stud-
ies on soil moisture-climate feedback, and to accurately initialize forecasts at different
timescales [86]. The overarching goal of this study was to evaluate the level of agreement
in temporal soil moisture patterns between ECMWF operational analysis and SMAP DCA
L3 in relation to in situ measurements across European measuring stations. In order to
enable decision makers across various application fields to choose reliably, they need to
trust the temporal dynamics of soil moisture, which is achieved by comparing gridded
soil moisture products (e.g., SMAP or ECMWEF) to in situ measurements based on several
statistical parameters. Their combination is supposed to depict various aspects of the
temporal dynamics, such as timing and magnitude of variability, and disentangle short-
term variability representation from seasonality representation throughout two different
hydrometeorological seasons.

In conclusion, despite considerable advancements, particularly in remote sensing-
based soil moisture retrieval approaches during the last decade [35], there remains room for
improvement. Model parameterizations and satellite retrieval algorithms must capture the
soil moisture characteristics for a wide range of locations. Improving the accuracy of the
absolute values in the model is challenging, as errors arise from differences in the soil maps,
which cannot be easily changed in an operational system, and from non-physical increments
in the data assimilation scheme to improve the near-surface atmospheric conditions [81,87].
For the remote sensing soil moisture, errors are associated with the soil temperature and
vegetation data fed into the algorithm, which have biases themselves [88], and for all grid-
ded datasets, one needs to consider spatial representativeness errors (spatial scale gap) in
comparisons with in situ data. However, given that most stations showed overestimations
in the short-term fluctuations, which are influenced by precipitation—evapotranspiration
dynamics and vertical water movement, it appears promising to focus on this aspect. It
is assumed that mainly humid areas or stations facing humid periods benefit from an
improved representation of short-term dynamics.

Our results provide additional insights into reasons for deviations in the model- and
satellite-based representation of soil moisture temporal dynamics in models and remote
sensing from observations. By acknowledging differences in the comparability of the soil
moisture at different temporal scales and under different hydrometeorological conditions,
it is possible to develop more effective strategies for informing model-based and satellite-
based approaches with each other, e.g., via data assimilation in sub-seasonal to seasonal
forecasts or as ancillary data to the retrieval algorithm. Further research can build on these
findings and focus on the evaluation of spatial patterns of soil moisture. Ultimately, the
choice of soil moisture data should be made with caution, considering ancillary information
to unlock the full potential of soil moisture information for the intended analysis and
respective application.

Complementary to these temporal dynamics analyses, this study builds the foundation
for comparisons of spatial patterns between ECMWEF and SMAP soil moisture information
in a companion study on spatial patterns [89].

Author Contributions: Conceptualization, L.]. and T.J.; methodology, L.J., D.C. and EM.H.; software,
L.J.; validation, L.J.; formal analysis, L.J.; investigation, L.J.; data curation, L.]., H--S.B., D.C., AF,,
FM.H. and G.P,; writing—original draft preparation, L.].; writing—review and editing, L.]., H.-S.B.,
D.C., AE,EM.H,, G.P. and TJ,; visualization, L.J.; supervision, T.J. All authors have read and agreed
to the published version of the manuscript.

https://doi.org/10.3390 /1518030445


https://doi.org/10.3390/rs18030445

Remote Sens. 2026, 18, 445

26 of 34

Funding: Lisa Jach acknowledges funding from the Anton and Petra Ehrmann-Stiftung Research
Training Group “Water-People-Agriculture” for the guest research stay at DLR Oberpfaffenhofen.
Florian Hellwig is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—514721519 by the project “Remote sensing of vegetation canopy properties: States &
spatio-temporal dynamics” as part of the DFG Research Unit 5639: Land Atmosphere Feedback Ini-
tiative (LAFI). David Chaparro has been funded by the projects “la Caixa” Junior Leader Fellowship
LCF/BQ/PI25/12100008 (lead: D. Chaparro) and LCF/BQ/PI123/11970013 (lead: O. Binks) and by
the project H2020 FORGENIUS (Improving access to FORest GENetic resources Information and
services for end-USers) #862221.

Data Availability Statement: The in situ measurements from the networks (e.g., ICOS, ISMN) and
SMAP data are publicly available via the provided references. ECMWEF operational analyses are
available upon request from ECMWE.

Acknowledgments: The authors sincerely want to thank Christoph Riidiger, leading the Land
ModellingLand Modelling team within the Research Department (Earth System Modelling section)
of ECMWE, for his very valuable comments, which substantially improved the manuscript. No
generative Al was used for generating this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AMSR2 Advanced Microwave Scanning Radiometer
ASCAT Advanced Scatterometer

DCA Dual Channel Algorithm

ECV Essential Climate Variable

ECMWF European Center for Medium-range Weather Forecasts
ESA European Space Agency

EUMETSAT  European Organisation for the Exploitation of Meteorological Satellites
4D-Var Four-dimensional Variation Assimilation

ICOS Integrated Carbon Observation System

IFS Integrated Forecast System

IOR Interquartile Range

ISMN International Soil Moisture Network

LES Large-Eddy Simulation

NASA National Aeronautics and Space Administration
MetOp Meteorological Operational Satellite

NDVI Normalized Differential Vegetation Index
SMAP Soil Moisture Active Passive

SMOS Soil Moisture Ocean Salinity

SYNOP Surface Synoptic Observations

ubRMSD Unbiased Root Mean Square Difference

UTC Coordinated Universal Time

WMO World Meteorological Organization
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Figure A1. Absolute temporal median of in situ soil moisture [m® m~3] in the top soil layer (0-6 cm)
of each station of the growing periods (March-September) (a) 2021 and (b) 2022. Coloring of the
markers denotes the median soil moisture content, whereas the marker size indicates the temporal
interquartile range over the growing period. The background map shows the elevation based on the
EU-DEM 25. In situ measuring stations of the following networks are shown in A: REMEDHUS, B:
RSMN, C: ICOS, and D: XMS-CAT, SMOSMANIA, and ICOS.

https://doi.org/10.3390 /1518030445


https://doi.org/10.3390/rs18030445

Remote Sens. 2026, 18, 445 28 of 34

100 ,
medium fine 7/ \ o medium
/ NS
0/ \
A A\ &
\
« ) \\,.? A /
70// clay \ / clay
N / / \ § O}
a / \ Z
i 60/ \ ‘g
F ¢ \
& \& %
& %Y silty %
S /sandy ® cay \ o 2
40 / clay \

/

clay loam

,x"/sandy clay loam
/

3 \
AVAVEVA VA silty \

silt loa

k2
- Sand Separate, % - Sand Separate, %
= 18Bios @ 4 Condom @ 7Savenes B 10 LaCultiadAreu B tHohesHoz @ 6ConcejoDeivonte @ 11 LasArenas W 16 Darabani @ 21MazanAbbaye
VW 2StMae @ 5C ognac Il 88 [ Y 2Hyytsoioe @ 7EICo0 @ 12LasBodegas W 17lasi @ 22Montaut
W 3Siatea @ 6 Nardonne B 9EBoixer B 3tonzee @ sETomitar @ 13LasBrozas ® 18Bamas @ 23 Mouthoumet
® <cConzal @ 9Guama @ 1iLes y ® 1c or @ 24Pezenas
® scoareoro @ 10LaCrzDeElias @  15Lasvacas @ 20 LaGrandCombe @ 25 SaintFeiixdeLauragais
26 Vieisaim
B 27 ColidePaller
coarse \ o fine B 28LosCoscolisPessonada
.\.\ /
\ g
\,& // )
80, \ 80 /
/ \ « // \ S
\ 70 \
clay \ o / clay \
\ N D AR 2 <
\ Z e \ Z
\ < > <9
% $ %
AN S & Y
silty % & silty %
clay \\ ) 2 & sandy clay @ 2
N clay
silty o
clay loam \clay loam \ N : W" C'ay loam \'\
/ nndy clay Ioam =
\& / \®
M toam AN silt loam
\
\
silt § .
2 % 2 »® ©w 2 > ® B % » 2
- Sand Separate, % <« Sand Separate, %
I 1 Maasmechelen @ 2 Sabres 1 Davos

Figure A2. Soil textures for the different stations. The markers indicate the different regions or
networks. The stations are grouped according to the soil texture class implemented in the respective
cell in the ECMWEF operational analysis. The classes are based on the FAO soil texture classification,
and the polygon in each triangle denotes the area the respective FAO soil texture class covers [60].
The shaded gray area is the texture space covered by the ECMWEF soil texture.
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Figure A3. Polar plots depicting the similarity of the full time series of the absolute soil moisture
contents of the in situ observations with the respective cell in the ECMWF operational analysis. (a)
Depicts the comparison in terms of the normalized interquartile ranges and the temporal correlation
coefficients of the full time series for the growing period 2021. (b) Shows the same data points as
(a) but colored in terms of the correlation between the time series of the short-term variability. (c,d)
Show the same configuration but for the growing period 2022. The different markers indicate the
focus region. In Western Europe, the markers additionally distinguish the three networks. The colors
represent the Pearson correlation coefficient between the seasonality of the in situ observation and
the cell from the ECMWEF analysis.
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Figure A4. Polar plots depicting the similarity of the full time series of the absolute soil moisture
contents of the in situ observations with the respective cell in SMAP DCA. (a) Depicts the comparison
in terms of the normalized interquartile ranges and the temporal correlation coefficients of the full
time series for the growing period 2021. (b) Shows the same data points as (a) but colored in terms of
the correlation between the time series of the short-term variability. (c,d) Show the same configuration
but for the growing period 2022. The different markers indicate the focus region. In Western Europe,
the markers additionally distinguish the three networks. The colors represent the Pearson correlation
coefficient between the seasonality of the in situ observation and the cell from SMAP DCA.
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