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Abstract

Even with recent advances in Quantum Computing the ques-
tion about potential quantum advantage in optimization prob-
lems remains open. While this paper does not aim to prove
the existence of a quantum advantage, it describes a particu-
lar use-case from spacecraft mission planning which is imple-
mented on various quantum computers within the Quantum
Mission Planning Challenges project of the German Quan-
tum Computing Initiative at DLR. Besides the detailed prob-
lem definition and a formalization of the problem as an Inte-
ger Linear Programming problem (ILP), this paper provides
a list of experiences and insights gained when trying to apply
quantum computing to a real-world problem. In the end we
discuss early results comparing classical solvers with quan-
tum optimization algorithms for our particular sub problem
of the general ENMAP mission planning system.

1 Introduction
1.1 The EnMAP Mission

The Environmental Mapping Program (EnMAP, see (DLR
2012)) is a German hyperspectral earth observation satellite
launched in 2022. It has two cameras on-board with spec-
tral ranges from 420 nm to 1000 nm as well as 900 nm to
450 nm with a resolution of 30m. EnMAP is on a polar
sun-synchronous orbit with a local time descending node of
11am and a 27-day repeat cycle. It uses S-band to receive
commands typically via a ground station in Weilheim and
downlinks data via ground stations in Neustrelitz as well as
Inuvik. The ENMAP mission has already been presented in
various papers such as (Storch et al. 2023; Chabrillat et al.
2024).

1.2 Overview of the EnMAP Mission Planning
System

The EnMAP mission planning system (MPS) was already
described in quite some detail in (Fruth et al. 2018; Lenzen
et al. 2023). To summarize, it is based on the German Space
Operations Center (GSOC) Reactive Planning framework
(RePL, (Worle et al. 2014)) and its planning library Plains,
hence using a feature-rich planning language allowing to
model all relevant constraints for the EnMAP mission. RePL
is message-driven, meaning that any new input to the system
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triggers an immediate update of the planning state, the ap-
plied method is referred to as an algorithm. The EnMAP al-
gorithms are conceptually illustrated in (Priifer et al. 2021),
and they are typically heuristic searches for a feasible solu-
tion. The maximum planning horizon is 14 days into the fu-
ture, while the earliest commanding (EC) is usually after the
upcoming uplink, see Figure 1 for a PintaOnWeb screenshot
of the EnMAP MPS. Once a timeline was commanded, EC
is moved to the next uplink and the planning horizon shifted
correspondingly. The most important case is the ingestion of
a new observation request which shall be added to the plan.
The corresponding algorithm will trigger a search for oppor-
tunities using SCOTA (see (Gross et al. 2021)), which form
the possible discrete choices for planning the request. In case
all opportunities are blocked, the algorithm tries to remove
other acquisitions in order to find a solution that increases
the benefit. In most situations, this is quite fast, however this
can break down when replanning e. g. the whole planning
horizon. To be able to deal with such large planning cases
GSOC is investigating quantum algorithms for optimization
problems as they may provide a better asymptotic run-time
duration when solving larger instances.

From this description of the common planning problem
for EAMAP we derive our sample problem for this paper.
Note that this is slightly simplified compared to the problem
formulation currently used in the production EnMAP MPS,
e. g. we assume that there is no on-board memory compres-
sion. To recall the nomenclature, a customer submits a re-
quest which has multiple opportunities. If an opportunity is
planned, the MPS “earns” the benefit of the request. A re-
quest also specifies how large the corresponding acquisition
will be and hence how much data it will use on-board. Thus,
we can define the memory consumption as a function of
time, determined by the total amount of data of the planned
acquisitions minus the downlinked data until a given time.
Additional constraints include gapless aux telemetry, which
means that every 24 hours there must be at least one down-
link in order to have enough ranging data for Flight Dynam-
ics to determine the orbit. The goal of the optimization prob-
lem is to maximize the total benefit while respecting all con-
straints and minimizing memory consumption. A detailed
integer program formulation is given in Section 2.

To keep the problem feasible, the considered problem
lacks a few more involved aspects of the EnMAP mission
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Figure 1: The EnMAP PintaOnWeb view of the planning model.

planning system such as back-to-back imaging, calibrations,
area coverage, cloud forecasts or instrument mode switches.
Some of these can be easily included during post-processing
(and hence are uninteresting for potential quantum algo-
rithms), others, such as cloud forecasts, can be taken into
account by modifying the benefit values correspondingly.
The model includes slew times for targets by adding config-
urable but fixed guard times to each image opportunity both
to the start and the end. As long as the guard times cover
the maximum slew time of the satellite it is hence assured
that the opportunities do not overlap. To make this more ef-
ficient, the actual EnMAP MPS uses so-called back-to-back
imaging (see (Lenzen et al. 2023)) which is easily integrable
into our model by doing pre-computations for possible back-
to-back sequences and adding these as separate opportuni-
ties with a binary decision variable and corresponding con-
straints. Since this will not change fundamentally the prob-
lem but instead increase the variable and constraint size only,
we will not consider this in this paper.

1.3 Quantum Computing and QMPC

In the recent past, quantum computing has gained significant
attention in various fields such as machine learning, mate-
rial science, and optimization. Besides the various applica-
tions and sample implementations of algorithms, the quan-
tum computing hardware itself has made a lot of progress
in recent years, see e. g. (Arute et al. 2019; Gambetta 2022;
Quantum et al. 2025). In addition to demonstrations of quan-
tum supremacy and error correction, there are gate-based
quantum computers with 156 qubits generally available, a
size that is commonly referred to as utility scale, e. g. (Gam-
betta 2022). In the field of optimization, there are many
promising approaches to apply quantum computers in the
hopes of finding asymptotically faster algorithms or bet-
ter solutions within a fixed time window, see (Abbas et al.
2024). Still, no proof of so-called quantum advantage is yet

known for optimization problems, which means that so far
no industry-relevant optimization challenge could be solved
faster or better on a quantum computer than on a classical
one.

Besides gate-based quantum computing there is also the
paradigm of quantum annealing which refers to computers
that use adiabatic evolution of a Hamiltonian to find solu-
tions to optimization problems. While these tools are very
much suited for unconstrained binary optimization prob-
lems, it is still somewhat unclear how well they can be
applied to realistic mission planning problems due to the
difficulty of implementing various complicated constraints.
Even though it is possible to reformulate the planning prob-
lem in this language there is a considerable overhead asso-
ciated with this translation.

Notice that most quantum algorithms target combinato-
rial optimization problems, i.e. finite sets of integer (or bi-
nary) variables. When planning an activity A on a timeline
running from %y to ¢ it is natural to consider ¢y, ¢; as con-
tinuous variables of the optimization problem. Hence, space-
craft planning problems are rather of a mixed type, involving
both discrete and continuous variables. Unfortunately, there
are only very few quantum optimization algorithms that can
deal with such problems and hence there is a lot less known
about performance or possible quantum advantage in this
area, see e. g. (Abbas et al. 2024). We will give an overview
of some quantum algorithms for optimization problems and
then discuss how they can be applied in spacecraft planning
in section Section 3.

1.4 Quantum Computing for Spacecraft Mission
Planning

(Stollenwerk et al. 2021) use quantum computing, specifi-
cally a D-Wave Quantum Annealer, to optimize the sched-
ule for an Earth observation satellite. They focus on an ag-



ile satellite and take slewing times into consideration which
exclude combinations of certain image opportunities. How-
ever, as they only consider acquisitions, all their variables
are naturally binary while for QEOPS, we also take into ac-
count downlinks, the beginning and ending of which can be
planned continuously within an interval. In terms of con-
straints, they only consider a subset of those in QEOPS, for
example, we have in addition the gapless aux telemetry and
memory constraints (type 5 and 6) which tend to be signif-
icantly more complicated to model than the common ones.
While they perform evaluations on real quantum annealing
hardware, we limit our experiments to simulated annealing.

The authors of (Quetschlich et al. 2023) consider a similar
planning problem for an earth observation satellite with only
acquisition opportunities and constraints for certain combi-
nations of acquisitions due to the required camera rotation
time (again similar to our No Overlap Constraint). They for-
mulate this problem as a QUBO and solve it with simulated
variational quantum algorithms.

(Rainjonneau et al. 2023) are also concerned with a
satellite scheduling problem where acquisition opportuni-
ties must be selected to form a valid schedule such that the
total benefit is maximized. They first formulate this an in-
teger linear programming problem and then translate it to
QUBO form, similar to our workflow. While they find clas-
sical branch-and-cut based solvers to perform well on opti-
mizing the linear problem, they to not achieve satisfactory
performance on the QUBO optimization from neither a hy-
brid classical-quantum annealing nor a purely classical opti-
mizer. In addition, they also employ reinforcement learning
with a hybrid quantum neural network as policy model.

In (Makarov et al. 2024) a satellite planning problem with
similar constraints to our type 2 and 4 constraints is inves-
tigated, as well as a simpler version of our memory con-
straint, by enforcing fixed upper bounds for the memory
without considering the planning of downlinks to free mem-
ory. Furthermore, the satellite they focus on has two cameras
and may take stereo pictures giving rise to a constraint that
from certain triples of acquisition requests only two may be
planned. They optimize their problems in QUBO form with
Quantum Annealing on two different D-Wave QPUs as well
as with a D-Wave hybrid optimizer, as well as simulated
QAOA.

In summary, our work differs from previous work in that
it does not only consider the selection of image acquisition
opportunities, but also the flexible planning of downlinks
within predefined intervals, which interacts with acquisition
planning through the constraint of limited memory and is
subject to a limit for the gaps between downlinks.

2 ILP Formulation of the EnMAP Problem
for QEOPS

While the QEOPS problem is in principle of a mixed-integer
linear programming (MILP) type we present a discrete ILP
version here, since the MILP version is significantly more
complex and requires dedicated techniques in the context of
quantum computing.

2.1 Input

To define the problem in detail, we first give a few definitions
which we will use throughout the remaining paper.

* Any point in time ¢ is defined as a real number ¢ € R.

* Any time interval w € W (window) is defined as an or-
dered pair of two points in time:
W = {(tl,tg) S R2|t1 < t2}

* In some constraints, we use the well-known “big-M”
trick and assume that M € R is a sufficiently large num-
ber.

The time interval T = (Tp, T1) € W for the schedule to
be planned, is also referred to as planning horizon.

Within this horizon, a set of acquisition requests R, each
corresponding to a single request by a researcher for a target
and with some parameters, is to be fulfilled if possible.

For every such acquisition r € R request we have a set
of precalculated opportunities O, corresponding to time in-
tervals, with O = U, O, being the set of all opportunities.
For an acquisition opportunity ¢ € O, s;, s; € R are the start
and end times. Any request 7 € R has an attached memory
consumption m,. € R: The amount of memory the request
requires depends mainly on the size of the image which is
specified by the original requester and hence constant and
known for all opportunities of a request. We can thus also
use m; to denote the memory consumption m,. of the corre-
sponding request r for an opportunity <.

Any opportunity ¢ € O has an attached benefit b, € R:
The benefit refers to an abstract measure how important the
overall project considers an acquisition opportunity. There
are various aspects that factor into this number, e. g. the cus-
tomer priority, emergencies, cloud prediction or how much
time remains to schedule the corresponding request.

In addition, we have a set of downlink visibilities D
which correspond to time intervals during which a downlink
ground station is visible and available, and hence a downlink
can be scheduled. This is described by a set {d1,...,d|p| |
d; € W} of time intervals. A downlink visibility d; € D
is hence defined by s;, s} as its start and end times. Down-
links also have a download speed v € R associated with
them, allowing to model different modes or downlink speed.
Hence, a downlink d of length |d| will reduce the memory
consumption by v|d]|.

2.2 Discrete Decision Variables

Notice that image opportunities are scheduled in a binary
fashion as they were precomputed and are considered an in-
put to the MPS. See Figure 2 for a graphical overview.

Hence, x; is the binary variable indicating whether acqui-
sition opportunity 4 is planned and y; is the binary variable
indicating whether downlink visibility j is planned.

We also need a way to model the start and end times of the
downlink within visibility j, which would initially be con-
tinuous variables, with discrete variables, hence discretizing
the downlinks.

A key observation is the following: we can precompute all
times when a downlink visibility window intersects with any
other downlink visibility or acquisition opportunity and use
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Figure 2: An illustration of the variables of the QEOPS problem. Notice that the image opportunities are split into subsets
according to their corresponding request. Also, the start and end times of the image opportunities are denoted by s; and s, but
they are fixed parameters rather than decision variables. Even though the downlink j has start and end time variables associated
to it, they should be irrelevant to the problem since in the example y; = 0 and hence the downlink is not scheduled.

those times as the possible start or end times for the down-
link, in addition to the start and end of the visibility window.
Letting the solver choose from those times is sufficient to
enable all possible combinations of downlinks and acquisi-
tions. Of course, the downlinks formed from these start and
end times will often be too long, i.e. they would continue
to downlink when there is no data left in the memory to
transmit. To avoid this we can shorten these downlinks as
necessary during post-processing.

The logic is illustrated in Figure 3. We refer to the found
sets of possible start and end times of downlink j as t; or
t’ respectively. We then add corresponding binary variables
vj ¢+,t €t; and v] RAS t' indicating for each possible down-
link start and end time whether it was selected.

\4

Figure 3: Given a downlink shown as on top with two over-
lapping image opportunities, we can find the five possible
maximal intervals y1,...,ys. Notice that if ys5 is shorter
than allowed, we can immediately drop this case during pre-
processing.

We also add the constraint that exactly one start and end
time must be selected per downlink if the downlink is sched-
uled, and none otherwise:

VieD:Y vi=y; 1)
tet]‘
and
VieD:Y v, =y )
tet;

2.3 Discrete Constraints
Let us describe the applied constraints in a bit more detail.

Constraint Type 1: Downlink Minimum Length If a
downlink is scheduled, its length must at least be the min-
imum length Ly;, € R. Since Equation (1) and Equation (2)
require that always either exactly one start and end time, or
neither any start nor any end time must be selected, we can
formulate this constraint as:

Z v -t — Z Vit t | 29 Lmin (3)

t'et) tet;

VieD:

Constraint Type 2: At Most One Acquisition Opportu-
nity Planned Per Request

VreR: Y z; <1 4)
iET
Constraint Type 3: No Unplanning We may sometimes
be given sets O and D of acquisition opportunities and
downlinks which were planned in a previous iteration and
must still be planned in this iteration. We can easily model
this with the constraints

VieO:z;=1andVjeD:y; =1, (5)

or by leaving out these variables and adapting all constraints
correspondingly.

Constraint Type 4: No Overlap We must prevent
scheduling overlapping acquisitions and downlinks because
the satellite execute both procedures at the same time. For
the purpose of this constraint, additional guard times g, g/,
apply at the start and end of each opportunity and gq4, g at
the start and end of each downlink, respectively. These con-
stant time values account for e. g. pre-heating or slewing be-
tween acquisitions. We use 7 and j to refer to the intervals
of an acquisition opportunity ¢ and downlink visibility j ex-
tended by the applicable guard times.

Since acquisitions are only scheduled in a binary fashion,
and there is only a finite number of possible start/end times
for the downlinks, we can efficiently check all combinations
and prohibit those that are invalid because they overlap when
extended by their guard times. This yields constraints like



Constraint Type 5: Gapless Aux Telemetry The maxi-
mum gap between two consecutive downlinks must not ex-
ceed the length L,,x, which can be expressed as a so-called
sliding window constraint, see Figure 4 for an illustration.
This feature is called gapless aux telemetry and is necessary
to ensure sufficient ranging data for Flight Dynamics orbit
determination.

We verify sliding windows of size L,,x and ensure that at
least one downlink is active during any such window. How-
ever, it is clearly enough to check this only for finitely many
windows, namely at the planning horizon start, at any down-
link visibility start time and L,,x before the planning hori-
zon end. Let us denote the set of these sliding window start-
ing times by C, noticing that this is determined during pre-
processing.

We then add the constraint that

Vee C: Y f(je)>1

JjeED

where f(j, ¢) indicates whether downlink j satisfies the gap-
less aux telemetry constraint by starting within L, after c if
it is scheduled. We refrain from writing down an explicit for-
mula for f, but this is straight-forward given the description
above.

Constraint Type 6: Memory Below Upper Bound En-
MAP has a maximum memory size for images which needs
to be obeyed, hence we have a maximum allowed mem-
ory usage Mmax € R and an initial memory consumption
minit € R at the beginning of the planning horizon.

We assume that the memory usage increases at the end
of an acquisition by the total amount of memory required
for the acquisition and decreases at the end of a downlink
by the amount of memory transmitted by the downlink, see
Figure 5.

Hence, the points in time when we need to verify the
memory use are at the end times of all downlinks just before
the memory is released and at the planning horizon end, in
particular we have only finitely many values to verify.

An obvious way to model this constraint is to track the
amount of memory at these times by adding the memory of
the scheduled acquisitions to the prior value after the last
downlink, resulting in linear inequality constraints for ev-
ery downlink end. Unfortunately, this naive implementation
may cause negative values and hence model an invalid mem-
ory resource behavior, see Figure 6.

While it is possible to model the cutoff using continuous
variables for the memory value or many binary ones for a
binary count at these times and some auxiliary variables we
want to model this in a simpler way.

The key idea is as follows: For any downlink d, and given
any schedule, there is either no earlier downlink that was
too long or there is a latest one, denote it by dy. In the first
case, the naive calculation is actually correct and hence the
upper bound is enforced correctly. In the second case, we
can add a naive memory constraint which assumes that after
this downlink d the memory is zero, and we start counting
naively from that point on. We can now add these constraints
for any downlink d and any prior downlink dj, hence the

number of constraints scales quadratically with the number
of downlinks. This is sufficient as the individual constraints
are either weaker (when considering a downlink later than
dy) or do not matter as a later downlink sets the memory
resource to zero (when considering a downlink earlier than
dp).

This way we can model the resource constraint by a set of
linear inequalities.

24 Goal
We consider two goals:

1. Maximize the total benefit from acquisitions: ) icO b;-x;

2. Minimize downlinks: — >, y;

These can be weighted with factors wy, ws € R, resulting
in the objective function:

wy =Y bimi—wys Yy )

i€0 jED

2.5 Classical Implementation

We implemented the linear integer models with the Google
OR-Tools library (Perron and Furnon 2024), using the open-
source solver SCIP (Achterberg et al. 2008; Achterberg
2009). This was used as a baseline for comparison to any
quantum algorithms.

3 Overview of Quantum Algorithms for
Scheduling Problems

As described roughly in the introduction, most quantum al-
gorithms target discrete optimization problems, where bi-
nary variables map e. g. to single qubits and measurements
of basis elements |0) and |1) are associated with their re-
spective classical values. For integer based variables, mul-
tiple encodings may be chosen such as one-hot, binary or
domain-wall encoding, hence reducing the problem to a bi-
nary one.

Once reformulated as a binary problem (see Section 2.3
for our use-case), most algorithms require a certain treat-
ment of the constraints, typically by implementing them as
soft constraints, i. e. a penalty for violating the constraint is
added to the target function. By rescaling this contribution
one can make sure that optimal solutions must satisfy the
constraints and are hence feasible. Nevertheless, as quan-
tum algorithms are probabilistic in nature one typically ob-
serves a certain amount of non-optimal, and hence poten-
tially unfeasible, solutions. The goal of the quantum algo-
rithm is thus to reduce the observed amount of unfeasible
or non-optimal solutions. Since many applications in space-
craft planning require strict adherence to the constraints (as
the typically model certain safety-relevant aspects of the
mission), we want to generally include feasibility rates be-
sides observed best values or time-to-solution as metrics for
comparisons.

Since our problem typically contains inequality con-
straints, let us briefly sketch how to include them into the ob-
jective function. Assume that we have four binary variables
z1,...,24 denoting whether certain activities are planned or
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not. In case we need to implement a constraint that at most
two out these four can be one, we first transform the inequal-

ity

Ty t+ro+x3+24 <2

into an equality by introducing so-called slack variables
a; and a9 and requiring

r1+xo+x3+2T4+0a1+ a0 =2.
Now we can replace the target function f(x) by

F(x,a) = f(x) + Mz1 + 22 + 23 + 24 + a1 + a9 — 2)?

for a suitable parameter A. This allows us to include both
the objective function and constraints (equalities and in-
equalities) into a single quadratic binary polynomial which
is without any further constrains, called a QUBO. While this
formulation is a common entry point for most quantum al-
gorithms, it is somewhat unnatural for classical optimizers
which should be kept in mind when doing a benchmark com-
parison.

This QUBO formulation can either be used by a Quantum
Annealing algorithm, such as provided as a service by D-
Wave, or be equivalently reformulated as a Hamiltonian H
for gate-based quantum computers. The notion of a Hamilto-
nian comes from physics where it denotes a quantum observ-
able measuring the energy of a system. This means that by
encoding the binary variables on qubits and expressing the
QUBO as a Hamiltonian operator we can reformulate our
optimization problem as an energy minimization problem.

The goal is thus to find a ground state |¥) of the Hamiltonian
H. One type of algorithms operating on such Hamiltoni-
ans are so-called variational quantum algorithms, e. g. Vari-
ational Quantum Eigensolver (VQE) and Quantum Approx-
imate Optimization Algorithm (QAOA). Testing such varia-
tional quantum algorithms and various variants for the En-
MAP problem in QEOPS is still work in progress.

Another relevant type of problems for practical applica-
tions is Mixed Integer Problems (MIP), i.e. a subset of the
variables are continuous. As it is non-trivial to map such
variables to qubits and henceforth solve the optimization
problem using a quantum circuit, there are hybrid algorithms
that split the problem into a continuous and a discrete part. If
done efficiently, one can then apply a quantum algorithm to
the discrete part and look for a possible quantum advantage.
Notice that such splitting algorithms are well-known in clas-
sical optimization, such as Alternating Direction Method of
Multipliers (ADMM, see (Glowinski and Marroco 1975)),
or Benders Decomposition. For QEOPS, we have already
formulated a mixed-integer version of the problem and have
successfully applied Benders decomposition with a suitable
discrete quantum optimization algorithm.

Benders decomposition was introduced in e. g. (Benders
1962). Roughly, it works by splitting the problem into an
integer master and a continuous sub problem, which are it-
eratively solved and updated. The solution of the continuous
part provides bounds for the original optimization problem
which are then used to iteratively solve the discrete part (in
our case using a quantum algorithm) until convergence. This
is illustrated in Figure 7.



4 Results and Discussion

In this section we compare the classical solutions using SCIP
and CBC of the discrete QEOPS problem with a (simulated)
Quantum Annealing solution using the D-Wave Ocean li-
brary.

4.1 Evaluation and Methodology

Test data was generated by randomly slicing intervals of dif-
ferent length from real EnMAP data. The randomness was
seeded for reproducibility, and all data was persisted.

The classical solver was run with a time limit of 10 min-
utes. It turned out that the difficulty of the problem instances
depends more on the particular structure of the constraints
(or input data) than on the pure size. This causes slightly
strange results as long optimization runs get aborted and
hence decrease the average runtime. Furthermore, CBC had
some trouble parsing a part of the sample inputs due to the
size of some constraints. Since these instances are expected
to be more difficult, this also filters out more difficult exam-
ples. All tests were executed on a 24-core 19-13590HX CPU
with 128 GB memory.

4.2 Results

Some convergence results for the CBC optimizer are shown
in Figure 8. We can see that in these samples even the first
found feasible solution is rather close to the optimum (typ-
ically less than 10% off), so these cases are easy. It is ex-
pected that the graphs for more days (and hence more vari-
ables and more constraints) tend to start more to the right,
corresponding to longer computation times.

In Figure 9 we plot the average runtime of the CBC op-
timization runs binned with respect to the number of days
used for defining the test cases which correlates with prob-
lem size. The decrease in average run time for 10 days is
likely due to the accidental removal of larger and hence
longer optimization runs. Apart from this phenomenon one
sees the very large variance of the run times due to the ap-
parent dependence of the hardness of the problem instance
on the concrete constraints which in turn depend on the con-
crete input data.

The simulated annealing for each QUBO was performed
with 5000 reads and remaining parameters unchanged from
their default values.

When optimizing the QUBO, we had to restrict the prob-
lem sizes to intervals of 1 to 23 hours, since large inputs lead
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Figure 6: The naive memory resource becomes negative af-
ter the downlink that was too long, while it should have been
cut off at zero. The real value, shown with the dashed line,
is higher and hence may violate the upper bound
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Figure 7: Overview of Benders decomposition. The discrete
master problem can be solved using a quantum computer
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Figure 8: Relative objective function values over time for
individual problem cases for the CBC solver, but only those
for which the solver could prove optimality within 10 min-
utes

to unfeasible solutions with very high numbers of violations,
hence the annealing does not seem to find the ground state.
As can be seen in Figures 10 and 11, the number of con-
straint violations found in the solution depends on the prob-
lem size as expected, where the problem size correlates with
the planning horizon length. Interestingly, inputs up to 15
hours mostly result in solutions without violations, which is
long enough for the most common scenarios.

When we solved the same input scenarios with the linear
model, the classical SCIP solver found the solution within a
maximum of 7 seconds in every case, usually even within 1
second. To get a better understanding of the limits of SCIP,
we ran inputs with a length of 1 to 10 days. Figure 12 shows
that the classical solver has a boundary at about 300 vari-
ables where it starts to always use the maximum time and
is not able to prove optimality and thus exit earlier. It did,
however, find a valid solution in every instance, which may
be sufficient for operations.

When comparing Figures 10 and 12 notice that the vari-
able count in a QUBO is typically much higher than that for
a linear model due to required slack variables for converting
the constraints to penalty terms.

4.3 Discussion and Outlook

When benchmarking classical and quantum algorithms there
is always the problem of finding common test cases as quan-
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Figure 9: Run time averages in seconds for CBC optimizer
over different number of days, which loosely relates to the
number of variables

num_violations over problem size (= number of binary variables) (num_violations limited to 600 seconds) [for optimality=None]
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Figure 10: Number of constraint violations as a function of
QUBO variables for the Simulated Annealing using the D-
Wave simulator

tum computers are typically still rather limited. We can see
this in this paper when the quantum annealing does not find
feasible solutions anymore for larger problem sizes. How-
ever, there is still quite a bit of improvements possible by
e. g. trying to rescale the penalty terms in the QUBO formu-
lation.

Both CBC and SCIP perform well in smaller problem
sizes but fail to run to optimum for a full week planning
within 10 minutes. One of the main takeaways is the de-
pendence of the solution quality and speed on the concrete
modelling for all algorithms. In particular the inclusion of
the memory constraint and the sliding windows for gapless
aux telemetry offer a lot of potential for improvement, al-
though one has to make sure that the memory constraints
remain satisfied as they are crucial to EnMAP.

As goals for the near future we intend to finalize the im-
plementation of various other variational quantum optimiza-
tion algorithms to run a larger benchmark. Furthermore, we
can include more aspects of the EnAMAP MPS to bring these
simulations closer to the operational situations. One of the
final goals of the QMPC project is to demonstrate the usage
of these algorithms within the actual EnMAP MPS.

Avg. num_violations binned by planning horizon length (num_violations limited to 600 seconds) [for optimality=None]
175

num_violations

-25
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Figure 11: Number of constraint violations as a function of
planning horizon length in hours. Simulations were done us-
ing D-Wave Simulated Annealing

CPUTime aver problém size (= number of binary variables) (CPU-Time limited to 600 seconds) [for eptimality=None]
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Figure 12: CPU-Time required by SCIP as a function of the
number of variables, cut off at 600s
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