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Abstract—Accurately representing spatial transformations in 

robotics is crucial for reliable system performance. 

Traditional methods often fail to account for internal 

inaccuracies and environmental factors, leading to significant 

errors. This work introduces a framework that incorporates 

uncertainty into transformation trees using Lie Algebra, 

offering a consistent and realistic computation of spatial 

transformations. Our approach models inaccuracies from 

sensor decalibration, joint position errors, mechanical stress, 

and gravitational influences, as well as environmental 

uncertainties from perception limitations. By integrating 

probabilistic models into transformation calculations, we 

provide a robust and adaptable solution for various robotic 

applications. The framework is implemented using a C++ 

library with a Python wrapper, leveraging hierarchical 

transformation trees to simplify kinematic chains and apply 

uncertainty propagation. Real-world examples demonstrate 

the framework’s effectiveness: compensating for 

gravitational bending in a robotic arm and handling 

uncertainties in a mapping task with an uncertain kinematic. 

These applications highlight the framework’s ability to 

enhance the accuracy and reliability of tasks such 

as manipulation, navigation, and interaction with 

environments. This contribution aims to advance robotic 

systems’ performance by providing a comprehensive method 

for managing spatial transformation uncertainties. 1 
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I. INTRODUCTION 

In the dynamic landscape of robotics, accurately 

representing spatial transformations is pivotal for reliable 

system performance. Conventional methods, which treat 

provided transformations as precise and deterministic, face 

difficulties with inherent inaccuracies within the system 

and environmental complexities. This work highlights the 

need for spatial representations in robotics that account for 

inaccuracies, often referred to as scene graphs. These 

representations allow modeling not only the spatial 
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relationships in a robot-environment system but also the 

gaps in our knowledge about it. 

An illustrative example is the distinction between a 

robotic arm’s repetition accuracy, which signifies its 

capability to consistently reach the same point in a 

workspace, and its absolute accuracy. For conventional 

robotic systems, the first can be assumed to be "exact". 

However, the error of the latter can be higher by several 

orders of magnitude which motivates the modeling of this 

error. Position measurements, constrained by both 

physical limitations and environmental influences, 

frequently fall short of the requisite precision. This 

constraint becomes especially critical in applications 

requiring high accuracy, such as surgical robotics [1]. 

An additional example is the process of registering a 

robot with respect to its environment, a task achieved 

through either an inaugural calibration procedure [2] or by 

means of the navigation implemented in mobile robotic 

systems [3]. 

Interestingly, various scholarly works [4, 5] have 

considered robot uncertainty within specific domains, such 

as the kinematic structure or autonomous navigation 

components. However, there is limited progress in 

combining these several domains into one single 

representation like a scene graph to achieve a unified 

consideration of inaccuracy-aware spatial relations. 

Conventional approaches that disregard uncertainty in 

scene graphs fall short in capturing the intricacies of real-

world scenarios. 

This paper advocates for a paradigm shift by 

introducing a framework that incorporates uncertainty into 

scene graphs, offering a more realistic and robust 

representation of transformations. By addressing 

challenges posed by both robot internal inaccuracies and 

the uncertainty of the robot’s interaction with the 

environment, our approach aims to enhance the reliability 

and performance of robotic systems in practical 

applications. 

We use the following terminology in this paper: Robotic 

systems can be subject to errors that cause inaccurate pose 
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calculations, either within the system or with respect to its 

environment. A common simplification is to model such 

inaccuracies in a probabilistic way, thus subjecting 

nominal relative poses to an additional uncertainty. For a 

multitude of robotic applications, such uncertainty is 

modeled as a zero-mean normal distribution, thus an 

uncertain pose consists of a nominal pose and a covariance 

matrix. Generally, this simplification trades the exact 

representation of robotic errors for the availability of 

powerful mathematical tools and is thus well established 

in the robotic community. We adopt this error modeling as 

well, which allows us to immediately integrate the 

probabilistic pose information from other software 

components into our scene graph. 

II. RELATED WORK  

Accurately describing the spatial relationships of a robot 

and its environment is a key aspect of robotics specifically 

and mechanical mechanisms generally. Accurately 

describing the spatial relationships between a robot and its 

environment is crucial in both robotics and mechanical 

engineering. This involves not only understanding the 

robot’s position and orientation within its workspace but 

also how it interacts with various objects and obstacles 

around it. The ability to model and predict these 

interactions is crucial for tasks such as navigation, 

manipulation, and automated decision-making. 

Furthermore, a precise understanding of spatial 

relationships enhances the robot’s efficiency, safety, and 

adaptability in complex and dynamic environments. 

Consequently, advancements in this area have significant 

implications for the development of more sophisticated 

and capable robotic systems. 

Commencing with the early explorations in formulating 

a framework for kinematics in mechanical structures [6, 7], 

the field witnessed significant strides with one of the 

pivotal works by Denavit and Hartenberg [8]. In this 

groundbreaking contribution, the authors devised a 

structured yet elegant methodology to comprehensively 

describe the chain of transformations associated with 

robotic arms. Subsequent endeavors augmented the 

toolbox of robot kinematics representation, for example by 

considering the underlying Lie-Algebra of spatial 

transformations [9]. Advancements in the use of conformal 

geometric algebra have provided a unified approach to 

geometric reasoning, simplifying the computation of 

kinematics and dynamics of serial manipulators [10]. 

Moreover, neural network-based approaches and deep 

reinforcement learning have enhanced the precision and 

efficiency of solving inverse kinematics problems for high 

degrees of freedom manipulators [11, 12]. Our recent 

work [13] provides a kinematic robot description that 

allows considering inaccuracies from joint position 

measurements, mechanical stress-induced deformations, 

and gravitational influences in a probabilistic manner. 

In the field of robotic navigation, numerous approaches 

account for the uncertainty of relative transformations, 

particularly in the domain of Simultaneous Localization 

and Mapping (SLAM). For instance, methods such as 

those proposed by Kaess et al. in iSAM2 [14] and 

Kümmerle et al. in g2o [15] utilize the covariance or 

information matrix to appropriately weigh different spatial 

transformations within a graph optimization framework. 

Recent advancements include the development of 

distributed pose graph optimization, which enhances 

collaborative SLAM by efficiently managing local and 

global uncertainties [16], and the integration of multi-level 

graph partitioning to improve scalability and accuracy [17]. 

These techniques enhance the accuracy and reliability of 

mapping and localization by effectively managing the 

inherent uncertainties in sensor measurements and 

environmental interactions. 

The interaction of a robot with objects in its 

environment, specifically the uncertainties inherent in the 

workspace, has been investigated in Ref. [18]. 

Additionally, significant progress has been made in 

modeling the uncertainty in the perception process itself, 

including both classical [4] and deep-learning-based 

methods [5]. Recent research efforts have focused on 

sparse iterative approaches [19] to further enhance 

robustness in uncertain environments. 

Finally, the hand-eye calibration of a robot is nothing 

else but an additional transformation between the real and 

the nominal robot geometry and can thus also be subject to 

inaccuracies, as discussed by Nguyen et al. [2]. Recent 

studies have further explored these uncertainties, 

proposing methods to enhance the accuracy and robustness 

of hand-eye calibration [20, 21]. These advancements 

highlight the ongoing need to address and mitigate 

calibration inaccuracies in vision-guided robotic systems. 

In the end, all these sub-fields of robotics provide a 

multitude of different types of spatial transformations, 

where potentially all of them are subjected to errors which 

are being modeled as uncertainties.  

Systematic approaches to order a multitude of 

interconnected transformations, particularly within the 

area of Virtual Reality (VR) [22, 23], and robotic 

simulators [24, 25] considered the utilization of a scene 

graph to represent relative spatial relationships. This scene 

graph, akin to a tree structure, comprises multiple nodes 

arranged in a parent-child manner. This innovative 

approach enhanced the representation and simulation 

capabilities in both virtual reality and robotic simulation 

domains. The current state of the art is tf [26], the scene 

graph framework of Robot Operating System (ROS).  

Interestingly, very little work has been published that 

considers the uncertainty of spatial information by 

interconnecting the different realms of robotics. Initial 

efforts have been directed towards acknowledging 

uncertainty within the scene graph, for example [27]. 

However, these early attempts typically fall short in 

correctly modeling the error propagation using Lie 

Algebra. Alternatively, some implementations resort to 

sampling-based approaches to represent the overall 

uncertainty within the system, such as Ref. [28], which 

however comes with computational costs.  

The Lie-Algebra allows to acknowledge the manifold 

character of spatial relationships and is a powerful tool to 

compute and propagate uncertainty along chains of spatial 

transformations. An introduction to it together with the 
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application to robotic navigation is provided by  

Barfoot et al. [29]. Similarly, Lie-Algebra-based concepts 

are provided for the error propagation within robotic 

manipulators, either for single errors [30] or as our 

comprehensive kinematic model [13]. 

Despite the widespread use of Lie Algebra in 

uncertainty estimation, to the best of our knowledge, no 

existing approach formulating a scene graph for robotics 

has integrated Lie Algebra-based uncertainty propagation. 

In our ongoing work, we aim to address this gap and 

demonstrate the efficacy of incorporating Lie Algebra into 

a scene graph framework for a more nuanced and accurate 

representation of uncertainty in kinematic systems. 

III. ROBOTIC AND ENVIRONMENTAL CONFIGURATION 

STATE 

Accurate assessment of the current configuration state 

in robotic systems holds significant importance across 

various applications. This is particularly pronounced in 

scenarios involving non-static components equipped with 

perception sensors, where precise positional data is crucial 

for effective operation. Registering cameras affixed to 

robotic manipulators to the robot’s origin is imperative for 

seamlessly integrating spatial information within the 

correct coordinate framework.  

Knowledge of the system’s distance to the environment 

is indispensable for collision avoidance, especially when 

navigating confined spaces. To achieve this, it is crucial to 

carefully observe and organize the positions of joints into 

a transformation tree. This tree not only helps illustrate 

how the coordinate framework depends on a specified 

starting point known as the root frame, but also aids in 

obtaining an accurate estimate of the robot’s spatial 

volume and movement range.  

However, overlooking the inherent uncertainty in these 

measurements and the subtle non-static characteristics of 

certain links—attributable to mechanical stress and 

gravitational forces—can lead to erroneous state 

estimations. These factors can significantly impact the 

reliability of the robot’s operation, particularly in dynamic 

or unpredictable environments.  

In the ensuing discussion, we elaborate on Representing 

the Robotic and Environmental State (RCES) as a 

transformation tree. We discuss the methodology for 

constructing this tree, highlighting the importance of each 

node and its relationship to the overall framework. 

Subsequently, we introduce Lie Algebra as a robust 

solution for modeling uncertainty in this process. Lie 

Algebra provides a mathematical structure that allows for 

the representation and manipulation of spatial 

transformations, which is essential for accurately 

modeling the uncertainties and variances in the robot’s 

configuration. 

Finally, we detail our implementation of a managed and 

centralized approach for addressing the RCES problem 

within an Inter-Process Communication (IPC) framework. 

This approach not only centralizes the data processing but 

also ensures that all components of the robotic system are 

synchronized and updated in real-time, enhancing the 

overall accuracy and efficiency of the system. 

Throughout this work, we intend to conceptualize the 

inaccuracies within the system as a form of uncertainty. 

This approach is motivated by the computational 

convenience afforded through the utilization of a 

probabilistic model, as opposed to employing distinct 

models tailored to individual system errors. By treating all 

potential errors as probabilistic uncertainties, we can 

simplify the computational processes and improve the 

robustness of the system’s state estimation. 

We believe that this comprehensive approach to 

modeling and managing uncertainties will significantly 

enhance the performance and reliability of robotic systems, 

particularly in complex and dynamic operational 

environments. 

 

 

Fig. 1. An illustrated example of a robotic manipulator and an external 

camera. 

A. Transformation Tree 

Deriving the transformation between two coordinate 

frames is a pivotal task in robotics. A widely employed 

approach involves modeling the system as a hierarchical 

tree of frame transformations illustrates a typical example 

involving a robotic manipulator and an external camera, as 

depicted in Fig. 1. To get the transformation between the 

coordinate frames 𝑻𝑐𝑎𝑚  and 𝑻𝑇𝐶𝑃 , the entire path 

involving multiple individual transformations must be 

calculated. In this example, the impact of uncaptured 

deviations in kinematics from the real world can be 

observed. The manipulator bends due to gravitational 

forces, causing the actual position of 𝑻𝑇𝐶𝑃 to differ from 

the expected position derived from a naive approach based 

on exact measurements. This discrepancy highlights the 

importance of accounting for real-world factors such as 

mechanical flexibilities and external forces in kinematic 

modeling to ensure accurate predictions and reliable 

performance in practical applications. 

A key optimization involves consolidating static 

displacements into a singular transformation, effectively 

pruning the tree for computational efficiency. This means 

that static transformations, which do not change over time, 

are combined into a single transformation matrix. Movable 

connections are represented as rotations or translations 

centered around joints, contributing to a chain of static 

links and dynamic joints. This approach not only 

streamlines computational complexity but also provides a 

comprehensive understanding of a robotic system’s 
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kinematic properties, enhancing both efficiency and 

reliability. 

One significant advantage of using a hierarchical tree 

structure is that it can be directly derived from a Computer 

Aided Design (CAD) model, which inherently uses the 

same representation. CAD models are typically organized 

into a hierarchy of parts and subassemblies, mirroring the 

structure of the transformation tree. This direct correlation 

allows for seamless integration and accurate transfer of 

geometric data from design to implementation. 

Following the comprehensive description of robot 

kinematics within the previously mentioned tree structure, 

the process of retrieving the direct transformation between 

any two arbitrary frames unfolds by traversing the path 

articulated within this structured tree. This systematic 

approach ensures a clear and methodical procedure for 

obtaining the specific transformation information required 

for precise spatial relationships between frames within the 

robotic system. 

By organizing transformations into a hierarchical tree 

structure, we can simplify complex kinematic chains into 

more manageable sub-problems. This not only reduces the 

computational burden but also makes the system more 

scalable and adaptable to changes. Furthermore, the 

hierarchical model aids in debugging and enhances the 

modularity of the kinematic analysis, facilitating easier 

updates and maintenance. An illustration of this is 

provided in Fig. 2. 

 

 

Fig. 2. A schematic overview of the forest and tree structure holding all 

transformation information. 

B. Transformations and Unvertainty 

Our treatment of uncertainties follows our previous 

work on probabilistic robot kinematics [13], which in turn 

builds upon the mathematical foundations provided by 

Refs. [29, 30]. We briefly introduce the applied methods 

here, but refer the interested reader to the related works for 

more thorough insights. For a general introduction to Lie 

Algebra in the scope of robotics, we recommend the 

excellent [31, 32], whose notation we mostly follow. 

Lie Algebra provides a mathematical framework for 

describing the properties and behaviors of Lie groups, 

which are groups that also have the structure of a smooth 

manifold. This framework is particularly useful in robotics 

for representing rotations and rigid body transformations, 

as these operations form the basis of many kinematic and 

dynamic calculations. 

A pose 𝑻𝐴𝐵 ∈ SE(3)  describes the position and 

orientation of an object B with respect to a reference frame 

A. The Special Euclidean group SE(3) includes both 

rotations and translations in three-dimensional space. 

While a pose quantity is generally an element of the 

manifold SE(3), it can be described locally by its linear 

tangent space representation 𝝃 = [𝝆𝜽]𝑇 ∈  ℝ6  related by 

the exponential map: 

 

 𝑻 = Exp(𝝃). (1) 

 

Here, 𝝆 denotes the translational component and 𝜽 the 

rotational component of the tangent space element. The 

exponential map allows for the conversion between the 

tangent space (Lie Algebra) and the manifold (Lie group). 

In Lie Algebra, the tangent space at the identity element 

of a Lie group forms a vector space called the Lie Algebra 

of the group. For SE(3), this tangent space can be 

represented as a six-dimensional vector comprising three 

translational and three rotational components. The adjoint 

representation provides a way to map local tangent space 

quantities between different coordinate frames. 

Local tangent space quantities can be mapped between 

two different local spaces using the adjoint matrix Ad as: 

 

 𝝃𝐴 = 𝐀𝐝(𝑻𝐴𝐵)𝛏𝐵, (2) 

 

with 

 

 𝐀𝐝 = [
𝑹 [𝒕]×𝑹
𝟎 𝑹

] ∈ ℝ6×6, (3) 

 

where 𝑹 is the rotation matrix of 𝑻 and [𝒕]× is the skew-

symmetric matrix formed by the translation vector. The 

term [𝒕]×𝑹 illustrates how local rotation errors can create 

translation errors further down a chain of transformations, 

with the magnitude depending on the distance from the 

original error’s location. 

To understand this, consider that any rotation in three-

dimensional space can be represented as an element of the 

SO(3) group, the special orthogonal group, which deals 

with rotation matrices. Similarly, SE(3) extends this 

concept to include translations. The Lie algebra of SO(3) 

consists of skew-symmetric matrices that represent 

infinitesimal rotations, while the Lie algebra of SE(3) 

includes both infinitesimal rotations and translations. 

We describe the error of a pose as a local deviation 

𝝃B,err  of a nominal pose𝑻𝐴𝐵, i.e., in the tangent space of 

the pose’s reference frame B. The corresponding 

covariance matrix 𝚺𝐴𝐵 = 𝔼[𝛏B,err𝛏B,err
𝑇 ] ∈ ℝ6×6  is 

therefore a locally defined tangent space quantity. This 

covariance matrix encapsulates the uncertainty in both the 

translational and rotational components of the pose. 

The two essential mathematical operations on poses 

needed for the scene graph are concatenation and inversion. 

The concatenation operation combines two 
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transformations, such as 𝑻𝐴𝐵  and 𝑻𝐵𝐶 , to yield the 

transformation from A to C: 

 

 𝑻𝐴𝐶 = 𝑻𝐴𝐵 × 𝑻𝐵𝐶, (4) 

 

 𝚺𝐴𝐶 = 𝐀𝐝𝑻𝐵𝐶
−1 𝚺𝐴𝐵𝐀𝐝

𝑻𝐵𝐶
−1

𝑇 + 𝚺𝐵𝐶. (5) 

 

Here, the two covariance matrices are transformed into 

the common reference frame $C$ using the adjoint matrix, 

where they can be added due to the linearity of the tangent 

space. The covariance composition in Equation 5 is a first-

order approximation (referred to as second order in some 

publications) and is discussed in detail in [29]. 

Analogously, the inverse operation calculates the 

transformation from B to A given the transformation from 

A to B:  

 

 𝑻𝐴𝐵 = 𝑻𝐴𝐵
−1, (6) 

 

 𝚺𝐵𝐴 = 𝐀𝐝𝑻𝐴𝐵
𝚺𝐴𝐵𝐀𝐝𝑻𝐴𝐵

𝑇 . (7) 

 

This shifts the uncertainty from the tangent space of B 

to the tangent space of A. This representation can 

implicitly consider exact transformations, as zero-

covariances simply vanish in Eqs. (5) and (7). 

For a more detailed introduction to Lie Algebra and its 

application in robotics, readers may refer to [32] and other 

comprehensive resources like Refs. [33, 34]. 

C. Implementation 

The presented methodology has been implemented 

within a C++ library, and the corresponding source code is 

accessible online https://github.com/DLR-RM/tf-dude. 

Additionally, a wrapper for the scripting language Python 

is provided, facilitating ease of use and integration into 

various applications. Each coordinate frame is 

characterized by a node element. A frame is precisely 

defined by its pose matrix 𝑻  and an accompanying 

covariance matrix 𝜮 , which may be set to zero for 

precisely known transformations. Distinctive 

identification of each frame is facilitated through the 

application of a unique character string. 

Furthermore, the mathematical operations of 

concatenation and inverse for each frame are executed 

leveraging the computational capabilities provided by the 

manif library [32], which is augmented by the uncertainty 

propagation framework. This ensures that transformations 

account for any uncertainties in the positional data, thereby 

enhancing the robustness of the system. 

The hierarchical structure is implemented using the 

Boost.Graph data structure [35]. Each vertex encapsulates 

a frame as its payload, and the edges define the direction 

of transformations. To determine a path between two 

nodes within the tree, a Breadth-First Search (BFS) routing 

algorithm is employed. The cumulative transformation 

along the identified path is computed based on the 

direction specified by the graph’s edges, facilitating a 

comprehensive understanding of the transformations 

between the starting and ending points of the path. 

The system allows for the addition of multiple root 

nodes, thereby declaring new trees that remain 

disconnected from preceding ones. It is imperative to 

underscore that the establishment of a path between nodes 

situated on distinct trees within the forest is not feasible. 

Each root node initiates an independent tree structure, and 

inter-tree connectivity is explicitly precluded within the 

system’s framework. 

The communication backend is implemented in an IPC-

agnostic way, meaning that it can support various 

implementations of IPC such as ROS [36], ROS2 [37], 

native DDS [38], links and nodes [39] or other systems. 

This flexibility is achieved through the use of generic 

adapters that must be overloaded by the implementation 

using a plugin functionality. These adapters abstract the 

communication details, allowing the core library to remain 

independent of the specific IPC mechanism employed. 

This design ensures that the system can be easily integrated 

into different robotic frameworks without requiring 

significant modifications to the underlying codebase. 

The default operational paradigm involves centralized 

control over all trees, nodes, and computations via a central 

server. A connected client has the capability to perform 

various operations such as creating, retrieving, updating, 

or deleting (CRUD) nodes. Additionally, the client can 

request the cumulative transformation of a specific path. 

Other clients can also access this information, but their 

requests must be routed through the server. This 

centralized architecture ensures efficient management and 

coordination of resources.  

This implementation offers significant advantages in 

terms of flexibility and scalability. By leveraging well-

established libraries and algorithms, the system ensures 

high performance and reliability. Furthermore, the clear 

separation of responsibilities between the server and 

clients facilitates efficient resource management and 

provides a robust framework for complex robotic 

applications. The IPC-agnostic design further enhances the 

system’s adaptability, making it suitable for a wide range 

of robotic platforms and use cases. 

This architecture is illustrated in Fig.  3. 

 

 

Fig. 3. Illustration of an exemplary server-client architecture with 

different API implementations. 
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IV. EVALUATION 

In this section, we evaluate the proposed framework to 

assess its overall performance and effectiveness. The 

evaluation focuses on two primary aspects: computation 

time and functionality. Computation time analysis 

examines the efficiency of the framework in performing 

spatial transformations and uncertainty propagation. This 

is compared to the naive implementation of robot 

operation system (ROS) tf [40] and the sampling-based 

implementation of uncertain tf [28]. Functionality 

evaluation focuses on the individual properties of each 

framework and their applicability to the robotic domain. 

A. Computation Time 

In this evaluation, we focus on the computation time 

required to retrieve the concatenated transform for a full 

path. We define a transformation tree with four levels, 

similar to the tree illustrated in Fig. 2. For each 

implementation, we query the combined path from one leaf 

node to another and measure the execution time. This 

process is repeated 𝑁 = 100′000  times to gather 

statistically significant data on the execution time for each 

implementation. 

We use the naive implementation of ROS tf as the 

baseline. While tf is widely used in robotic applications, it 

does not support the inclusion of covariances in the 

calculations. To address this limitation, an uncertainty-

aware approach called uncertain tf has been developed. 

Uncertain tf employs a Monte Carlo analysis that samples 

transforms based on the covariance of each node and 

propagates them along the path. Although this method can 

model non-linearities, the sampling-based approach does 

not scale well to larger kinematic systems, as the number 

of samples grows exponentially. 

Our approach introduces Lie Algebra, offering a closed-

form solution for modeling the propagation of uncertainty. 

This method transforms poses into the tangent space, as 

detailed in Section III.B, which demands significant 

computational resources. 

The results are shown in Fig. 4. Computation times are 

normalized to the median execution time of ROS tf. The 

median execution time for our approach is approximately 

24.5 times slower than the baseline. In comparison, the 

implementation of uncertain tf takes 60.9 times longer than 

the baseline, making it 2.5 times slower than our approach.  

 

 

Fig. 4. Normalized computation time of ROS tf, our approach and 

uncertain tf. 

This demonstrates that our model-based approach 

significantly outperforms the sampling-based approach 

while still accounting for uncertainty. 

B. Functionality 

As discussed earlier, integrating uncertainty into the 

calculation of transformation trees impacts the 

computational resources required for processing. 

Therefore, it is crucial to analyze the properties of each 

implementation to identify the best fit for each targeted 

application. The important properties of each approach are 

listed in Table I. 

TABLE I. IMPLEMENTATION PROPERTIES 

Property ROS tf uncertain tf ours 

Uncertainty 

Model 
None Gaussian Gaussian 

Error 

Propagation 

Approach 

None Sampling Lie Algebra 

Integration Low Medium Medium 

Computational 

Cost 
Low High Medium 

Robustness Low High High 

IPC-agnostic No No Yes 

 

The naive implementation for ROS tf does not 

incorporate any uncertainty model into the calculation. In 

contrast, both uncertain tf and our approach extend the 

system to include covariances. While both can propagate 

errors along the transformation path, our method uses a 

closed-form solution based on Lie Algebra instead of a 

sampling approach. 

The tf package is already part of the default ROS 

installation, resulting in negligible integration overhead. 

Uncertain tf builds on top of the ROS implementation and 

requires one additional package for integration. However, 

our approach, which is not yet integrated into the ROS 

ecosystem, requires the developer to integrate the system 

completely. This, however, offers a completely IPC-

agnostic approach that does not rely on ROS as a 

middleware and can work with any communication 

framework. Lastly, ROS tf assumes all measurements are 

exact, so any deviations will decrease the robustness of the 

system. 

V. APPLICATION 

To demonstrate the practical utility and broad 

applicability of the proposed framework, two application 

examples will be illustrated in the following sections. An 

in-depth analysis of applying Lie Algebra to the 

configuration modeling problem has been presented in 

[13]. Therefore, we will focus on the scene-graph 

implementation in this discussion. 

The first application showcases the integration of the 

framework on a robotic arm, which is affected by bending 

induced by the gravitational pull of the Earth. This 

example highlights how the system compensates for real-

world physical effects that deviate from ideal models. By 

applying the proposed methodology, we can accurately 

model and correct for these deviations, ensuring the 
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robotic arm operates with high precision despite the 

bending. 

The second application illustrates a mapping task on a 

system with an uncertain RECS, formulated as a graph 

optimization problem. This example demonstrates how the 

framework handles uncertainties in the robotic 

configuration space, ensuring accurate and reliable 

mapping. By using a robust scene-graph implementation, 

the system can dynamically adjust to changes and 

uncertainties in the environment, maintaining the integrity 

of the mapping process. 

These examples are chosen to underscore the versatility 

and robustness of the proposed framework in handling 

various practical challenges in robotics. They provide 

concrete evidence of how the framework can be applied to 

real-world scenarios, demonstrating its effectiveness in 

improving the accuracy and reliability of robotic systems. 

Through these applications, we aim to showcase the 

framework’s potential for widespread use in diverse 

robotic applications, highlighting its capability to address 

complex problems with innovative solutions. 

A. Uncertain Robotic and Environmental Configuration 

State 

As part of the European Space Agency (ESA) project 

for a sample transfer arm breadboard study, the German 

Aerospace Center (DLR) developed the TINA 

manipulator [41] as a compact, modular, and torque-

controlled robotic system designed to meet the 

requirements of the Mars Sample Return mission. Fig. 5 

illustrates the robotic arm in its initial position mounted on 

a lander.  

 

  

Fig. 5. TINA arm bending due to gravity. 

Upon closer inspection, it becomes evident that the 

manipulator, even in its initial configuration, experiences 

moderate deformations attributable to its own weight and 

joint play, particularly in the axial direction. This can be 

seen in Fig.5. The computed position, designated as𝑻′, 
represents the theoretical location without accounting for 

uncertainties. The real position of the end effector is 

denoted as 𝑻, and it falls within an anticipated region by 

incorporating the effects of uncertainties. These 

deformations introduce uncertainties in the pose of the end 

effector, which can be effectively modeled using the 

proposed framework. 

By incorporating the expected variance parameters into 

the transformation tree, the state of the robot configuration 

can be predicted probabilistically. This allows the position 

of the end effector to be constrained within an anticipated 

uncertainty region. Considering these uncertainties 

provides a more realistic depiction of the arm’s pose by 

acknowledging the impact of various factors, including 

gravitational forces. This approach enhances spatial 

awareness and enables more robust manipulations. 

The selection of appropriate probabilistic parameters 

heavily depends on the specific characteristics of the 

associated system and requires specialized technical 

knowledge. If necessary, experimental evaluations must be 

conducted to validate and fine-tune these parameters. This 

approach ensures that the manipulator’s performance 

remains robust and reliable, even in the presence of 

inherent uncertainties. 

B. Environmental Maping 

To enable more intricate manipulations and interactions 

between the robot and its environment, a significant 

challenge lies in achieving precise registration of the robot 

relative to its surroundings. This entails aligning various 

world representations generated for different types of tasks 

to ensure coherence and accuracy in the robot’s perception 

of its environment. 

As depicted in Fig. 6, Rollin’ Justin [42] is mapping a 

Smart Payload Unit (SPU) in Martian surroundings. In 

addition to the unknown state of the environmental 

configuration, further challenges arise from within the 

robot itself. Although the upper body assembly is rigidly 

connected to the base platform, the wire rope construction 

in different parts of the torso is inherently less precise than 

the rigid joints of the arms, introducing uncertainties into 

the robot’s configuration state. 

 

  

Fig. 6. Rollin’ Justin maps an instrument in a Martian environment. 

Effectively managing and mitigating this uncertainty is 

crucial since information for navigation purposes is 

collected from sensors in the base, while other higher-level 

tasks, such as object recognition and manipulation, rely on 

information from the camera mounted in Justin’s head. 

Therefore, modeling the spatial relations of the robot’s 
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configuration state, including uncertainties, is essential 

and can be addressed by the proposed framework. This 

framework simplifies the handling of transformations and 

their associated uncertainties by summarizing them into a 

single step. 

In the context of environmental mapping, the 

transformation from the robot base to the head camera 

becomes particularly critical as it serves as the foundation 

for registering fiducial markers linked to the SPU. 

Combined with the spatial relationship to the registered 

fiducials and information regarding the global reference 

provided by MROSLAM [3], an optimization graph can be 

constructed, as illustrated in Fig. 6. The optimization 

problem can be effectively addressed using GTSAM [43] 

or comparable algorithms, leading to an optimized 

estimation of the SPU’s pose. 

This comprehensive approach significantly improves 

the reliability and quality of environmental mapping 

outcomes in the robot’s operational context. By integrating 

precise registration techniques and robust uncertainty 

modeling, the framework enhances the robot’s ability to 

interact accurately and efficiently with its environment, 

ensuring higher levels of performance in complex tasks. 

VI. CONCLUSION 

This paper introduces a robust framework for 

representing uncertain spatial transformations in robotic 

systems, leveraging Lie Algebra for a structured and 

probabilistic approach. Traditional deterministic methods 

often fall short in accounting for the inherent inaccuracies 

and environmental factors that affect robotic operations. 

Our proposed framework addresses these limitations by 

incorporating uncertainty into transformation trees, 

providing a more realistic and reliable computation of 

spatial transformations. 

The framework models inaccuracies arising from sensor 

decalibration, joint position errors, mechanical stress, and 

gravitational influences, as well as environmental 

uncertainties from perception limitations. By integrating 

probabilistic models into the transformation calculations, 

we offer a robust and adaptable solution for various robotic 

applications, enhancing the system’s ability to handle real-

world complexities. 

We evaluated the approach based on computational time 

with the naive implementation of Robot Operating System 

(ROS) tf and its extension uncertain tf and compared 

functionalities across these approaches.  

We are able to show that our method outperforms the 

current state-of-the-art approach for uncertain 

transformation trees in terms of computational complexity. 

Further, we demonstrate the practical utility of the 

proposed framework through two application examples. 

The first example involves a robotic arm affected by 

gravitational bending, showcasing how the system 

considers for real-world physical effects that deviate from 

ideal models. The second example illustrates a mapping 

task on a system with an uncertain Robot and 

Environmental Configuration State (RECS), formulated as 

a graph optimization problem. These applications 

highlight the framework’s effectiveness in improving 

positional accuracy and enabling precise manipulations. 

The hierarchical transformation tree structure not only 

simplifies complex kinematic chains but also provides a 

comprehensive understanding of the robot’s spatial 

relationships. This approach reduces computational 

complexity and enhances the scalability and adaptability 

of the system. Additionally, the IPC-agnostic design 

allows for easy integration into different robotic 

frameworks, further enhancing the system’s versatility. 

Future work includes extending the framework to model 

temporal deviations, enabling configuration retrieval from 

previous time steps. We also aim to align the interface with 

ROS’s tf implementation for seamless integration. 

In summary, this contribution significantly advances the 

management of spatial transformation uncertainties in 

robotics, providing a versatile and robust tool that 

enhances the reliability and performance of robotic 

systems in diverse applications. The source code for this 

framework is accessible online https://github.com/DLR-

RM/tf-dude. 
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