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ABSTRACT

Simulation of Water Distribution Systems (WDSs) is used to evaluate WDS
management to ensure the security of water supply. Many such simulations rely
on assumptions of demand uncertainty. In this paper, we investigate which
probability distributions adequately describe demand uncertainty and how the
choice of a distribution affects the simulation results. To identify distributions, we
first decompose water demand data of District Metered Areas of a city into
demand trends, daily patterns, and residual uncertainty using the LOESS
algorithm. Residuals are heavy-tailed, typically fitting a local log-normal
distribution, but occasionally aligning better with a log-t distribution. We then
assess the operational impact of the identified demand uncertainty by
simulating the L-Town benchmark network subject to log-normal and log-t-
distributed uncertainty using the WNTR Python package. The simulation results
are evaluated based on technical KPIs. The results show that log-t-distributed
uncertainty leads to worse simulated WDS performance on these KPlIs,
indicating that the inadequate use of normal or log-normal distributions could
overestimate the WDS performance. Our findings highlight the importance of
selecting appropriate uncertainty distributions for stochastic WDS optimization.
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INTRODUCTION

Water Distribution Systems (WDSs) ensure the continuous supply of potable
water to citizens and thereby serve the 6™ sustainable development goal
defined by the United Nations. A common tool for the management of these
WDSs is the computational simulation of WDS models, which relies on water
demand (WD) data as an input. Since future WD is uncertain, knowledge of the
statistical properties of WD can be used to directly simulate WDSs subjected to
such uncertain WD, or to validate behavioural models of WD in specific
scenarios, as previously outlined [1]. Both of these approaches build on the
assumption that statistical properties of past WD are an adequate description of
the uncertainty in future WD. One statistical property that has been observed
are heavy-tails (HTs) of frequency distributions of WD [2]. HTs refer to the
empirical distributions of WD showing a higher frequency of values far from the
mean of the distribution than a normal distribution. Such distributions with HTs
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appear in many systems and are important for extreme events and risk
management [3]. Despite the potential relevance for the management of WDSs,
to our knowledge there is no in-depth analysis of HTs in WD and its impacts on
WDSs. To address this research gap, we analyse District Metered Area (DMA)
level WD data and simulate a benchmark WDS to investigate (i) if HTs can be
observed in DMA-level WD data, (ii) how models of WD can account for these
HTs, and (iii) how these HTs impact a WDS. We show that (i) HTs can be
observed in WD and its hourly changes through tail estimation, that (ii) these
HTs can be modelled by decomposing the data into a daily pattern, a slower
varying trend, and heavy-tailed model residuals, which we consider the
uncertainty in the WD. Finally, we (iii) simulate a WDS subject to the observed
uncertainty and evaluate the impact using key performance indicators (KPIs).

METHODS

Describing heavy tails

To discover HTs in the frequency distributions of WD time series, we used a
data set of hourly water meter readings over a period of three years from ten
DMAs labelled A to J [4]. Corresponding weather data and data from days with
incomplete or double readings were not regarded. The distribution of a variable
X is commonly considered heavy-tailed, if its kurtosis, i.e. the fourth moment of
the distribution, exceeds that of a normal distribution. However, kurtosis can
lack robustness for empirical distributions [5]. We therefore first consider only
the tails by assuming that HTs follow a power-law described by

pUX —pul) o« |X —ul™% (1)
with the probability (or frequency for empirical distributions) p and a real tail
exponenta > 1 . Smaller ¢ indicate a higher probability of extreme events. We
used a maximum likelihood estimate based on [6] for a. The part of the
distribution where x < u is called the negative tail and x > u is called the
positive tail. The analysis was performed on the frequency distributions of each
time series, referred to as the raw data, and their differentiated forms, defined
as the changes between hourly values.

Isolating the heavy tails

While the aforementioned method enables an estimation of the tail behaviour,
the data is still dominated by the periodicities and trends observed in WD, which
are not the focus of our analysis. To isolate the short-term stochastic uncertainty
from the time series, we first assume that the data can be described by

Qr = Qq * Py * &. (2)
Here, Q, denotes the WD at hour ¢ of the time series, @, is the average daily
demand subject to slowly varying trend, P, denotes the daily usage pattern for
each hour p of the day, and ¢, denotes an error term, which captures the
uncertainty of the time series. The use of a multiplicative average demand with
a daily pattern is in line with common assumptions [7]. A logarithmic transform
yields an additive relationship, which can be separated using the LOESS
algorithm [8], as shown in [9]. The LOESS-parameters of the low pass, the
seasonal smoothing, and the trend smoothing were set to 25, 7, and 47
respectively, in line with the recommendations in [8]. The resulting
decomposition yields a residual time series, to which we fitted a t-distribution.
This distribution is defined through its location, scale, and degrees of freedom v.
For v —» oo it approximates a normal distribution where the location and scale
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are given by the mean and variance respectively. For smaller values of v, the
distribution displays heavier tails. Furthermore, v allows a direct calculation of o,
k, and a. We then tested if deviations from normality arise from a normal
distribution with time-varying variance or a distribution with persistent HTs, using
a normality test based on [10] applied to each 48-value window at a 5%
confidence level. This approach allows us to separate the time series of residual
uncertainty into two distinct regimes of normal and non-normal residuals. For
the latter we then again estimated the parameters for the t-distribution.

Simulating the effects of the heavy tails

Using the obtained v for the t-distribution, we simulated the behaviour of a WDS
subjected to both normal and t-distributed WD uncertainty and compared the
simulation results on technical KPIs of the network. The simulation was
performed using the Water Network Tool for Resilience (WNTR) [7] and the L-
Town network [11]. For each distribution, 100 Monte-Carlo runs were performed.
In each run, stochastic errors were sampled from the respective uncertainty
distribution and added to the WD of the original L-Town network, which was
then simulated. In the original L-Town network, each junction is assigned one of
three demand patterns for the quarter-hourly WD over one week, with one
pattern showing a constant WD. As the uncertainty distributions were obtained
from hourly data, all original patterns were averaged to hourly values.
Stochastic model error was added to each non-constant pattern, with all
junctions sharing a pattern receiving the same error, as in the original network.
This is consistent with the DMA-level identification of uncertainty. Based on [12],
the water service, energy surplus, pressure, flow velocity, and flow directional
changes were identified as critical for a WDS. Lacking operational standards for
the L-Town network, we assessed simulation results using the following KPIs:
total energy use, energy surplus measured by the Todini Index [13] with the
minimum pressure set to 2.7 bar, mean pressure, mean absolute flow velocity,
and number of flow directional changes in the network. KPI distributions of the
two Monte-Carlo-sets were compared using a KS test and quartiles.

RESULTS AND DISCUSSION

Our analysis shows multimodal properties of the raw time series for most DMAs
and for the hourly changes of some of the DMAs, as presented in Figure 1 for
DMA E and its hourly changes. Multimodal distributions exhibit multiple local
maxima (modes), which in this case are due to the daily, weekly and yearly
seasonality in the WD. The tail estimation and distribution fit to the LOESS
residuals for DMA E are shown in Figure 1, and the tail exponents and
distribution parameters are displayed in Table 1. We see consistently heavier
positive than negative tails in the raw time series, while hourly changes exhibit
more symmetric tails. Furthermore, higher values of « indicate that HTs are less
pronounced in some DMAs, e.g. DMA H. The LOESS decomposition yields
unimodal uncertainty distributions for most DMAs. Only DMA A exhibits a
second mode in the positive tail, indicating a second distinct outflow behaviour.
While such additional modes, called Dragon Kings, can be relevant for risk
management [14], this specific second mode is likely caused by flushing events
rather than WD by users [4]. For all DMAs, the uncertainty distributions obtained
by the LOESS are better approximated through a t-distribution than a normal
distribution.



CCWI 2025 - 21st Computing & Control for the Water Industry Conference, Sheffield, UK

As the analysis was performed on logarithmic data, the uncertainty distributions
transform into log-normal and log-t-distributions respectively. This is in line with
the positive tails in the raw data generally appearing heavier-tailed than the
negative tails. The normality tests of the LOESS residuals indicate that the
residuals of some DMAs are mostly normally distributed with bursts of local
HTs, while other DMAs exhibit HTs at most times. The histograms for the
normally and t-distributed share of the residuals of DMA | are presented in
Figure 2, the degrees of freedom for the LOESS residuals and for the separated
residuals, and the share of normal residuals are presented in Table 1.
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Figure 1.: Relative frequency of hourly data (“raw”) and hourly changes (“A”)
(left), complementary cumulative density function of the tails (centre), and
relative frequency of LOESS-residuals with t- and normal distributions fits(right).
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Figure 2.: Linear (left), and logarithmic histogram (centre) of the separated
residual regimes, and the simulated energy use by the two regimes (right).

The simulation was performed sampling form a »°(0,0.1) and t(3,0,0.1)
distribution respectively, following the lowest degrees of freedom reported in
Table 1. The distributional properties of the KPIs obtained from the simulation of
the L-Town network subject to the two different demand uncertainty distributions
are presented in Table 2. The KS test results (p-values are all 0) show
statistically significant differences between the results of normal and t-
distributed errors for all KPlIs.

The t-distributed uncertainty yields higher energy use, higher number of flow
changes, lower energy reserve measured by the mean Todini Index, lower
mean pressures, higher mean flow velocities, and a broader range of values for
all these KPIs. This shows that log-t-distributed model uncertainty generates a
worse performance of the network compared to the log-normal distribution.
These results indicate that relying on normal or log-normal distributed
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uncertainty for the simulation of WDS could underestimate output uncertainty in
WDS operation. However, the results of this study are limited due to the
combination of demand data and WDS topology from different geographical
contexts. Furthermore, exploring other decomposition methods, data and
simulations of higher resolution, and further KPI analysis may deepen insights
into the relevance of HTs in WD. The presented results should not be
considered a definitive evaluation of the operational risks of a WDS, but
highlight the importance of extreme value WD uncertainty for WDS and indicate
a potential research gap for WD models for rare extreme deviations from normal
operations.

Table 1. Tail exponents for the raw time series data, the hourly changes, and
distributional properties of the residual time series after LOESS-decomposition
for all DMAs A to J.

DMA | @raw (neg. | | ®n (negq. | | YLoEss | V LOESS— normally distributed
. . separated . )
pos. tail) pos. tail) residuals in %
A 40.3]14.6 28238 3.0 2.8 38.5
B 52.0]114.3 3.114.3 3.7 3.5 78.6
C 71.5]16.4 3.215.0 5.8 4.8 80.6
D 171193 [ 133|111 | 13.9 7.9 88.6
E 624|164 | 125|394 | 2.0 25 19.1
F 24875 5.813.7 9.8 7.1 88.0
G 26.6|14.5 | 8.0]14.9 3.5 3.8 57.9
H 69.6 | 28.6 9.819.4 3.4 3.2 39.8
I 35.7|7.6 47145 7.8 3.3 86.6
J 11.1]7.0 6.715.9 11.0 6.1 88.0
Table 2. Quartiles of the KPI distributions resulting from the Monte-Carlo runs.
total energy | mean Todini | total no. of mean mean flow
use in MJ Index flow pressure inm | velocity in
changes cms~!
N t N t N t N t N t
Qo| 1127 | 828 | 0.441|0.313 | 1618 | 1277 | 46.26 | 42.41 | 9.57 | 10.54
Q1| 1160 | 1286 | 0.446 | 0.435 | 1702 | 1914 | 46.28 | 46.12 | 9.69 | 10.74
Q2| 1176 | 1313 | 0.448 | 0.437 | 1739 | 1984 | 46.28 | 46.13 | 9.72 | 10.83
Q3| 1177 | 1330 | 0.449 | 0.439 | 1782 | 2050 | 46.28 | 46.15 | 9.77 | 10.90
Q4] 1226 | 1458 | 0.453 | 0.445 | 1880 | 2210 | 46.30 | 46.18 | 9.91 | 13.23

CONCLUSIONS

In this paper, we showed that DMA-level WD time series are heavy-tailed.
These HTs can be modelled through uncertain hourly fluctuations of WD.
Finally, our simulations show that HTs could have a statistically significant
impact on the KPIs relevant to WDS management. Our results draw attention to
the importance of adequate modelling of extreme value uncertainty for the
simulation of WDS. Future work should explore the robustness of these results
and investigate suitable measures for WDS management considering these
findings.
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