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Abstract—Accurately representing spatial transformations in
robotics is crucial for reliable system performance.
Traditional methods often fail to account for internal
inaccuracies and environmental factors, leading to significant
errors. This work introduces a framework that incorporates
uncertainty into transformation trees using Lie Algebra,
offering a consistent and realistic computation of spatial
transformations. Our approach models inaccuracies from
sensor decalibration, joint position errors, mechanical stress,
and gravitational influences, as well as environmental
uncertainties from perception limitations. By integrating
probabilistic models into transformation calculations, we
provide a robust and adaptable solution for various robotic
applications. The framework is implemented using a C++
library with a Python wrapper, leveraging hierarchical
transformation trees to simplify kinematic chains and apply
uncertainty propagation. Real-world examples demonstrate
the framework’s  effectiveness:  compensating  for
gravitational bending in a robotic arm and handling
uncertainties in a mapping task with an uncertain kinematic.
These applications highlight the framework’s ability to
enhance the accuracy and reliability of tasks such

as manipulation, navigation, and interaction with
environments. This contribution aims to advance robotic
systems’ performance by providing a comprehensive method
for managing spatial transformation uncertainties.
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I. INTRODUCTION

In the dynamic landscape of robotics, accurately
representing spatial transformations is pivotal for reliable
system performance. Conventional methods, which treat
provided transformations as precise and deterministic, face
difficulties with inherent inaccuracies within the system
and environmental complexities. This work highlights the
need for spatial representations in robotics that account for
inaccuracies, often referred to as scene graphs. These
representations allow modeling not only the spatial
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relationships in a robot-environment system but also the
gaps in our knowledge about it.

An illustrative example is the distinction between a
robotic arm’s repetition accuracy, which signifies its
capability to consistently reach the same point in a
workspace, and its absolute accuracy. For conventional
robotic systems, the first can be assumed to be "exact".
However, the error of the latter can be higher by several
orders of magnitude which motivates the modeling of this
error. Position measurements, constrained by both
physical limitations and environmental influences,
frequently fall short of the requisite precision. This
constraint becomes especially critical in applications
requiring high accuracy, such as surgical robotics [1].

An additional example is the process of registering a
robot with respect to its environment, a task achieved
through either an inaugural calibration procedure [2] or by
means of the navigation implemented in mobile robotic
systems [3].

Interestingly, various scholarly works [4, 5] have
considered robot uncertainty within specific domains, such
as the kinematic structure or autonomous navigation
components. However, there is limited progress in
combining these several domains into one single
representation like a scene graph to achieve a unified
consideration of inaccuracy-aware spatial relations.
Conventional approaches that disregard uncertainty in
scene graphs fall short in capturing the intricacies of real-
world scenarios.

This paper advocates for a paradigm shift by
introducing a framework that incorporates uncertainty into
scene graphs, offering a more realistic and robust
representation of transformations. By addressing
challenges posed by both robot internal inaccuracies and
the uncertainty of the robot’s interaction with the
environment, our approach aims to enhance the reliability
and performance of robotic systems in practical
applications.

We use the following terminology in this paper: Robotic
systems can be subject to errors that cause inaccurate pose
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calculations, either within the system or with respect to its
environment. A common simplification is to model such
inaccuracies in a probabilistic way, thus subjecting
nominal relative poses to an additional uncertainty. For a
multitude of robotic applications, such uncertainty is
modeled as a zero-mean normal distribution, thus an
uncertain pose consists of a nominal pose and a covariance
matrix. Generally, this simplification trades the exact
representation of robotic errors for the availability of
powerful mathematical tools and is thus well established
in the robotic community. We adopt this error modeling as
well, which allows us to immediately integrate the
probabilistic pose information from other software
components into our scene graph.

Il. RELATED WORK

Accurately describing the spatial relationships of a robot
and its environment is a key aspect of robotics specifically
and mechanical mechanisms generally. Accurately
describing the spatial relationships between a robot and its
environment is crucial in both robotics and mechanical
engineering. This involves not only understanding the
robot’s position and orientation within its workspace but
also how it interacts with various objects and obstacles
around it. The ability to model and predict these
interactions is crucial for tasks such as navigation,
manipulation, and  automated  decision-making.
Furthermore, a precise understanding of spatial
relationships enhances the robot’s efficiency, safety, and
adaptability in complex and dynamic environments.
Consequently, advancements in this area have significant
implications for the development of more sophisticated
and capable robotic systems.

Commencing with the early explorations in formulating
a framework for kinematics in mechanical structures [6, 7],
the field witnessed significant strides with one of the
pivotal works by Denavit and Hartenberg [8]. In this
groundbreaking contribution, the authors devised a
structured yet elegant methodology to comprehensively
describe the chain of transformations associated with
robotic arms. Subsequent endeavors augmented the
toolbox of robot kinematics representation, for example by
considering the underlying Lie-Algebra of spatial
transformations [9]. Advancements in the use of conformal
geometric algebra have provided a unified approach to
geometric reasoning, simplifying the computation of
kinematics and dynamics of serial manipulators [10].
Moreover, neural network-based approaches and deep
reinforcement learning have enhanced the precision and
efficiency of solving inverse kinematics problems for high
degrees of freedom manipulators [11, 12]. Our recent
work [13] provides a kinematic robot description that
allows considering inaccuracies from joint position
measurements, mechanical stress-induced deformations,
and gravitational influences in a probabilistic manner.

In the field of robotic navigation, numerous approaches
account for the uncertainty of relative transformations,
particularly in the domain of Simultaneous Localization
and Mapping (SLAM). For instance, methods such as
those proposed by Kaess et al. in iISAM2 [14] and

KUmmerle et al. in g2o [15] utilize the covariance or
information matrix to appropriately weigh different spatial
transformations within a graph optimization framework.
Recent advancements include the development of
distributed pose graph optimization, which enhances
collaborative SLAM by efficiently managing local and
global uncertainties [16], and the integration of multi-level
graph partitioning to improve scalability and accuracy [17].
These techniques enhance the accuracy and reliability of
mapping and localization by effectively managing the
inherent uncertainties in sensor measurements and
environmental interactions.

The interaction of a robot with objects in its
environment, specifically the uncertainties inherent in the
workspace, has been investigated in Ref. [18].
Additionally, significant progress has been made in
modeling the uncertainty in the perception process itself,
including both classical [4] and deep-learning-based
methods [5]. Recent research efforts have focused on
sparse iterative approaches [19] to further enhance
robustness in uncertain environments.

Finally, the hand-eye calibration of a robot is nothing
else but an additional transformation between the real and
the nominal robot geometry and can thus also be subject to
inaccuracies, as discussed by Nguyen et al. [2]. Recent
studies have further explored these uncertainties,
proposing methods to enhance the accuracy and robustness
of hand-eye calibration [20, 21]. These advancements
highlight the ongoing need to address and mitigate
calibration inaccuracies in vision-guided robotic systems.

In the end, all these sub-fields of robotics provide a
multitude of different types of spatial transformations,
where potentially all of them are subjected to errors which
are being modeled as uncertainties.

Systematic approaches to order a multitude of
interconnected transformations, particularly within the
area of Virtual Reality (VR) [22, 23], and robotic
simulators [24, 25] considered the utilization of a scene
graph to represent relative spatial relationships. This scene
graph, akin to a tree structure, comprises multiple nodes
arranged in a parent-child manner. This innovative
approach enhanced the representation and simulation
capabilities in both virtual reality and robotic simulation
domains. The current state of the art is tf [26], the scene
graph framework of Robot Operating System (ROS).

Interestingly, very little work has been published that
considers the uncertainty of spatial information by
interconnecting the different realms of robotics. Initial
efforts have been directed towards acknowledging
uncertainty within the scene graph, for example [27].
However, these early attempts typically fall short in
correctly modeling the error propagation using Lie
Algebra. Alternatively, some implementations resort to
sampling-based approaches to represent the overall
uncertainty within the system, such as Ref. [28], which
however comes with computational costs.

The Lie-Algebra allows to acknowledge the manifold
character of spatial relationships and is a powerful tool to
compute and propagate uncertainty along chains of spatial
transformations. An introduction to it together with the
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application to robotic navigation is provided by
Barfoot et al. [29]. Similarly, Lie-Algebra-based concepts
are provided for the error propagation within robotic
manipulators, either for single errors [30] or as our
comprehensive kinematic model [13].

Despite the widespread use of Lie Algebra in
uncertainty estimation, to the best of our knowledge, no
existing approach formulating a scene graph for robotics
has integrated Lie Algebra-based uncertainty propagation.
In our ongoing work, we aim to address this gap and
demonstrate the efficacy of incorporating Lie Algebra into
a scene graph framework for a more nuanced and accurate
representation of uncertainty in kinematic systems.

I111. ROBOTIC AND ENVIRONMENTAL CONFIGURATION
STATE

Accurate assessment of the current configuration state
in robotic systems holds significant importance across
various applications. This is particularly pronounced in
scenarios involving non-static components equipped with
perception sensors, where precise positional data is crucial
for effective operation. Registering cameras affixed to
robotic manipulators to the robot’s origin is imperative for
seamlessly integrating spatial information within the
correct coordinate framework.

Knowledge of the system’s distance to the environment
is indispensable for collision avoidance, especially when
navigating confined spaces. To achieve this, it is crucial to
carefully observe and organize the positions of joints into
a transformation tree. This tree not only helps illustrate
how the coordinate framework depends on a specified
starting point known as the root frame, but also aids in
obtaining an accurate estimate of the robot’s spatial
volume and movement range.

However, overlooking the inherent uncertainty in these
measurements and the subtle non-static characteristics of
certain links—attributable to mechanical stress and
gravitational forces—can lead to erroneous state
estimations. These factors can significantly impact the
reliability of the robot’s operation, particularly in dynamic
or unpredictable environments.

In the ensuing discussion, we elaborate on Representing
the Robotic and Environmental State (RCES) as a
transformation tree. We discuss the methodology for
constructing this tree, highlighting the importance of each
node and its relationship to the overall framework.
Subsequently, we introduce Lie Algebra as a robust
solution for modeling uncertainty in this process. Lie
Algebra provides a mathematical structure that allows for
the representation and manipulation of spatial
transformations, which is essential for accurately
modeling the uncertainties and variances in the robot’s
configuration.

Finally, we detail our implementation of a managed and
centralized approach for addressing the RCES problem
within an Inter-Process Communication (IPC) framework.
This approach not only centralizes the data processing but
also ensures that all components of the robotic system are
synchronized and updated in real-time, enhancing the
overall accuracy and efficiency of the system.

Throughout this work, we intend to conceptualize the
inaccuracies within the system as a form of uncertainty.
This approach is motivated by the computational
convenience afforded through the utilization of a
probabilistic model, as opposed to employing distinct
models tailored to individual system errors. By treating all
potential errors as probabilistic uncertainties, we can
simplify the computational processes and improve the
robustness of the system’s state estimation.

We believe that this comprehensive approach to
modeling and managing uncertainties will significantly
enhance the performance and reliability of robotic systems,
particularly in complex and dynamic operational
environments.

Fig. 1. An illustrated example of a robotic manipulator and an external
camera.

A. Transformation Tree

Deriving the transformation between two coordinate
frames is a pivotal task in robotics. A widely employed
approach involves modeling the system as a hierarchical
tree of frame transformations illustrates a typical example
involving a robotic manipulator and an external camera, as
depicted in Fig. 1. To get the transformation between the
coordinate frames T.4, and T;.p , the entire path
involving multiple individual transformations must be
calculated. In this example, the impact of uncaptured
deviations in kinematics from the real world can be
observed. The manipulator bends due to gravitational
forces, causing the actual position of T¢p to differ from
the expected position derived from a naive approach based
on exact measurements. This discrepancy highlights the
importance of accounting for real-world factors such as
mechanical flexibilities and external forces in kinematic
modeling to ensure accurate predictions and reliable
performance in practical applications.

A key optimization involves consolidating static
displacements into a singular transformation, effectively
pruning the tree for computational efficiency. This means
that static transformations, which do not change over time,
are combined into a single transformation matrix. Movable
connections are represented as rotations or translations
centered around joints, contributing to a chain of static
links and dynamic joints. This approach not only
streamlines computational complexity but also provides a
comprehensive understanding of a robotic system’s
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kinematic properties, enhancing both efficiency and
reliability.

One significant advantage of using a hierarchical tree
structure is that it can be directly derived from a Computer
Aided Design (CAD) model, which inherently uses the
same representation. CAD models are typically organized
into a hierarchy of parts and subassemblies, mirroring the
structure of the transformation tree. This direct correlation
allows for seamless integration and accurate transfer of
geometric data from design to implementation.

Following the comprehensive description of robot
kinematics within the previously mentioned tree structure,
the process of retrieving the direct transformation between
any two arbitrary frames unfolds by traversing the path
articulated within this structured tree. This systematic
approach ensures a clear and methodical procedure for
obtaining the specific transformation information required
for precise spatial relationships between frames within the
robotic system.

By organizing transformations into a hierarchical tree
structure, we can simplify complex kinematic chains into
more manageable sub-problems. This not only reduces the
computational burden but also makes the system more
scalable and adaptable to changes. Furthermore, the
hierarchical model aids in debugging and enhances the
modularity of the kinematic analysis, facilitating easier
updates and maintenance. An illustration of this is
provided in Fig. 2.

Forest

Tree

root root

—— Transformation

Path

Fig. 2. A schematic overview of the forest and tree structure holding all
transformation information.

B. Transformations and Unvertainty

Our treatment of uncertainties follows our previous
work on probabilistic robot kinematics [13], which in turn
builds upon the mathematical foundations provided by
Refs. [29, 30]. We briefly introduce the applied methods
here, but refer the interested reader to the related works for
more thorough insights. For a general introduction to Lie
Algebra in the scope of robotics, we recommend the
excellent [31, 32], whose notation we mostly follow.

Lie Algebra provides a mathematical framework for
describing the properties and behaviors of Lie groups,
which are groups that also have the structure of a smooth

manifold. This framework is particularly useful in robotics
for representing rotations and rigid body transformations,
as these operations form the basis of many kinematic and
dynamic calculations.

A pose T,z € SE(3) describes the position and
orientation of an object B with respect to a reference frame
A. The Special Euclidean group SE(3) includes both
rotations and translations in three-dimensional space.
While a pose quantity is generally an element of the
manifold SE(3), it can be described locally by its linear
tangent space representation & = [p0]T € R® related by
the exponential map:

T = Exp(§). 1)

Here, p denotes the translational component and @ the
rotational component of the tangent space element. The
exponential map allows for the conversion between the
tangent space (Lie Algebra) and the manifold (Lie group).

In Lie Algebra, the tangent space at the identity element
of a Lie group forms a vector space called the Lie Algebra
of the group. For SE(3), this tangent space can be
represented as a six-dimensional vector comprising three
translational and three rotational components. The adjoint
representation provides a way to map local tangent space
guantities between different coordinate frames.

Local tangent space quantities can be mapped between
two different local spaces using the adjoint matrix Ad as:

fA = Ad(TAB)EBi 2

with
na-f Gfems o

where R is the rotation matrix of T and [t] is the skew-
symmetric matrix formed by the translation vector. The
term [t]«R illustrates how local rotation errors can create
translation errors further down a chain of transformations,
with the magnitude depending on the distance from the
original error’s location.

To understand this, consider that any rotation in three-
dimensional space can be represented as an element of the
SO(3) group, the special orthogonal group, which deals
with rotation matrices. Similarly, SE(3) extends this
concept to include translations. The Lie algebra of SO(3)
consists of skew-symmetric matrices that represent
infinitesimal rotations, while the Lie algebra of SE(3)
includes both infinitesimal rotations and translations.

We describe the error of a pose as a local deviation
&perr Of @ nominal poseT 45, i.e., in the tangent space of
the pose’s reference frame B. The corresponding
covariance  matrix  X,5 = E[Eperrdherr] € RO*C s
therefore a locally defined tangent space quantity. This
covariance matrix encapsulates the uncertainty in both the
translational and rotational components of the pose.

The two essential mathematical operations on poses
needed for the scene graph are concatenation and inversion.
The  concatenation  operation  combines  two
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transformations, such as T,z and Ty, , to yield the
transformation from A to C:

Tyc =Tpp X Tpe, 4)
i = AdTEéZABAd;Eé + Zpe. (5)

Here, the two covariance matrices are transformed into
the common reference frame $C$ using the adjoint matrix,
where they can be added due to the linearity of the tangent
space. The covariance composition in Equation 5 is a first-
order approximation (referred to as second order in some
publications) and is discussed in detail in [29].

Analogously, the inverse operation calculates the
transformation from B to A given the transformation from
Ato B:

Tup = T3, (6)
Ipy = AdTABZABAd;AB- (7

This shifts the uncertainty from the tangent space of B
to the tangent space of A. This representation can
implicitly consider exact transformations, as zero-
covariances simply vanish in Egs. (5) and (7).

For a more detailed introduction to Lie Algebra and its
application in robotics, readers may refer to [32] and other
comprehensive resources like Refs. [33, 34].

C. Implementation

The presented methodology has been implemented
within a C++ library, and the corresponding source code is
accessible online https://github.com/DLR-RM/tf-dude.
Additionally, a wrapper for the scripting language Python
is provided, facilitating ease of use and integration into
various applications. Each coordinate frame is
characterized by a node element. A frame is precisely
defined by its pose matrix T and an accompanying
covariance matrix X, which may be set to zero for
precisely known transformations. Distinctive
identification of each frame is facilitated through the
application of a unique character string.

Furthermore, the mathematical operations of
concatenation and inverse for each frame are executed
leveraging the computational capabilities provided by the
manif library [32], which is augmented by the uncertainty
propagation framework. This ensures that transformations
account for any uncertainties in the positional data, thereby
enhancing the robustness of the system.

The hierarchical structure is implemented using the
Boost.Graph data structure [35]. Each vertex encapsulates
a frame as its payload, and the edges define the direction
of transformations. To determine a path between two
nodes within the tree, a Breadth-First Search (BFS) routing
algorithm is employed. The cumulative transformation
along the identified path is computed based on the
direction specified by the graph’s edges, facilitating a
comprehensive understanding of the transformations
between the starting and ending points of the path.

The system allows for the addition of multiple root
nodes, thereby declaring new trees that remain
disconnected from preceding ones. It is imperative to
underscore that the establishment of a path between nodes
situated on distinct trees within the forest is not feasible.
Each root node initiates an independent tree structure, and
inter-tree connectivity is explicitly precluded within the
system’s framework.

The communication backend is implemented in an IPC-
agnostic way, meaning that it can support various
implementations of IPC such as ROS [36], ROS2 [37],
native DDS [38], links and nodes [39] or other systems.
This flexibility is achieved through the use of generic
adapters that must be overloaded by the implementation
using a plugin functionality. These adapters abstract the
communication details, allowing the core library to remain
independent of the specific IPC mechanism employed.
This design ensures that the system can be easily integrated
into different robotic frameworks without requiring
significant modifications to the underlying codebase.

The default operational paradigm involves centralized
control over all trees, nodes, and computations via a central
server. A connected client has the capability to perform
various operations such as creating, retrieving, updating,
or deleting (CRUD) nodes. Additionally, the client can
request the cumulative transformation of a specific path.
Other clients can also access this information, but their
requests must be routed through the server. This
centralized architecture ensures efficient management and
coordination of resources.

This implementation offers significant advantages in
terms of flexibility and scalability. By leveraging well-
established libraries and algorithms, the system ensures
high performance and reliability. Furthermore, the clear
separation of responsibilities between the server and
clients facilitates efficient resource management and
provides a robust framework for complex robotic
applications. The IPC-agnostic design further enhances the
system’s adaptability, making it suitable for a wide range
of robotic platforms and use cases.

This architecture is illustrated in Fig. 3.

IPC specific

[ 3 implementation

W S

e

a
e

« create node » read nodes » update node
» update node » read nodes

Fig. 3. lllustration of an exemplary server-client architecture with
different APl implementations.
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IV. EVALUATION

In this section, we evaluate the proposed framework to
assess its overall performance and effectiveness. The
evaluation focuses on two primary aspects: computation
time and functionality. Computation time analysis
examines the efficiency of the framework in performing
spatial transformations and uncertainty propagation. This
is compared to the naive implementation of robot
operation system (ROS) tf [40] and the sampling-based
implementation of uncertain tf [28]. Functionality
evaluation focuses on the individual properties of each
framework and their applicability to the robotic domain.

A. Computation Time

In this evaluation, we focus on the computation time
required to retrieve the concatenated transform for a full
path. We define a transformation tree with four levels,
similar to the tree illustrated in Fig. 2. For each
implementation, we query the combined path from one leaf
node to another and measure the execution time. This
process is repeated N = 100’000 times to gather
statistically significant data on the execution time for each
implementation.

We use the naive implementation of ROS tf as the
baseline. While tf is widely used in robotic applications, it
does not support the inclusion of covariances in the
calculations. To address this limitation, an uncertainty-
aware approach called uncertain tf has been developed.
Uncertain tf employs a Monte Carlo analysis that samples
transforms based on the covariance of each node and
propagates them along the path. Although this method can
model non-linearities, the sampling-based approach does
not scale well to larger kinematic systems, as the number
of samples grows exponentially.

Our approach introduces Lie Algebra, offering a closed-
form solution for modeling the propagation of uncertainty.
This method transforms poses into the tangent space, as
detailed in Section I11.B, which demands significant
computational resources.

The results are shown in Fig. 4. Computation times are
normalized to the median execution time of ROS tf. The
median execution time for our approach is approximately
24.5 times slower than the baseline. In comparison, the
implementation of uncertain tf takes 60.9 times longer than
the baseline, making it 2.5 times slower than our approach.

Normalized Computation Time

=

0 10 20 30 40 50 60 70

Narmalized Time

certain_tf

Fig. 4. Normalized computation time of ROS tf, our approach and
uncertain tf.

This demonstrates that our model-based approach
significantly outperforms the sampling-based approach
while still accounting for uncertainty.

B. Functionality

As discussed earlier, integrating uncertainty into the
calculation of transformation trees impacts the
computational  resources required for processing.
Therefore, it is crucial to analyze the properties of each
implementation to identify the best fit for each targeted
application. The important properties of each approach are
listed in Table I.

TABLE I. IMPLEMENTATION PROPERTIES

Property ROS tf uncertain tf ours
Uncertainty None Gaussian Gaussian
Model
Error
Propagation None Sampling Lie Algebra
Approach
Integration Low Medium Medium
Computational Low High Medium
Cost
Robustness Low High High
IPC-agnostic No No Yes

The naive implementation for ROS tf does not
incorporate any uncertainty model into the calculation. In
contrast, both uncertain tf and our approach extend the
system to include covariances. While both can propagate
errors along the transformation path, our method uses a
closed-form solution based on Lie Algebra instead of a
sampling approach.

The tf package is already part of the default ROS
installation, resulting in negligible integration overhead.
Uncertain tf builds on top of the ROS implementation and
requires one additional package for integration. However,
our approach, which is not yet integrated into the ROS
ecosystem, requires the developer to integrate the system
completely. This, however, offers a completely IPC-
agnostic approach that does not rely on ROS as a
middleware and can work with any communication
framework. Lastly, ROS tf assumes all measurements are
exact, so any deviations will decrease the robustness of the
system.

V. APPLICATION

To demonstrate the practical utility and broad
applicability of the proposed framework, two application
examples will be illustrated in the following sections. An
in-depth analysis of applying Lie Algebra to the
configuration modeling problem has been presented in
[13]. Therefore, we will focus on the scene-graph
implementation in this discussion.

The first application showcases the integration of the
framework on a robotic arm, which is affected by bending
induced by the gravitational pull of the Earth. This
example highlights how the system compensates for real-
world physical effects that deviate from ideal models. By
applying the proposed methodology, we can accurately
model and correct for these deviations, ensuring the
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robotic arm operates with high precision despite the
bending.

The second application illustrates a mapping task on a
system with an uncertain RECS, formulated as a graph
optimization problem. This example demonstrates how the
framework handles uncertainties in the robotic
configuration space, ensuring accurate and reliable
mapping. By using a robust scene-graph implementation,
the system can dynamically adjust to changes and
uncertainties in the environment, maintaining the integrity
of the mapping process.

These examples are chosen to underscore the versatility
and robustness of the proposed framework in handling
various practical challenges in robotics. They provide
concrete evidence of how the framework can be applied to
real-world scenarios, demonstrating its effectiveness in
improving the accuracy and reliability of robotic systems.
Through these applications, we aim to showcase the
framework’s potential for widespread use in diverse
robotic applications, highlighting its capability to address
complex problems with innovative solutions.

A. Uncertain Robotic and Environmental Configuration
State

As part of the European Space Agency (ESA) project
for a sample transfer arm breadboard study, the German
Aerospace Center (DLR) developed the TINA
manipulator [41] as a compact, modular, and torque-
controlled robotic system designed to meet the

requirements of the Mars Sample Return mission. Fig. 5
illustrates the robotic arm in its initial position mounted on
a lander.

|

Fig. 5. TINA arm bending due to gravity.

Upon closer inspection, it becomes evident that the
manipulator, even in its initial configuration, experiences
moderate deformations attributable to its own weight and
joint play, particularly in the axial direction. This can be
seen in Fig.5. The computed position, designated asT’,
represents the theoretical location without accounting for
uncertainties. The real position of the end effector is
denoted as T, and it falls within an anticipated region by
incorporating the effects of uncertainties. These
deformations introduce uncertainties in the pose of the end

effector, which can be effectively modeled using the
proposed framework.

By incorporating the expected variance parameters into
the transformation tree, the state of the robot configuration
can be predicted probabilistically. This allows the position
of the end effector to be constrained within an anticipated
uncertainty region. Considering these uncertainties
provides a more realistic depiction of the arm’s pose by
acknowledging the impact of various factors, including
gravitational forces. This approach enhances spatial
awareness and enables more robust manipulations.

The selection of appropriate probabilistic parameters
heavily depends on the specific characteristics of the
associated system and requires specialized technical
knowledge. If necessary, experimental evaluations must be
conducted to validate and fine-tune these parameters. This
approach ensures that the manipulator’s performance
remains robust and reliable, even in the presence of
inherent uncertainties.

B. Environmental Maping

To enable more intricate manipulations and interactions
between the robot and its environment, a significant
challenge lies in achieving precise registration of the robot
relative to its surroundings. This entails aligning various
world representations generated for different types of tasks
to ensure coherence and accuracy in the robot’s perception
of its environment.

As depicted in Fig. 6, Rollin’ Justin [42] is mapping a
Smart Payload Unit (SPU) in Martian surroundings. In
addition to the unknown state of the environmental
configuration, further challenges arise from within the
robot itself. Although the upper body assembly is rigidly
connected to the base platform, the wire rope construction
in different parts of the torso is inherently less precise than
the rigid joints of the arms, introducing uncertainties into
the robot’s configuration state.

Fig. 6. Rollin’ Justin maps an instrument in a Martian environment.

Effectively managing and mitigating this uncertainty is
crucial since information for navigation purposes is
collected from sensors in the base, while other higher-level
tasks, such as object recognition and manipulation, rely on
information from the camera mounted in Justin’s head.
Therefore, modeling the spatial relations of the robot’s



International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 1, 2025

configuration state, including uncertainties, is essential
and can be addressed by the proposed framework. This
framework simplifies the handling of transformations and
their associated uncertainties by summarizing them into a
single step.

In the context of environmental mapping, the
transformation from the robot base to the head camera
becomes particularly critical as it serves as the foundation
for registering fiducial markers linked to the SPU.
Combined with the spatial relationship to the registered
fiducials and information regarding the global reference
provided by MROSLAM [3], an optimization graph can be
constructed, as illustrated in Fig. 6. The optimization
problem can be effectively addressed using GTSAM [43]
or comparable algorithms, leading to an optimized
estimation of the SPU’s pose.

This comprehensive approach significantly improves
the reliability and quality of environmental mapping
outcomes in the robot’s operational context. By integrating
precise registration techniques and robust uncertainty
modeling, the framework enhances the robot’s ability to
interact accurately and efficiently with its environment,
ensuring higher levels of performance in complex tasks.

VI. CONCLUSION

This paper introduces a robust framework for
representing uncertain spatial transformations in robotic
systems, leveraging Lie Algebra for a structured and
probabilistic approach. Traditional deterministic methods
often fall short in accounting for the inherent inaccuracies
and environmental factors that affect robotic operations.
Our proposed framework addresses these limitations by
incorporating uncertainty into transformation trees,
providing a more realistic and reliable computation of
spatial transformations.

The framework models inaccuracies arising from sensor
decalibration, joint position errors, mechanical stress, and
gravitational influences, as well as environmental
uncertainties from perception limitations. By integrating
probabilistic models into the transformation calculations,
we offer a robust and adaptable solution for various robotic
applications, enhancing the system’s ability to handle real-
world complexities.

We evaluated the approach based on computational time
with the naive implementation of Robot Operating System
(ROS) tf and its extension uncertain tf and compared
functionalities across these approaches.

We are able to show that our method outperforms the
current  state-of-the-art approach  for  uncertain
transformation trees in terms of computational complexity.
Further, we demonstrate the practical utility of the
proposed framework through two application examples.
The first example involves a robotic arm affected by
gravitational bending, showcasing how the system
considers for real-world physical effects that deviate from
ideal models. The second example illustrates a mapping
task on a system with an uncertain Robot and
Environmental Configuration State (RECS), formulated as
a graph optimization problem. These applications

highlight the framework’s effectiveness in improving
positional accuracy and enabling precise manipulations.

The hierarchical transformation tree structure not only
simplifies complex kinematic chains but also provides a
comprehensive understanding of the robot’s spatial
relationships. This approach reduces computational
complexity and enhances the scalability and adaptability
of the system. Additionally, the IPC-agnostic design
allows for easy integration into different robotic
frameworks, further enhancing the system’s versatility.

Future work includes extending the framework to model
temporal deviations, enabling configuration retrieval from
previous time steps. We also aim to align the interface with
ROS’s tf implementation for seamless integration.

In summary, this contribution significantly advances the
management of spatial transformation uncertainties in
robotics, providing a versatile and robust tool that
enhances the reliability and performance of robotic
systems in diverse applications. The source code for this
framework is accessible online https://github.com/DLR-
RM/tf-dude.
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