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How can next-generation technologies serve heliostat metrology? DLR

Industrial Revolutions: The way
= 1st: Hand production - machines this presentation

_ _ was prepared ....
» 2nd: Mass production, assembly lines and

electricity ® Ii
= 3rd: Automation and electronics in l L
manufacturing, computers T J

= 4th: Integration of Artificial Intelligence, robotics, E
Internet of Things (loT), and biotechnology G

Icons: https://www.flaticon.com/free-icons/computer-worker. Icon created by Prosymbols Premium — Flaticon
https://www.flaticon.com/free-icons/creative-user. Icon created by VectorPortal — Flaticon
https://www.flaticon.com/free-icons/data-center. Data center icons created by juicy fish - Flaticon
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= 4th: Integration of Artificial Intelligence,
robotics, Internet of Things (loT), and
biotechnology

5

Icon:

user. Icon created by VectorPortal — Flaticon

https://www.flaticon.com/free-icons/creative-

Increased availability of

Computing resources
to process and store data

&
Data
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Machine Learning,
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Digital Twins
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Development cycles

Risks and costs

more accurate, efficient,
and innovative systems




Overview of Talk
How can next-generation technologies serve heliostat metrology?

i DLR

» Three examples of DLR work for the use of Al or digital twins in central receiver technology:

* How we * How we train * How well work
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develop an
airborne
heliostat
metrology
system in a
fast and safe
manner
without the
necessity to fly
in a real power
plant ?
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data-driven Al
models
compared to
physical
models in the
case of
heliostats?
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» Three examples of DLR work for the use of Al or digital twins in central receiver technology:

* How we
develop an
airborne
heliostat
metrology
system in a
fast and safe
manner
without the
necessity to fly
in a real power
plant ?
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Example 1: UAV based system development with a digital twin #
DLR

» Challenge: The classical development of metrology with unmanned airborne

vehicles (UAV) is often time-consuming and dangerous, especially in CST
and when mirror reflections are used

= Solution: Implementation and validation of a digital twin of UAV and CST
plant and its use for metrology development

Work from:

Schnerring, A., Broda R., Winter, A., Nieslony, M., Krauth, J., Roger, M., Kallio, R., Pitz-Paal, R., A Simulation

Environment for UAV-Based Real-Time Condition Monitoring of Central Receiver Solar Tower Power Plants, Solar
Energy, accepted, 2025

Schnerring, A., Broda R., Nieslony, M., Algner, N., Saez, E., Rdger, M., Kallio, R., Pitz-Paal, R., ARTSCORE:
Airborne Real-Time Solar Concentrator Orientation Estimation, paper, in preparation
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Example 1: UAV based system development with a digital twin ‘#7
Components of the digital twin DLR

= Component 1: Scenery and Camera P PUthon ) /'~\‘
» Heliostat geometric and kinematic model
= Point light source reflection model an
= Camera model
Uses Python

= Component 2: Perception Model

» Includes UAV flight physics and
flight commands in simulation loop

» Creates photorealistic images together with
component 1

Uses Unreal Engine + AirSim + ArduPilot SITL
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Example 1: UAV based system development with a digital twin
Validation of the digital twin DLR

3D concentrator corner points

» Heliostat kinematic model: Simulated
concentrator corner points match the
measured points up to

RMSE =~ 24mm

a) Simulated b) Measured

- . 3
0 20 X [m]
@ Measured Reflections 4
. . . . o7 ; Simulated Reflections
= Simulated point light reflections i) Siunlated Concentrators : A SN e
. 7 Measured Concentrators 3 o lmu_ate( il )
match the measured reflections Simulated Reflections ~' 2
u to 0  Measured Reflections
p 1
= RMSEyx =~ 0.35mrad
= RMSEy =~ 0.22mrad -2
Flat mirror facets assumed ==l 4

k" 0 i
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Example 1: UAV based system development with a digital twin
Development 1: Coarse calibration system

Pre-calibration / coarse system (accuracy in ~3-10mrad range)

» Estimate coarse concentrator orientations and camera pose in real-time
using
» Detected concentrator corner points
= & known heliostat positions, kinematic system and geometry (patent pending)
» System was developed in digital twin and tested on real data

= Applicable to single image, or averaging over multiple images

= Camera
= Concentrators

Step 1: »

Imagewise concentrator
orientation estimation

- ¥,

& N,
*%0 % 0%,

® 9%, 00
AN

M. Roger, DLR, Aug 6th, 2025

i DLR



Example 1: UAV based system development with a digital twin
Development 1: Coarse calibration system

Pre-calibration / coarse system (accuracy ~3-10mrad)

» Estimate coarse concentrator orientations and camera pose in real-time
using
» Detected concentrator corner points
= & known heliostat positions, kinematic system and geometry (patent pending)
» System was developed in digital twin and tested on real data

= Applicable to single image, or averaging over multiple images

¥ = “Camera

Step 1: = »Concentrators

. ‘..
Imagewise concentrator N
; : : : Y atede [0
orientation estimation
Step 2:

» Concentratorwise
: averaging over
multiple images

Step 1:
Imagewise concentrator
orientation estimation

Step 1:
Imagewise concentrator
orientation estimation
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Example 1: UAV based system development with a digital twin ‘#7
Development 1: Coarse calibration system - Validation DLR

= Digital twin enables statistical analysis by exploring
many scenarios in Monte-Carlo simulations

Group 1
Heliostat AL38

Black: Results of validation flight —
Blue: Results of Monte-Carlo simulations B
E 104+
o  Measurement: Framewise % o
X  Measurement: Average % Uk @6’
4+  Simulation: Mean of Average 2
O Simulation: Three Standard Deviations of Average -c:> —14 1 u
W —20 1

—20—-10 0 10 20

Error in elevation [mrad]
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Example 1: UAV based system development with a digital twin

Development 1: Coarse calibration system - Validation

Digital twin
» helped to develop the system, and
= correctly predicts orientation and uncertainties

M. Roger, DLR, Aug 6th, 2025
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Validation data shows only one outcome, which may not reflect system variability



Example 1: UAV based system development with a digital twin ‘#7
Development 2: Fine calibration system DLR

Regular or fine calibration system (accuracy ~0.1-0.3mrad)
= Measure a calibration point in fine calibration accuracy in < 2 minutes UN
without prior knowledge of orientation
= Measurement principle: Control loop, where UAV flight commands are

derived from LED reflex (patent pending)

M. Roger, DLR, Aug 6th, 2025




Example 1: UAV based system development with a digital twin #7
Development 2: Fine calibration system DLR

Regular or fine calibration system (accuracy ~0.1-0.3mrad)
= Measure a calibration point in fine calibration accuracy in < 2 minutes - Sl
without prior knowledge of orientation
= Measurement principle: Control loop, where UAV flight commands are
derived from LED reflex (patent pending)

the system, e.g.
the tuning of the
parameters of the
flight controller

Digital twin AN
/d p
= helped to develop YJ;\X‘J;V’
()
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Overview ‘#7
DLR

* How we train
an Al network
without having
large amounts
of labelled
data ?
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Example 2: Training of Al for image processing with a digital twin #7
DLR

» Challenge: Creating different input data and labeling it to train a machine
learning (ML) model is time-consuming and therefore very expensive

= Solution: Create a digital twin to create data (fotos & labels)
= Example: Data to train a ML model for image processing

Work from:
Broda R., Schnerring, A., Schnaus., D., Nieslony, M., Krauth, J., Réger, M., Kallio, S., Triebel, R., Pitz-Paal, R.,

Bridging the sim2real Gap: Training Deep Neural Networks for Heliostat Detection with Purely Synthetic Data, Solar
Energy, Volume 300, 1 November 2025, 113728, https://doi.org/10.1016/].solener.2025.113728
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Example 2: Training of Al for image processing with a digital twin #7
Components of digital twin DLR

= Digital twin and dataset creation using Blender and BlenderProc
= Parametric heliostat model
= Various objects and textures
» Rendering of images and labels

g boxes around collectors

Rendered Blender image

M. Roger, DLR, Aug 6th, 2025
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Example 2: Training of Al for image processing with a digital twin ‘#7
Components of digital twin DLR

= Digital twin and dataset creation using Blender and BlenderProc
= Parametric heliostat model
= Various objects and textures
» Rendering of images and labels

o

Rendered Blender i
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mage Labels: Mirror corner points




Example 2: Training of Al for image processing with a digital twin ‘#7
DLR

Creating images with digital twin

Constant lighting powered by

terrabyte

» Variation of scene parameters for sim2real study “
= Appearance —
» Simple vs. randomized ground textures
» Constant vs. varying lighting
* No soiling vs. soiling on mirrors

Varying lighting

= Content
» No distractor objects vs distractor objects added
» Reasonable vs. random object positions

» Reasonable vs. random object orientations

w/o with
soiling soiling

& Distractor objects & Distractor objects Distractor objects
& Random positions & Random positions

M. Roger, DLR, Aug 6th, 2025 & Random orientations



Example 2: Training of Al for image processing with a digital twin ‘#7
SimZ2real Study: Best training DLR

powered by

» Sim2real Study: Transfer of Al model from simulation to reality terra byte

l.e. training with purely synthetic image data and evaluation/application on real-world images
Best way of training?

= Best identified scene configuration after 15 exp.
Appearance

» Randomized ground textures
» Constant lighting

= Soiling on mirrors
Content

= Distractors added,
» Random object positions,
= but reasonable object orientations |

as in “reality”,
but no field
pattern

M. Roger, DLR, Aug 6th, 2025



Example 2: Training of Al for image processing with a digital twin
Sim2real Study: Performance with optimal image series

» Model trained with optimal scene configuration detects 61% of mirror corners in test dataset

= Proven simple heliostat geometry transfer - Training with synthetic data is useful.

Model predictions on real-world drone images of CESA-1, PSA | Transfer to Solar Tower

(PSA owned and operated by CIEMAT) Julich (STJ)

M. Roger, DLR, Aug 6th, 2025




Overview ‘#7
DLR

 How well work
data-driven Al
models
compared to
physical
models in the
case of
heliostats?
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Example 3: Data-driven Al models for heliostat shape #
DLR

» Challenge: Derive heliostat slope deviation data with low effort

= Solution: Train a data-driven model to create a digital twin of the heliostat for
slope deviation using only target images of focal spots originally taken for
calibration

Work from:

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal,

Daniel Maldonado Quinto, Inverse Deep Learning Raytracing for heliostat surface prediction,
Solar Energy 289 (2025) 113312, https://doi.org/10.1016/j.solener.2025.113312

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto,
Scalable heliostat surface predictions from focal spots: Sim-to-Real transfer of inverse Deep Learning Raytracing,
Solar Energy 300 (2025) 113726, https://doi.org/10.1016/j.solener.2025.113726
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Example 3: Data-driven Al models for heliostat shape ‘#7
Problem and solution DLR

Heliostat Target Image

Y

forward direction

iDLR

B
05 E
0.0 E
br" oy rayfracing
al iDLR
Surface Flux Density Simulation =inverse Deep Learning Raytracing

» Inverse raytracing using flux maps is an underdetermined problem = Generative deep learning

= Generative deep learning models acquire domain-specific knowledge during training, and can
generate new instances!

= To control the output, we use additional input which condition the output
—> conditional generative modeling

M. Roéger, DLR, Aug 6th, 2025




Example 3: Data-driven Al models for heliostat shape

Training and Al architecture DLR
Observation Inputs
target images UNet flux densities
100 ‘:‘g
© S
L4
UNet flux " é
prediction
sun positions sun positions
heliostat position heliostat position

Inference data:

= Target images of focal spots on
a Lambertian Target

» Preprocessing using the UNet
Deep Learning approach of
Kuhl et al. 2024 for flux density

extraction

Mathias Kuhl, Max Pargmann, Mehdi Cherti, Jenia Jitsev,
Daniel Maldonado Quinto, Robert Pitz-Paal,

In-situ UNet-based heliostat beam characterization method
for precise flux calculation using the camera-target method
https://doi.org/10.1016/j.solener.2024.112811.

M. Roger, DLR, Aug 6th, 2025




Example 3: Data-driven Al models for heliostat shape #
Training and Al architecture DLR

Observation Inputs Inverse Deep Learning Raytracing Output
target images UNet flux densities
2
X E
© > Encoder Decoder — | 0 E
UNet flux S ==
0 G
prediction 5
sun positions sun positions
heliostat position heliostat position ==
Inference data: Training data: D ..
d Obijective of Training:
» Target images of focal spots on = Sun and Heliostat Position .
a Lgmbertign Target P = Minimize MAE betw.
9 = up to 8 flux maps over day, calculated by surface height points z of
» Preprocessing using the UNet raytracing using the shape of prediction and known ones
Deep Learning approach of = Deflectometry measurements of 458 heliostats ~ from deflectometry
Kuhl et al. 2024 for flux density (428 training + 32 validation)
extraction
Mathias Kuhl, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Data augmentation to 160’000 shapes by 1.
Daniel Mald do Quinto, Robert Pitz-Paal, . o .
In?giti Ul\?et?;:se%%el?;gtatgezr; cr:arai?erization method rOtatmg maps 180 and 2 Welghted average
for precise flux calculation using the camera-target method between two randomly selected ShapeS

https://doi.org/10.1016/j.solener.2024.112811
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Example 3: Data-driven Al models for heliostat shape #
Validation with deflectometry measurements and flux maps DLR

Concentrator surface height deviation from ideal shape (Az)

Results 1 Deviation Defl-DLR:
Ground MAE: 0.14mm
Truth min: ~-2mm
max: 2mm

Surface Misspredictions:

10 of 63 (~16%) validation
heliostats from STJ were
misspredicted (two left heliostats)

>
wh
normalized surface
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Example 3: Data-driven Al models for heliostat shape ‘#7
Validation with deflectometry measurements and flux maps DLR

Conc. surface height deviation from ideal shape (Az)

Results Deviation Shape (Defl-iDLR):
Ground MAE: 0.14mm
Truth Defl min: ~-2mm
max: 2mm

Surface Misspredictions:

10 of 63 (~16%) validation
heliostats from STJ were
misspredicted (two left heliostats)

iDLR

normalized surface

Ground

Truth -

Deviation Flux (Defl-iDLR):
Median accuracy: 90-92%

UNet

Despite some surface
misspredictions, good flux
density predictions because of
ill-posedness

ideal

normalized flux density

iDLR
M. Roéger, DLR, Aug




Thank you !

Contacts:

General: marc.roeger@dIr.de

Example 1: alexander.schnerring@dir.de
Example 2: rafal.broda@dir.de

Example 3: jan.lewen@dIr.de
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