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STRUCTURE
Maps of long-term soiling losses in Europe considering a partial 
cleaning effect by rain



1. Motivation and Introduction
Long-term soiling loss modelling & cleaning by rain
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Ilse et al. (2019)

➢ Soiling: pollutants accumulated on PV panels

➢ Soiling losses: Loss in PV energy production due to soiling accumulation

➢ Importance of long-term soiling losses estimation → Are there sites where natural

cleaning is sufficient and operator cleaning is not needed?

➢ Soiling models can estimate long-term soiling losses
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Ilse et al. (2019)

1. Motivation and Introduction
Long-term soiling loss modelling & cleaning by rain
➢ Soiling models can estimate long-term soiling losses

BUT

• Natural cleaning of PV panels by rain normally modelled using a threshold approach

• Depending on soiling type, rainfall often results in partial cleaning

• Low rain sums can also have a cleaning effect

• Persistent sticky soiling non-removable by rain is not considered

• Long-term soiling also affected by bird droppings, lichen, algae, fungi, mosses

• Soiling models have high uncertainty: World-wide validation of soiling models showed avg. MAD~100% & 

up to 400% deviations (Pelland et al., 2018)

Daily rain sum ≥ threshold → PV panel perfectly cleaned

Daily rain sum < threshold → No cleaning effect is considered 
Thresholds in literature: 0.3 to 

20 mm/day

1st step: Enhance soiling model 

and calibrate with long-term soiling data for exemplary 

soiling types



2. Soiling measurements: EAPP meteo stations
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Reference cells

Tanzania

Uganda

Kenya

Google Earth

• Long-term continuous soiling measurements without cleaning

required

• East African Power Pool (EAPP) stations initiated by World Bank 

with funding from Energy Sector Management Assistance Program 

(ESMAP) 

• performed by GeoSUN Africa from ~15.12.2019 to 31.12.2021

• 3 tilted reference cells for soiling measurement

• “clean” reference cell (daily cleaned) 

• “dirty” reference cell (not cleaned during campaign period)

• “dirty, monthly cleaned” (reference cell cleaned once per month) 
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• “Clean” reference cell (daily cleaned) and “dirty” reference cell (no cleaned during campaign period) used to 

estimate the natural variability of the soiling losses during the campaign period

• Observations feature partial natural cleaning and built-in of persistent soiling

Tanzania

Uganda

Kenya

Google Earth

2. Soiling measurements: EAPP meteo stations



2. Soiling models:
    Original HSU model  
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• Daily accumulated mass on PV panel

𝑚𝑖 =
෍

𝑘=𝑖0

𝑘=𝑖

𝑣𝑑 ∙ 𝑃𝑀10_𝑘 ∙ 𝑡 ∙ cos 𝜃  𝑖𝑓 𝑑𝑎𝑖𝑙𝑦 𝑟𝑎𝑖𝑛𝑠𝑢𝑚 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 
0 𝑖𝑓 𝑑𝑎𝑖𝑙𝑦 𝑟𝑎𝑖𝑛𝑠𝑢𝑚 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Soiling loss 

𝑆𝐿𝑖(%) = 34.37 ∙ erf 0.17 ∙ 𝑚𝑖
0.8473

• Optimizable parameters

  - Daily rainsum cleaning threshold (CT)

  - Deposition velocity 𝑣𝑑

  

(Coello and Boyle, 2019)

(Coello and Boyle, 2019)

Input variables

• CAMS PM10 concentration

• ERA5 precipitation



8

(Coello and Boyle, 2019)

2. Soiling models:
    Modified HSU model

• Completeness of natural cleaning

𝐶𝑁𝐶𝑖 =
𝑚𝑖−1−𝑚𝑖

𝑚𝑖−1
= 𝑎 ∙ log 𝑟𝑎𝑖𝑛𝑠𝑢𝑚 + 𝑏 (Limited to 0.97)

• Persistent mass (non-removable by rain) accumulated on PV panel

𝜔𝑖 = χ ∙ ෍

𝑘=𝑖0

𝑘=𝑖

𝑣𝑑 ∙ 𝑃𝑀10_𝑘 ∙ 𝑡 ∙ cos 𝜃

• Daily accumulated mass on PV panel

𝑚𝜄 =

1 − 𝐶𝑁𝐶𝑖 ∙ 𝑚𝑖−1 𝑖𝑓 𝑟𝑎𝑖𝑛𝑠𝑢𝑚 > 0 𝑎𝑛𝑑 (1 − 𝐶𝑁𝐶) ∙ 𝑚𝑖−1 > 𝜔𝑖

𝜔𝑖  𝑖𝑓 𝑟𝑎𝑖𝑛𝑠𝑢𝑚 > 0 𝑎𝑛𝑑 (1 − 𝐶𝑁𝐶) ∙ 𝑚𝑖−1 ≤ 𝜔𝑖

෍

𝑘=𝑖0

𝑘=𝑖

𝑣𝑑 ∙ 𝑃𝑀10𝑘
∙ 𝑡 ∙ cos 𝜃  𝑖𝑓 𝑟𝑎𝑖𝑛𝑠𝑢𝑚 == 0

• Soiling loss 

𝑆𝐿𝑖(%) = 34.37 ∙ erf 0.17 ∙ 𝑚𝑖
0.8473  

• Optimizable parameters

  - a, b for CNC

  - Percentage of daily-accumulated persistent mass 𝜒

  - Deposition velocity 𝑣𝑑

  

CNC model in poster by

Norde Santos et al. 

Input variables

• CAMS PM10 concentration

• ERA5 precipitation
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3. Soiling models calibration: Shinyanga
    Removable soiling type

Training Validation

HSU modified

HSU original

HSU original
CT = 2.6 mm/day; 𝒗𝒅 = 0.009m/s

RMSE (%) MAE (%) Bias (%)

Calibration 0.59 0.45 -0.35

Validation 1.89 1.16 -0.72

HSU modified
a=0.10, b=0.23, 𝒗𝒅=0.011m/s, 𝝌=0.5%

RMSE (%) MAE (%) Bias (%)

Calibration 0.95 0.72 -0.14

Validation 1.13 0.76 0.11

Tanzania

Uganda

Kenya

Google Earth
Calibration Validation
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3. Soiling models calibration: Homa Bay
    Persistent soiling type

Training Validation
HSU modified

HSU original

Tanzania

Uganda

Kenya

Google Earth

HSU original
CT = 18.3 mm/day, 𝒗𝒅 = 0.0007m/s

RMSE (%) MAE (%) Bias (%)

Calibration 1.17 0.93 -0.55

Validation 2.08 1.61 -1.41

HSU modified
a = 0.3, b=0.08, 𝒗𝒅 = 0.007m/s, 𝝌=2.5%

RMSE (%) MAE (%) Bias (%)

Calibration 0.67 0.48 -0.09

Validation 0.92 0.60 -0.44

Calibration Validation
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4. European maps
    Removable soiling type from Shinyanga 1st year calibration

CT = 2.6 mm/day

𝒗𝒅 = 0.009m/s

2.00

Time-averaged soiling losses 

in Europe using as input CAMS 

PM10 concentrations and ERA5 

daily precipitation between 

2003 and 2023 

a = 0.10

b = 0.23

𝒗𝒅 = 0.011m/s

𝝌 = 0.5%

5

HSU original
CT = 2.6 mm/day, 

𝒗𝒅 = 0.009m/s

HSU modified
a = 0.10, b = 0.23,

 𝒗𝒅 = 0.011m/s, 𝝌=0.5%

European average (%) 0.5 1.9

German average (%) 0.5 2.4

Andalusian average (%) 1.7 3.1

Underestimation
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4. European maps
    Persistent soiling type from Homa Bay 1st year calibration

Time-averaged soiling losses 

in Europe using as input CAMS 

PM10 concentrations and ERA5 

daily precipitation between 

2003 and 2023 

CT = 18.3 mm/day

𝒗𝒅 = 0.0007m/s

a = 0.30

b = 0.08

𝒗𝒅 = 0.007m/s

𝝌 = 2,5%

2.00 10

HSU original
CT = 18.3 mm/day, 

𝒗𝒅 = 0.0007m/s

HSU modified
a = 0.30, b = 0.08,

 𝒗𝒅 = 0.007m/s, 𝝌=2,5%

European average (%) 0.8 4.5

German average (%) 1.2 5.9

Andalusian average (%) 1.1 5.8

Underestimation

Soiling not well 

removed by rain → 

Germany > Andalusia

~2x 

Shinyanga



5. Conclusions and outlook
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• Soiling models should consider incomplete cleaning by rain and persistent soiling if frequent manual 

cleaning is not expected

• Current soiling models should be calibrated to the location of interest

• Maps for two soiling types are presented. The deviations of the maps illustrate the uncertainty at European 

level due to the unknown soiling type, and input data errors

• At locations with expected persistent soiling, soiling losses in Germany can reach similar levels than 

Andalusia

• Maps can help to estimate the soiling losses for yield analysis (specially in feasibility cases), and decide on 

mitigation measures

• The uncertainty of modelled long-term soiling losses is high, and introduces a significant uncertainty in yield 

assessments if low cleaning frequencies are planned  → A sufficient manual cleaning frequency can reduce 

soiling losses and model uncertainty

Outlook

• Further improve soiling model, e.g. consider lichen, moss, 

algae, fungi, bird droppings better

• Models and maps can be used to estimate the soiling losses 

for yield analysis, and evaluate the effect of different cleaning 

frequencies → Optimization of cleaning schedules

Thank you for your attention! ☺
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BACK-UP SLIDES
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Shinyanga vs. Homa Bay territory
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Soiling loss in Homa Bay recorded by the monthy-manually-cleaned

reference cell
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