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ABSTRACT  
Simulation of Water Distribution Systems (WDSs) is used to evaluate WDS 
management to ensure the security of water supply. Many such simulations rely 
on assumptions of demand uncertainty. In this paper, we investigate which 
probability distributions adequately describe demand uncertainty and how the 
choice of a distribution affects the simulation results. To identify distributions, we 
first decompose water demand data of District Metered Areas of a city into 
demand trends, daily patterns, and residual uncertainty using the LOESS 
algorithm. Residuals are heavy-tailed, typically fitting a local log-normal 
distribution, but occasionally aligning better with a log-t distribution. We then 
assess the operational impact of the identified demand uncertainty by 
simulating the L-Town benchmark network subject to log-normal and log-t-
distributed uncertainty using the WNTR Python package. The simulation results 
are evaluated based on technical KPIs. The results show that log-t-distributed 
uncertainty leads to worse simulated WDS performance on these KPIs, 
indicating that the inadequate use of normal or log-normal distributions could 
overestimate the WDS performance. Our findings highlight the importance of 
selecting appropriate uncertainty distributions for stochastic WDS optimization. 
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INTRODUCTION 

Water Distribution Systems (WDSs) ensure the continuous supply of potable 
water to citizens and thereby serve the 6th sustainable development goal 
defined by the United Nations. A common tool for the management of these 
WDSs is the computational simulation of WDS models, which relies on water 
demand (WD) data as an input. Since future WD is uncertain, knowledge of the 
statistical properties of WD can be used to directly simulate WDSs subjected to 
such uncertain WD, or to validate behavioural models of WD in specific 
scenarios, as previously outlined [1]. Both of these approaches build on the 
assumption that statistical properties of past WD are an adequate description of 
the uncertainty in future WD. One statistical property that has been observed 
are heavy-tails (HTs) of frequency distributions of WD [2]. HTs refer to the 
empirical distributions of WD showing a higher frequency of values far from the 
mean of the distribution than a normal distribution. Such distributions with HTs 
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appear in many systems and are important for extreme events and risk 
management [3]. Despite the potential relevance for the management of WDSs, 
to our knowledge there is no in-depth analysis of HTs in WD and its impacts on 
WDSs. To address this research gap, we analyse District Metered Area (DMA) 
level WD data and simulate a benchmark WDS to investigate (i) if HTs can be 
observed in DMA-level WD data, (ii) how models of WD can account for these 
HTs, and (iii) how these HTs impact a WDS. We show that (i) HTs can be 
observed in WD and its hourly changes through tail estimation, that (ii) these 
HTs can be modelled by decomposing the data into a daily pattern, a slower 
varying trend, and heavy-tailed model residuals, which we consider the 
uncertainty in the WD. Finally, we (iii) simulate a WDS subject to the observed 
uncertainty and evaluate the impact using key performance indicators (KPIs). 
 

METHODS 

Describing heavy tails 
To discover HTs in the frequency distributions of WD time series, we used a 
data set of hourly water meter readings over a period of three years from ten 
DMAs labelled A to J [4]. Corresponding weather data and data from days with 
incomplete or double readings were not regarded.  The distribution of a variable 

𝑋 is commonly considered heavy-tailed, if its kurtosis, i.e. the fourth moment of 
the distribution, exceeds that of a normal distribution. However, kurtosis can 
lack robustness for empirical distributions [5]. We therefore first consider only 
the tails by assuming that HTs follow a power-law described by 
 𝑝(|𝑋 − 𝜇|) ∝ |𝑋 − 𝜇|−𝛼, (1) 

with the probability (or frequency for empirical distributions) 𝑝 and a real tail 
exponent 𝛼 > 1 . Smaller 𝛼 indicate a higher probability of extreme events. We 
used a maximum likelihood estimate based on [6] for 𝛼. The part of the 

distribution where 𝑥 < 𝜇 is called the negative tail and 𝑥 > 𝜇 is called the 
positive tail. The analysis was performed on the frequency distributions of each 
time series, referred to as the raw data, and their differentiated forms, defined 
as the changes between hourly values. 
 

Isolating the heavy tails 
While the aforementioned method enables an estimation of the tail behaviour, 
the data is still dominated by the periodicities and trends observed in WD, which 
are not the focus of our analysis. To isolate the short-term stochastic uncertainty 
from the time series, we first assume that the data can be described by 
 𝑄𝑡 = 𝑄̅𝑑 ∗ 𝑃ℎ ∗ 𝜀𝑡. (2) 

Here, 𝑄𝑡 denotes the WD at hour 𝑡 of the time series, 𝑄̅𝑑 is the average daily 

demand subject to slowly varying trend, 𝑃ℎ denotes the daily usage pattern for 
each hour ℎ of the day, and 𝜀𝑡 denotes an error term, which captures the 
uncertainty of the time series. The use of a multiplicative average demand with 
a daily pattern is in line with common assumptions [7]. A logarithmic transform 
yields an additive relationship, which can be separated using the LOESS 
algorithm [8], as shown in [9]. The LOESS-parameters of the low pass, the 
seasonal smoothing, and the trend smoothing were set to 25, 7, and 47 
respectively, in line with the recommendations in [8]. The resulting 
decomposition yields a residual time series, to which we fitted a t-distribution. 
This distribution is defined through its location, scale, and degrees of freedom 𝜈. 

For 𝜈 → ∞ it approximates a normal distribution where the location and scale 
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are given by the mean and variance respectively. For smaller values of 𝜈, the 

distribution displays heavier tails. Furthermore, 𝜈 allows a direct calculation of 𝜎, 

𝜅, and 𝛼. We then tested if deviations from normality arise from a normal 
distribution with time-varying variance or a distribution with persistent HTs, using 
a normality test based on [10] applied to each 48-value window at a 5% 
confidence level. This approach allows us to separate the time series of residual 
uncertainty into two distinct regimes of normal and non-normal residuals. For 
the latter we then again estimated the parameters for the t-distribution. 
 

Simulating the effects of the heavy tails 
Using the obtained 𝜈 for the t-distribution, we simulated the behaviour of a WDS 
subjected to both normal and t-distributed WD uncertainty and compared the 
simulation results on technical KPIs of the network. The simulation was 
performed using the Water Network Tool for Resilience (WNTR) [7] and the L-
Town network [11]. For each distribution, 100 Monte-Carlo runs were performed. 
In each run, stochastic errors were sampled from the respective uncertainty 
distribution and added to the WD of the original L-Town network, which was 
then simulated. In the original L-Town network, each junction is assigned one of 
three demand patterns for the quarter-hourly WD over one week, with one 
pattern showing a constant WD. As the uncertainty distributions were obtained 
from hourly data, all original patterns were averaged to hourly values. 
Stochastic model error was added to each non-constant pattern, with all 
junctions sharing a pattern receiving the same error, as in the original network. 
This is consistent with the DMA-level identification of uncertainty. Based on [12], 
the water service, energy surplus, pressure, flow velocity, and flow directional 
changes were identified as critical for a WDS. Lacking operational standards for 
the L-Town network, we assessed simulation results using the following KPIs: 
total energy use, energy surplus measured by the Todini Index [13] with the 
minimum pressure set to 2.7 bar, mean pressure, mean absolute flow velocity, 
and number of flow directional changes in the network. KPI distributions of the 
two Monte-Carlo-sets were compared using a KS test and quartiles. 
 

RESULTS AND DISCUSSION 

Our analysis shows multimodal properties of the raw time series for most DMAs 
and for the hourly changes of some of the DMAs, as presented in Figure 1 for 
DMA E and its hourly changes. Multimodal distributions exhibit multiple local 
maxima (modes), which in this case are due to the daily, weekly and yearly 
seasonality in the WD. The tail estimation and distribution fit to the LOESS 
residuals for DMA E are shown in Figure 1, and the tail exponents and 
distribution parameters are displayed in Table 1. We see consistently heavier 
positive than negative tails in the raw time series, while hourly changes exhibit 
more symmetric tails. Furthermore, higher values of 𝛼 indicate that HTs are less 
pronounced in some DMAs, e.g. DMA H. The LOESS decomposition yields 
unimodal uncertainty distributions for most DMAs. Only DMA A exhibits a 
second mode in the positive tail, indicating a second distinct outflow behaviour. 
While such additional modes, called Dragon Kings, can be relevant for risk 
management [14], this specific second mode is likely caused by flushing events 
rather than WD by users [4]. For all DMAs, the uncertainty distributions obtained 
by the LOESS are better approximated through a t-distribution than a normal 
distribution. 
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As the analysis was performed on logarithmic data, the uncertainty distributions 
transform into log-normal and log-t-distributions respectively. This is in line with 
the positive tails in the raw data generally appearing heavier-tailed than the 
negative tails. The normality tests of the LOESS residuals indicate that the 
residuals of some DMAs are mostly normally distributed with bursts of local 
HTs, while other DMAs exhibit HTs at most times. The histograms for the 
normally and t-distributed share of the residuals of DMA I are presented in 
Figure 2, the degrees of freedom for the LOESS residuals and for the separated 
residuals, and the share of normal residuals are presented in Table 1. 

 

Figure 1.:  Relative frequency of hourly data (“raw”) and hourly changes (“Δ”) 
(left), complementary cumulative density function of the tails (centre), and 

relative frequency of LOESS-residuals with t- and normal distributions fits(right). 
 

 

Figure 2.:  Linear (left), and logarithmic histogram (centre) of the separated 
residual regimes, and the simulated energy use by the two regimes (right). 

 
The simulation was performed sampling form a 𝒩(0, 0.1) and 𝑡(3, 0, 0.1) 
distribution respectively, following the lowest degrees of freedom reported in 
Table 1. The distributional properties of the KPIs obtained from the simulation of 
the L-Town network subject to the two different demand uncertainty distributions 
are presented in Table 2. The KS test results (p-values are all 0) show 
statistically significant differences between the results of normal and t-
distributed errors for all KPIs. 
 
The t-distributed uncertainty yields higher energy use, higher number of flow 
changes, lower energy reserve measured by the mean Todini Index, lower 
mean pressures, higher mean flow velocities, and a broader range of values for 
all these KPIs. This shows that log-t-distributed model uncertainty generates a 
worse performance of the network compared to the log-normal distribution. 
These results indicate that relying on normal or log-normal distributed 
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uncertainty for the simulation of WDS could underestimate output uncertainty in 
WDS operation. However, the results of this study are limited due to the 
combination of demand data and WDS topology from different geographical 
contexts. Furthermore, exploring other decomposition methods, data and 
simulations of higher resolution, and further KPI analysis may deepen insights 
into the relevance of HTs in WD. The presented results should not be 
considered a definitive evaluation of the operational risks of a WDS, but 
highlight the importance of extreme value WD uncertainty for WDS and indicate 
a potential research gap for WD models for rare extreme deviations from normal 
operations. 
 

Table 1. Tail exponents for the raw time series data, the hourly changes, and 
distributional properties of the residual time series after LOESS-decomposition 

for all DMAs A to J.   

DMA 𝛼𝑟𝑎𝑤 (neg. | 
pos. tail) 

𝛼∆ℎ (neg. | 
pos. tail) 

𝜈𝐿𝑂𝐸𝑆𝑆 𝜈 𝐿𝑂𝐸𝑆𝑆−
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑

 normally distributed 
residuals in % 

A 40.3 | 4.6 2.8 | 2.8 3.0 2.8 38.5 

B 52.0 | 14.3 3.1 | 4.3 3.7 3.5 78.6 

C 71.5 | 6.4 3.2 | 5.0 5.8 4.8 80.6 

D 17.1 | 9.3 13.3 | 11.1 13.9 7.9 88.6 

E 62.4 | 16.4 12.5 | 39.4 2.0 2.5 19.1 

F 24.8 | 7.5 5.8 | 3.7 9.8 7.1 88.0 

G 26.6 | 14.5 8.0 | 14.9 3.5 3.8 57.9 

H 69.6 | 28.6 9.8 | 9.4 3.4 3.2 39.8 

I 35.7 | 7.6 4.7 | 4.5 7.8 3.3 86.6 

J 11.1 | 7.0 6.7 | 5.9 11.0 6.1 88.0 

 
Table 2. Quartiles of the KPI distributions resulting from the Monte-Carlo runs. 

 total energy 
use in 𝑀𝐽 

mean Todini 
Index 

total no. of 
flow 

changes 

mean 
pressure in 𝑚 

mean flow 
velocity in 

𝑐𝑚 𝑠−1 

 𝒩 𝑡 𝒩 𝑡 𝒩 𝑡 𝒩 𝑡 𝒩 𝑡 
𝑄0 1127 828 0.441 0.313 1618 1277 46.26 42.41 9.57 10.54 
𝑄1 1160 1286 0.446 0.435 1702 1914 46.28 46.12 9.69 10.74 
𝑄2 1176 1313 0.448 0.437 1739 1984 46.28 46.13 9.72 10.83 
𝑄3 1177 1330 0.449 0.439 1782 2050 46.28 46.15 9.77 10.90 
𝑄4 1226 1458 0.453 0.445 1880 2210 46.30 46.18 9.91 13.23 

 

CONCLUSIONS 

In this paper, we showed that DMA-level WD time series are heavy-tailed. 
These HTs can be modelled through uncertain hourly fluctuations of WD. 
Finally, our simulations show that HTs could have a statistically significant 
impact on the KPIs relevant to WDS management. Our results draw attention to 
the importance of adequate modelling of extreme value uncertainty for the 
simulation of WDS. Future work should explore the robustness of these results 
and investigate suitable measures for WDS management considering these 
findings. 
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