HOW CAN NEXT-GENERATION TECHNOLOGIES SERVE HELIOSTAT METROLOGY?

Marc Röger, Michael Nieslony, Alexander Schnerring, Rafal Broda, Eduardo Saez, Niels Algner, Jan Lewen, Max Pargmann, Daniel Maldonado Quinto

SPIE Optics + Photonics, San Diego, CA, Aug. 06, 2025

Introduction

How can next-generation technologies serve heliostat metrology?

Industrial Revolutions:

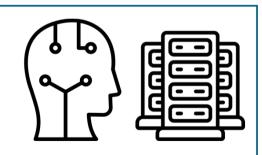
■ 1st: Hand production → machines

 2nd: Mass production, assembly lines and electricity

 3rd: Automation and electronics in manufacturing, computers

The way this presentation was prepared

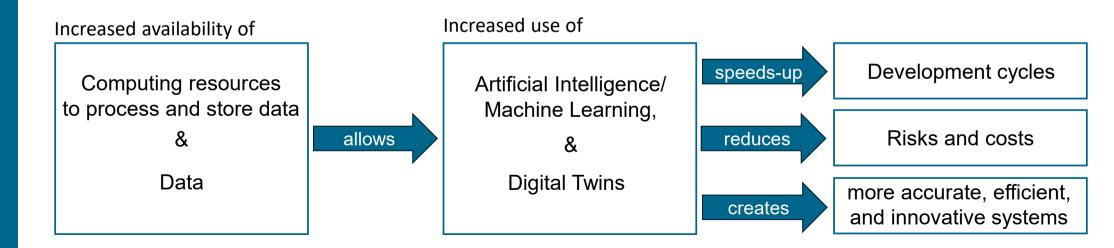
 4th: Integration of Artificial Intelligence, robotics, Internet of Things (IoT), and biotechnology



Icons: https://www.flaticon.com/free-icons/computer-worker. Icon created by Prosymbols Premium – Flaticon https://www.flaticon.com/free-icons/creative-user. Icon created by VectorPortal – Flaticon https://www.flaticon.com/free-icons/data-center. Data center icons created by juicy_fish - Flaticon

Introduction

 4th: Integration of Artificial Intelligence, robotics, Internet of Things (IoT), and biotechnology



Overview of Talk

■ Three examples of DLR work for the use of AI or digital twins in central receiver technology:

Example '

 How we develop an airborne heliostat metrology system in a fast and safe manner without the necessity to fly in a real power plant?

Example 2

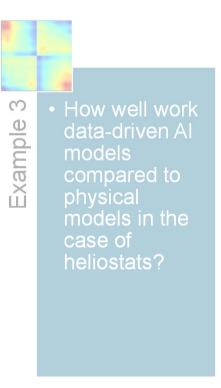
 How we train an Al network without having large amounts of labelled data ?

Example 3

 How well work data-driven Al models compared to physical models in the case of heliostats?

Overview of Talk

■ Three examples of DLR work for the use of AI or digital twins in central receiver technology:



Example 1: UAV based system development with a digital twin

- Challenge: The classical development of metrology with unmanned airborne vehicles (UAV) is often time-consuming and dangerous, especially in CST and when mirror reflections are used
- Solution: Implementation and validation of a digital twin of UAV and CST plant and its use for metrology development

Work from:

Schnerring, A., Broda R., Winter, A., Nieslony, M., Krauth, J., Röger, M., Kallio, R., Pitz-Paal, R., A Simulation Environment for UAV-Based Real-Time Condition Monitoring of Central Receiver Solar Tower Power Plants, Solar Energy, accepted, 2025

Schnerring, A., Broda R., Nieslony, M., Algner, N., Saez, E., Röger, M., Kallio, R., Pitz-Paal, R., ARTSCORE: Airborne Real-Time Solar Concentrator Orientation Estimation, paper, in preparation

Example 1: UAV based system development with a digital twin Components of the digital twin

Component 1: Scenery and Camera

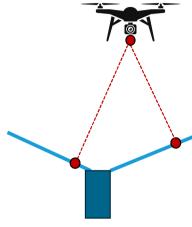
- Heliostat geometric and kinematic model
- Point light source reflection model
- Camera model

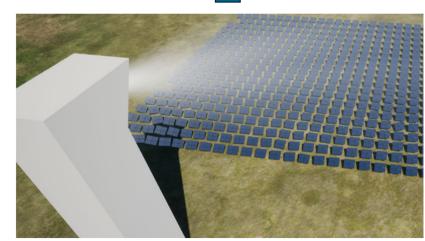
Uses Python

Component 2: Perception Model

- Includes UAV flight physics and flight commands in simulation loop
- Creates photorealistic images together with component 1

Uses Unreal Engine + AirSim + ArduPilot SITL





Example 1: UAV based system development with a digital twin Validation of the digital twin

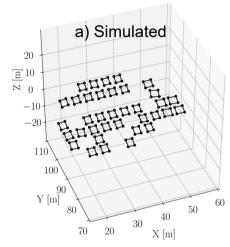
Slope Deviation [mrad]

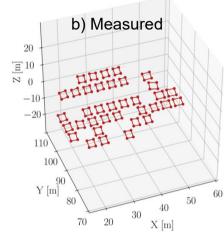
 Heliostat kinematic model: Simulated concentrator corner points match the measured points up to

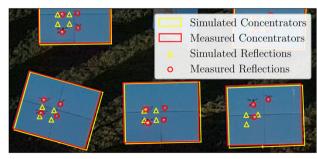
RMSE ≈ 24 mm

- Simulated point light reflections match the measured reflections up to
 - RMSE_x \approx 0.35mrad
 - RMSE_Y \approx 0.22mrad

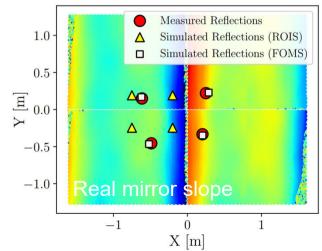
3D concentrator corner points







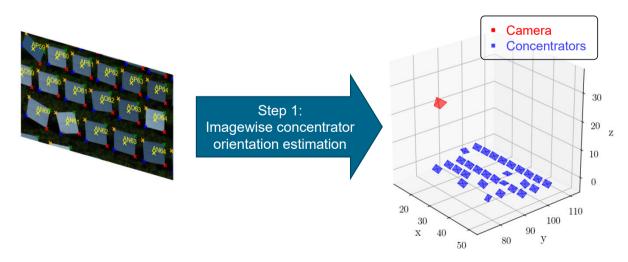
Flat mirror facets assumed



Example 1: UAV based system development with a digital twin Development 1: Coarse calibration system

Pre-calibration / coarse system (accuracy in ~3-10mrad range)

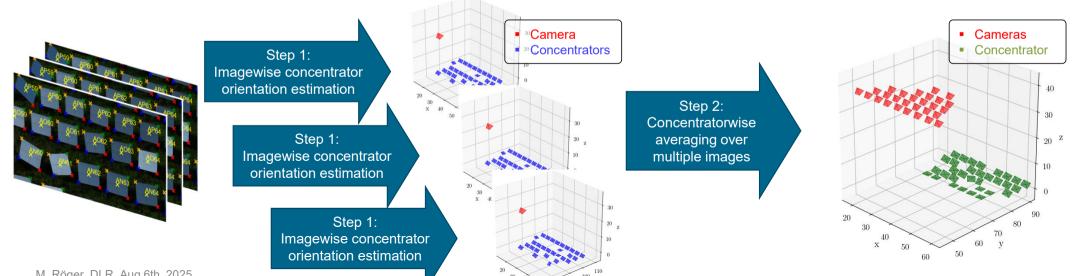
- Estimate coarse concentrator orientations and camera pose in real-time using
 - Detected concentrator corner points
 - & known heliostat positions, kinematic system and geometry (patent pending)
- System was developed in digital twin and tested on real data
- Applicable to single image, or averaging over multiple images



Example 1: UAV based system development with a digital twin Development 1: Coarse calibration system

Pre-calibration / coarse system (accuracy ~3-10mrad)

- Estimate coarse concentrator orientations and camera pose in real-time using
 - Detected concentrator corner points
 - & known heliostat positions, kinematic system and geometry (patent pending)
- System was developed in digital twin and tested on real data
- Applicable to single image, or averaging over multiple images



Example 1: UAV based system development with a digital twin Development 1: Coarse calibration system - Validation

 Digital twin enables statistical analysis by exploring many scenarios in Monte-Carlo simulations

Black: Results of validation flight

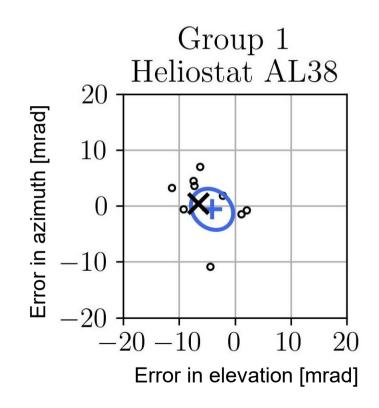
Blue: Results of Monte-Carlo simulations

• Measurement: Framewise

× Measurement: Average

+ Simulation: Mean of Average

O Simulation: Three Standard Deviations of Average



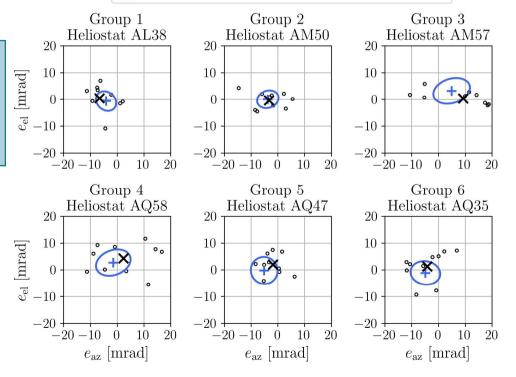
Example 1: UAV based system development with a digital twin

Development 1: Coarse calibration system - Validation

- Measurement: Framewise
- Measurement: Average
- + Simulation: Mean of Average
- O Simulation: Three Standard Deviations of Average

Digital twin

- helped to develop the system, and
- correctly predicts orientation and uncertainties

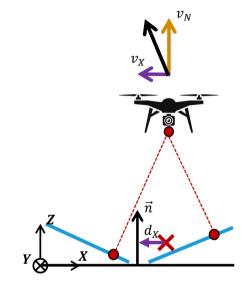


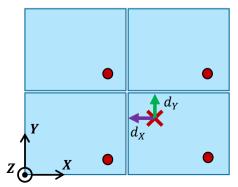
Validation data shows only one outcome, which may not reflect system variability

Example 1: UAV based system development with a digital twin Development 2: Fine calibration system

Regular or fine calibration system (accuracy ~0.1-0.3mrad)

- Measure a calibration point in fine calibration accuracy in < 2 minutes without prior knowledge of orientation
- Measurement principle: Control loop, where UAV flight commands are derived from LED reflex (patent pending)

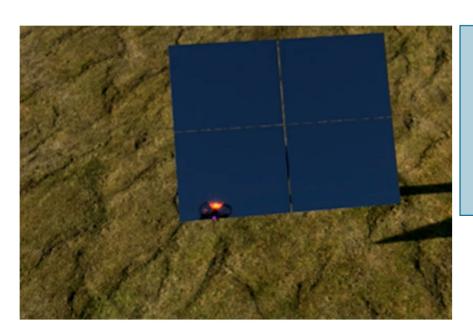




Example 1: UAV based system development with a digital twin Development 2: Fine calibration system

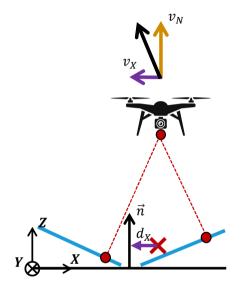
Regular or fine calibration system (accuracy ~0.1-0.3mrad)

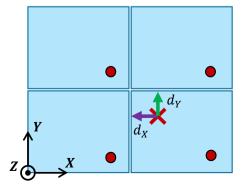
- Measure a calibration point in fine calibration accuracy in < 2 minutes without prior knowledge of orientation
- Measurement principle: Control loop, where UAV flight commands are derived from LED reflex (patent pending)



Digital twin

 helped to develop the system, e.g. the tuning of the parameters of the flight controller





Overview

Example

airborne heliostat metrology

 \sim Example How we train an AI network without having large amounts of labelled data?

Example

 How well work models compared to models in the case of heliostats?

Example 2: Training of AI for image processing with a digital twin

- Challenge: Creating different input data and labeling it to train a machine learning (ML) model is time-consuming and therefore very expensive
- Solution: Create a digital twin to create data (fotos & labels)
- Example: Data to train a ML model for image processing

Work from:

Broda R., Schnerring, A., Schnaus., D., Nieslony, M., Krauth, J., Röger, M., Kallio, S., Triebel, R., Pitz-Paal, R., Bridging the sim2real Gap: Training Deep Neural Networks for Heliostat Detection with Purely Synthetic Data, Solar Energy, Volume 300, 1 November 2025, 113728, https://doi.org/10.1016/j.solener.2025.113728

Example 2: Training of Al for image processing with a digital twin Components of digital twin

- Digital twin and dataset creation using Blender and BlenderProc
 - Parametric heliostat model
 - Various objects and textures
 - Rendering of images and labels

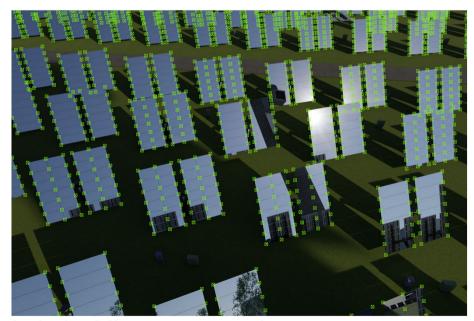
Rendered Blender image

blender[®]

Example 2: Training of AI for image processing with a digital twin Components of digital twin

- Digital twin and dataset creation using Blender and BlenderProc
 - Parametric heliostat model
 - Various objects and textures
 - Rendering of images and labels

Rendered Blender image



blender[®]

Labels: Mirror corner points

Example 2: Training of AI for image processing with a digital twin

Creating images with digital twin

- Appearance
 - Simple vs. randomized ground textures
 - Constant vs. varying lighting
 - No soiling vs. soiling on mirrors
- Content
 - No distractor objects vs distractor objects added
 - Reasonable vs. random object positions
 - Reasonable vs. random object orientations

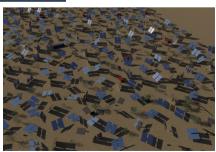
& Distractor objects

Varying lighting

w/o with soiling soiling

terrabyte

& Distractor objects & Random positions



Distractor objects
& Random positions
& Random orientations

Example 2: Training of Al for image processing with a digital twin Sim2real Study: Best training

Sim2real Study: Transfer of Al model from simulation to reality i.e. training with purely synthetic image data and evaluation/application on real-world images Best way of training?

- Considered metrics
 - Average precision (AP): Heliostat detection performance
 - Percentage of correct keypoints (PCK): Mirror corner detection performance
- Best identified scene configuration after 15 exp.

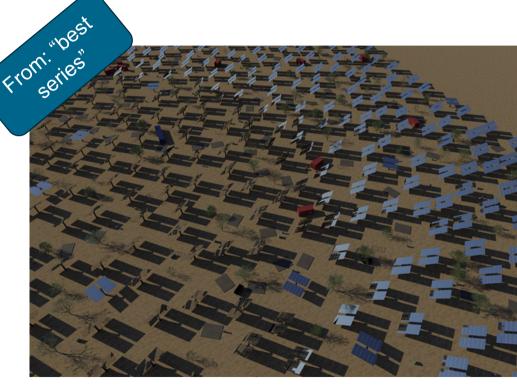
Appearance

- Randomized ground textures
- Constant lighting
- Soiling on mirrors

Content

- Distractors added,
- Random object positions,
- but reasonable object orientations

as in "reality", but no field pattern



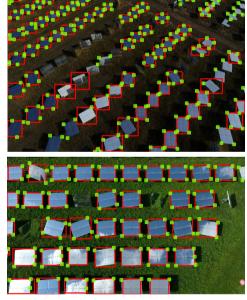
terrabyte

Example 2: Training of Al for image processing with a digital twin Sim2real Study: Performance with optimal image series

- Model trained with optimal scene configuration detects 61% of mirror corners in test dataset
- Proven simple heliostat geometry transfer → Training with synthetic data is useful.



Model predictions on real-world drone images of CESA-1, PSA (PSA owned and operated by CIEMAT)



Transfer to Solar Tower
Jülich (STJ)

Overview

Example

develop an airborne heliostat metrology system in a fast and saf manner without the

Example 2

 How we train an Al network without having large amounts of labelled data?

Example 3

 How well work data-driven Al models compared to physical models in the case of heliostats?

Example 3: Data-driven AI models for heliostat shape

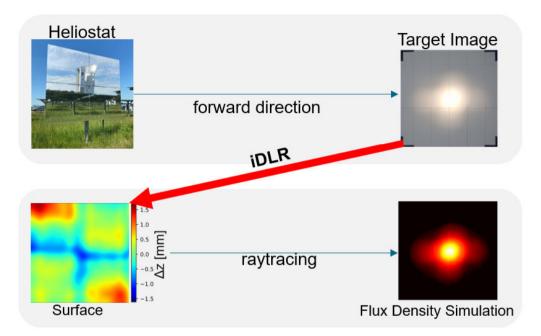
- Challenge: Derive heliostat slope deviation data with low effort
- Solution: Train a data-driven model to create a digital twin of the heliostat for slope deviation using only target images of focal spots originally taken for calibration

Work from:

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto, Inverse Deep Learning Raytracing for heliostat surface prediction, Solar Energy 289 (2025) 113312, https://doi.org/10.1016/j.solener.2025.113312

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto, Scalable heliostat surface predictions from focal spots: Sim-to-Real transfer of inverse Deep Learning Raytracing, Solar Energy 300 (2025) 113726, https://doi.org/10.1016/j.solener.2025.113726

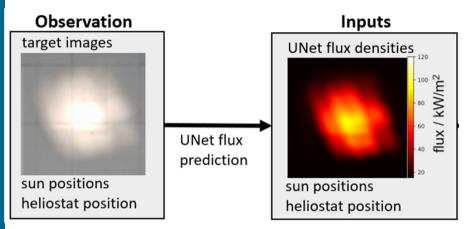
Example 3: Data-driven Al models for heliostat shape Problem and solution



iDLR =inverse Deep Learning Raytracing

- Inverse raytracing using flux maps is an underdetermined problem → Generative deep learning
- Generative deep learning models acquire domain-specific knowledge during training, and can generate new instances!
- To control the output, we use additional input which condition the output
 → conditional generative modeling

Example 3: Data-driven Al models for heliostat shape Training and Al architecture

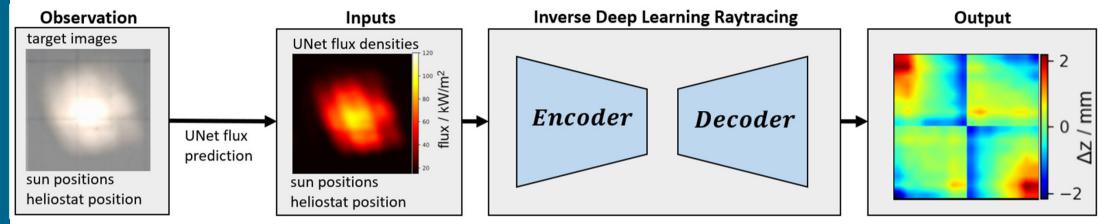


Inference data:

- Target images of focal spots on a Lambertian Target
- Preprocessing using the UNet Deep Learning approach of Kuhl et al. 2024 for flux density extraction

Mathias Kuhl, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Daniel Maldonado Quinto, Robert Pitz-Paal, In-situ UNet-based heliostat beam characterization method for precise flux calculation using the camera-target method https://doi.org/10.1016/j.solener.2024.112811.

Example 3: Data-driven Al models for heliostat shape Training and Al architecture



Inference data:

- Target images of focal spots on a Lambertian Target
- Preprocessing using the UNet Deep Learning approach of Kuhl et al. 2024 for flux density extraction

Mathias Kuhl, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Daniel Maldonado Quinto, Robert Pitz-Paal, In-situ UNet-based heliostat beam characterization method for precise flux calculation using the camera-target method https://doi.org/10.1016/j.solener.2024.112811

Training data:

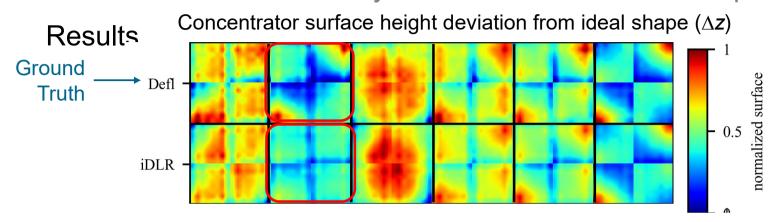
- Sun and Heliostat Position
- up to 8 flux maps over day, calculated by raytracing using the shape of
 - Deflectometry measurements of 458 heliostats (428 training + 32 validation)

Data augmentation to 160'000 shapes by 1. rotating maps 180° and 2. weighted average between two randomly selected shapes

Objective of Training:

 Minimize MAE betw. surface height points z of prediction and known ones from deflectometry

Example 3: Data-driven Al models for heliostat shape Validation with deflectometry measurements and flux maps



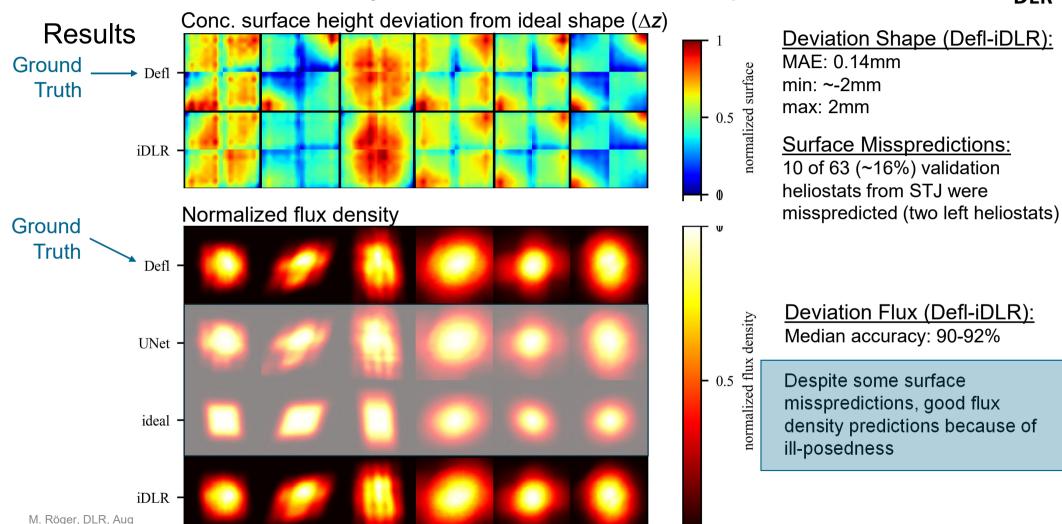
Deviation Defl-iDLR:

MAE: 0.14mm min: ~-2mm max: 2mm

Surface Misspredictions:

10 of 63 (~16%) validation heliostats from STJ were misspredicted (two left heliostats)

Example 3: Data-driven Al models for heliostat shape



Thank you!

Contacts:

General: marc.roeger@dlr.de

Example 1: alexander.schnerring@dlr.de

Example 2: rafal.broda@dlr.de

Example 3: jan.lewen@dlr.de

Schnerring, A., Broda R., Winter, A., Nieslony, M., Krauth, J., Röger, M., Kallio, R., Pitz-Paal, R., A Simulation Environment for UAV-Based Real-Time Condition Monitoring of Central Receiver Solar Tower Power Plants, Solar Energy, accepted, 2025

Schnerring, A., Broda R., Nieslony, M., Algner, N., Saez, E., Röger, M., Kallio, R., Pitz-Paal, R., ARTSCORE: Airborne Real-Time Solar Concentrator Orientation Estimation, paper, in preparation

Broda R., Schnerring, A., Schnaus., D., Nieslony, M., Krauth, J., Röger, M., Kallio, S., Triebel, R., Pitz-Paal, R., Bridging the sim2real Gap: Training Deep Neural Networks for Heliostat Detection with Purely Synthetic Data, Solar Energy, Volume 300, 1 November 2025, 113728, https://doi.org/10.1016/j.solener.2025.113728

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto, Inverse Deep Learning Raytracing for heliostat surface prediction,

Solar Energy 289 (2025) 113312, https://doi.org/10.1016/j.solener.2025.113312

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto,

Scalable heliostat surface predictions from focal spots: Sim-to-Real transfer of inverse Deep Learning Raytracing, Solar Energy 300 (2025) 113726,

https://doi.org/10.1016/j.solener.2025.113726