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HOW CAN NEXT-GENERATION 
TECHNOLOGIES SERVE 
HELIOSTAT METROLOGY?



Industrial Revolutions:
 1st: Hand production  machines
 2nd: Mass production, assembly lines and 

electricity
 3rd: Automation and electronics in 

manufacturing, computers
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 4th: Integration of Artificial Intelligence, robotics, 
Internet of Things (IoT), and biotechnology

The way
this presentation
was prepared ….
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Introduction
How can next-generation technologies serve heliostat metrology?

 4th: Integration of Artificial Intelligence, 
robotics, Internet of Things (IoT), and 
biotechnology

Icon: https://www.flaticon.com/free-icons/creative-
user. Icon created by VectorPortal – Flaticon

Increased availability of Increased use of

Computing resources
to process and store data

Data Digital Twins

Artificial Intelligence/
Machine Learning,

speeds-up

allows

Development cycles

Risks and costsreduces

more accurate, efficient, 
and innovative systemscreates

&&
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Overview of Talk
How can next-generation technologies serve heliostat metrology?

Ex
am

pl
e

1 • How we 
develop an 
airborne 
heliostat 
metrology 
system in a 
fast and safe 
manner 
without the 
necessity to fly 
in a real power 
plant ?

Ex
am

pl
e

2 • How we train 
an AI network 
without having 
large amounts 
of labelled 
data ?

Ex
am

pl
e

3 • How well work 
data-driven AI 
models 
compared to 
physical 
models in the 
case of 
heliostats?

 Three examples of DLR work for the use of AI or digital twins in central receiver technology:
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Example 1: UAV based system development with a digital twin

 Challenge: The classical development of metrology with unmanned airborne 
vehicles (UAV) is often time-consuming and dangerous, especially in CST 
and when mirror reflections are used

 Solution: Implementation and validation of a digital twin of UAV and CST 
plant and its use for metrology development

Work from:
Schnerring, A., Broda R., Winter, A., Nieslony, M., Krauth, J., Röger, M., Kallio, R., Pitz-Paal, R., A Simulation 
Environment for UAV-Based Real-Time Condition Monitoring of Central Receiver Solar Tower Power Plants, Solar 
Energy, accepted, 2025

Schnerring, A., Broda R., Nieslony, M., Algner, N., Saez, E., Röger, M., Kallio, R., Pitz-Paal, R., ARTSCORE: 
Airborne Real-Time Solar Concentrator Orientation Estimation, paper, in preparation
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Example 1: UAV based system development with a digital twin
Components of the digital twin

 Component 1: Scenery and Camera
 Heliostat geometric and kinematic model
 Point light source reflection model
 Camera model
Uses Python

 Component 2: Perception Model
 Includes UAV flight physics and

flight commands in simulation loop
 Creates photorealistic images together with 

component 1
Uses Unreal Engine + AirSim + ArduPilot SITL 
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Example 1: UAV based system development with a digital twin
Validation of the digital twin

 Heliostat kinematic model: Simulated
concentrator corner points match the
measured points up to

۳܁ۻ܀ ≈ ૛૝ܕܕ

a) Simulated b) Measured

 Simulated point light reflections
match the measured reflections
up to
 ܆۳܁ۻ܀ ≈ ૙. ૜૞܌܉ܚܕ
 ܇۳܁ۻ܀ ≈ ૙. ૛૛܌܉ܚܕ

Flat mirror facets assumed Real mirror slope

3D concentrator corner points



Pre-calibration / coarse system (accuracy in ~3-10mrad range)
 Estimate coarse concentrator orientations and camera pose in real-time

using
 Detected concentrator corner points
 & known heliostat positions, kinematic system and geometry (patent pending)

 System was developed in digital twin and tested on real data
 Applicable to single image, or averaging over multiple images
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Example 1: UAV based system development with a digital twin
Development 1: Coarse calibration system

 Camera
 Concentrators

Step 1: 
Imagewise concentrator
orientation estimation
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Example 1: UAV based system development with a digital twin
Development 1: Coarse calibration system

 Camera
 ConcentratorsStep 1: 

Imagewise concentrator
orientation estimation

Step 2: 
Concentratorwise

averaging over
multiple images

 Cameras
 Concentrator

Step 1: 
Imagewise concentrator
orientation estimation

Step 1: 
Imagewise concentrator
orientation estimation



 Digital twin enables statistical analysis by exploring 
many scenarios in Monte-Carlo simulations
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Example 1: UAV based system development with a digital twin
Development 1: Coarse calibration system - Validation

Error in elevation [mrad]

Er
ro

r i
n 

az
im

ut
h 

[m
ra

d]Black: Results of validation flight
Blue: Results of Monte-Carlo simulations
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Example 1: UAV based system development with a digital twin
Development 1: Coarse calibration system - Validation

Validation data shows only one outcome, which may not reflect system variability

Digital twin
 helped to develop the system, and
 correctly predicts orientation and uncertainties
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Example 1: UAV based system development with a digital twin
Development 2: Fine calibration system

Regular or fine calibration system (accuracy ~0.1-0.3mrad)
 Measure a calibration point in fine calibration accuracy in < 2 minutes

without prior knowledge of orientation
 Measurement principle: Control loop, where UAV flight commands are

derived from LED reflex (patent pending)

ேݒ
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Example 1: UAV based system development with a digital twin
Development 2: Fine calibration system

Regular or fine calibration system (accuracy ~0.1-0.3mrad)
 Measure a calibration point in fine calibration accuracy in < 2 minutes

without prior knowledge of orientation
 Measurement principle: Control loop, where UAV flight commands are

derived from LED reflex (patent pending)
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Digital twin
 helped to develop 

the system, e.g. 
the tuning of the 
parameters of the 
flight controller
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Example 2: Training of AI for image processing with a digital twin

 Challenge: Creating different input data and labeling it to train a machine 
learning (ML) model is time-consuming and therefore very expensive 

 Solution: Create a digital twin to create data (fotos & labels) 
 Example: Data to train a ML model for image processing

Work from:
Broda R., Schnerring, A., Schnaus., D., Nieslony, M., Krauth, J., Röger, M., Kallio, S., Triebel, R., Pitz-Paal, R., 
Bridging the sim2real Gap: Training Deep Neural Networks for Heliostat Detection with Purely Synthetic Data, Solar 
Energy, Volume 300, 1 November 2025, 113728, https://doi.org/10.1016/j.solener.2025.113728
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 Digital twin and dataset creation using Blender and BlenderProc
 Parametric heliostat model
 Various objects and textures
 Rendering of images and labels

Rendered Blender image Labels: Bounding boxes around collectors

Example 2: Training of AI for image processing with a digital twin
Components of digital twin
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Example 2: Training of AI for image processing with a digital twin
Components of digital twin

 Digital twin and dataset creation using Blender and BlenderProc
 Parametric heliostat model
 Various objects and textures
 Rendering of images and labels

Rendered Blender image Labels: Mirror corner points



19 M. Röger, DLR, Aug 6th, 2025

Example 2: Training of AI for image processing with a digital twin
Creating images with digital twin

 Variation of scene parameters for sim2real study
 Appearance

 Simple vs. randomized ground textures
 Constant vs. varying lighting
 No soiling vs. soiling on mirrors

w/o
soiling

with
soiling

Constant lighting

Varying lighting

& Distractor objects
& Random positions

Distractor objects
& Random positions
& Random orientations

& Distractor objects

 Content
 No distractor objects vs distractor objects added
 Reasonable vs. random object positions
 Reasonable vs. random object orientations
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Example 2: Training of AI for image processing with a digital twin
Sim2real Study: Best training

 Sim2real Study: Transfer of AI model from simulation to reality 
i.e. training with purely synthetic image data and evaluation/application on real-world images
Best way of training?

as in “reality”, 
but no field 

pattern

 Best identified scene configuration after 15 exp.
Appearance
 Randomized ground textures
 Constant lighting
 Soiling on mirrors
Content
 Distractors added,
 Random object positions,
 but reasonable object orientations

 Considered metrics
 Average precision (AP): Heliostat detection 

performance
 Percentage of correct keypoints (PCK): Mirror 

corner detection performance
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Example 2: Training of AI for image processing with a digital twin
Sim2real Study: Performance with optimal image series

 Model trained with optimal scene configuration detects 61% of mirror corners in test dataset

Model predictions on real-world drone images of CESA-1, PSA
(PSA owned and operated by CIEMAT)

Transfer to Solar Tower 
Jülich (STJ)

 Proven simple heliostat geometry transfer  Training with synthetic data is useful.
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Example 3: Data-driven AI models for heliostat shape

 Challenge: Derive heliostat slope deviation data with low effort
 Solution: Train a data-driven model to create a digital twin of the heliostat for 

slope deviation using only target images of focal spots originally taken for 
calibration

Work from:
Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal,
Daniel Maldonado Quinto, Inverse Deep Learning Raytracing for heliostat surface prediction,
Solar Energy 289 (2025) 113312, https://doi.org/10.1016/j.solener.2025.113312

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto,
Scalable heliostat surface predictions from focal spots: Sim-to-Real transfer of inverse Deep Learning Raytracing,
Solar Energy 300 (2025) 113726, https://doi.org/10.1016/j.solener.2025.113726
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Example 3: Data-driven AI models for heliostat shape
Problem and solution

 Inverse raytracing using flux maps is an underdetermined problem  Generative deep learning

 Generative deep learning models acquire domain-specific knowledge during training, and can 
generate new instances!

 To control the output, we use additional input which condition the output
 conditional generative modeling

iDLR
=inverse Deep Learning Raytracing
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Example 3: Data-driven AI models for heliostat shape
Training and AI architecture

Inference data:

 Target images of focal spots on 
a Lambertian Target

 Preprocessing using the UNet
Deep Learning approach of 
Kuhl et al. 2024 for flux density 
extraction
Mathias Kuhl, Max Pargmann, Mehdi Cherti, Jenia Jitsev, 
Daniel Maldonado Quinto, Robert Pitz-Paal,
In-situ UNet-based heliostat beam characterization method
for precise flux calculation using the camera-target method
https://doi.org/10.1016/j.solener.2024.112811.
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Example 3: Data-driven AI models for heliostat shape
Training and AI architecture

 Encoder-Decoder architecture

Training data:

 Sun and Heliostat Position

 up to 8 flux maps over day, calculated by 
raytracing using the shape of 

 Deflectometry measurements of 458 heliostats 
(428 training + 32 validation)

Data augmentation to 160’000 shapes by 1. 
rotating maps 180° and 2. weighted average 
between two randomly selected shapes

Objective of Training:

 Minimize MAE betw. 
surface height points z of 
prediction and known ones 
from deflectometry

Inference data:

 Target images of focal spots on 
a Lambertian Target

 Preprocessing using the UNet
Deep Learning approach of 
Kuhl et al. 2024 for flux density 
extraction
Mathias Kuhl, Max Pargmann, Mehdi Cherti, Jenia Jitsev, 
Daniel Maldonado Quinto, Robert Pitz-Paal,
In-situ UNet-based heliostat beam characterization method
for precise flux calculation using the camera-target method
https://doi.org/10.1016/j.solener.2024.112811
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Example 3: Data-driven AI models for heliostat shape
Validation with deflectometry measurements and flux maps

Results Concentrator surface height deviation from ideal shape (z)

Ground
Truth

Surface Misspredictions:
10 of 63 (~16%) validation 
heliostats from STJ were 
misspredicted (two left heliostats)

Deviation Defl-iDLR: 
MAE: 0.14mm
min: ~-2mm
max: 2mm
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Example 3: Data-driven AI models for heliostat shape
Validation with deflectometry measurements and flux maps

Results
Ground

Truth

Ground
Truth

Surface Misspredictions:
10 of 63 (~16%) validation 
heliostats from STJ were 
misspredicted (two left heliostats)

Deviation Flux (Defl-iDLR):
Median accuracy: 90-92%

Despite some surface 
misspredictions, good flux 
density predictions because of 
ill-posedness

Conc. surface height deviation from ideal shape (z)

Normalized flux density

Deviation Shape (Defl-iDLR): 
MAE: 0.14mm
min: ~-2mm
max: 2mm
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Thank you !

Contacts:
General: marc.roeger@dlr.de

Example 1: alexander.schnerring@dlr.de

Example 2: rafal.broda@dlr.de
Example 3: jan.lewen@dlr.de

Schnerring, A., Broda R., Winter, A., Nieslony, M., Krauth, J., Röger, M., 
Kallio, R., Pitz-Paal, R., A Simulation Environment for UAV-Based Real-
Time Condition Monitoring of Central Receiver Solar Tower Power Plants, 
Solar Energy, accepted, 2025

Schnerring, A., Broda R., Nieslony, M., Algner, N., Saez, E., Röger, M., 
Kallio, R., Pitz-Paal, R., ARTSCORE: Airborne Real-Time Solar 
Concentrator Orientation Estimation, paper, in preparation

Broda R., Schnerring, A., Schnaus., D., Nieslony, M., Krauth, J., Röger, 
M., Kallio, S., Triebel, R., Pitz-Paal, R., Bridging the sim2real Gap: 
Training Deep Neural Networks for Heliostat Detection with Purely 
Synthetic Data, Solar Energy, Volume 300, 1 November 2025, 113728, 
https://doi.org/10.1016/j.solener.2025.113728

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal,
Daniel Maldonado Quinto, Inverse Deep Learning Raytracing for heliostat
surface prediction,
Solar Energy 289 (2025) 113312, 
https://doi.org/10.1016/j.solener.2025.113312

Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, 
Daniel Maldonado Quinto,
Scalable heliostat surface predictions from focal spots: Sim-to-Real 
transfer of inverse Deep Learning Raytracing,
Solar Energy 300 (2025) 113726, 
https://doi.org/10.1016/j.solener.2025.113726


