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 A B S T R A C T

Evaluating long-term building reconstruction is essential to strengthen resilience to earthquakes. Field inves-
tigations provide detailed and accurate information for building assessments, but are often labour intensive, 
costly, and time consuming, particularly when considering the regional-scale impact of earthquakes. In contrast, 
satellite Remote Sensing (RS) techniques provide frequent data across vast areas, making them ideal for 
regional-scale post-earthquake assessments, which can complement field surveys. Despite this, most RS studies 
have relied on manual change detection of satellite data before and after the event, limiting their potential for 
automated assessment and reducing their support for field investigations. In this study, we developed a novel 
RS method designed to assist field investigations of post-earthquake building reconstruction on a regional scale. 
The method automatically identifies target buildings for field teams to investigate, locating collapsed structures 
or buildings that have changed due to post-earthquake reconstruction efforts. We applied Multi-Temporal 
Synthetic Aperture Radar Interferometry (MT-InSAR) for the first time to evaluate post-earthquake building 
reconstruction. The proposed method involves a two-stage analysis: first, a grid-level assessment on a regional 
scale to detect areas with reconstruction activities following an earthquake, and then a detailed building-level 
analysis to identify individual buildings that have undergone changes as part of the reconstruction process 
within these areas. The method was used to assess building reconstruction efforts in Nepal after the 2015 
Gorkha earthquake. For the MT-InSAR analysis, we acquired two stacks of 3-m-resolution SAR images, one 
before and one after the earthquake. The grid-level analysis detected multiple urban areas with significant 
changes, which were then subjected to a building-level analysis. This analysis pinpointed the locations of 
affected buildings and determined the extent of changes related to reconstruction activities. A comparison of 
the building-level results with field observations confirmed that the method successfully identified buildings 
that have undergone changes. These changes included buildings that were left in a collapsed state, demolished, 
under construction, or fully reconstructed. The MT-InSAR-based approach introduced in this study has the 
potential to serve as a valuable tool to guide future field surveys related to post-earthquake reconstruction, 
significantly reducing the time and effort needed for such assessment.
1. Introduction

Earthquakes are among the most destructive hazards, often causing 
extensive building damage and collapses, and resulting in significant 
loss of life. In recent years, many urban areas around the world have 
been affected by earthquakes. For example, the 2010 Haiti earthquake 
resulted in over 200,000 deaths and destruction of approximately 
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250,000 residences and 30,000 commercial buildings (Green and Miles, 
2011), with damage and losses exceeding $7.8 billion (Government of 
the Republic of Haiti, 2010). More recently, the 2023 earthquake in 
Turkey caused over 53,000 fatalities, 100,000 injuries, and widespread 
building damage, with losses estimated at $84.1 billion (Aktas et al., 
2024). As populations continue to grow, the consequences of such 
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disasters may become even more severe. This highlights the critical 
need for effective post-earthquake management and disaster risk re-
duction strategies in earthquake-prone areas. A crucial component of 
these efforts is assessing the building reconstruction process following 
an earthquake (Ge et al., 2010; Hashemi Parast, 2017).

Post-earthquake reconstruction of buildings involves repairing, re-
inforcing, or demolishing and rebuilding damaged structures (Polese 
et al., 2018). Typically, this process begins a few months after the 
earthquake and can last several years (Lu and Xu, 2015; Polese et al., 
2018). For example, the reconstruction process was still in progress in 
Bam, Iran, six years after the 2003 earthquake (Omidvar et al., 2010). 
During the reconstruction process, there is an opportunity to identify 
and address structural weaknesses, such as poor quality materials, that 
prevent the ability of buildings to withstand earthquakes (Ahmed, 
2017). By doing so, it is possible to mitigate risks that could compro-
mise the resilience and sustainability of future buildings, ensuring safer 
and more resilient structures (Lyons et al., 2010). Assessment of the re-
construction process ensures that the process aligns with the established 
recovery strategy and plans (Clinton, 2006; Mannakkara et al., 2014). 
Additionally, it helps gather lessons to improve future post-disaster 
management and reconstruction efforts (Mannakkara et al., 2014).

Conventional surveys have been widely used to evaluate the post-
earthquake condition of buildings, including assessing their reconstruc-
tion progress (Acharya et al., 2022). These methods include building-
by-building field inspections (Eghbali et al., 2020), household surveys, 
and interviews (Platt et al., 2020; Westoby et al., 2021). While these 
investigations provide detailed, context-specific data through direct 
physical observations of structural conditions, they require experts to 
manually collect information on site. As a result, these surveys are time 
consuming, labour intensive, and costly (Brown et al., 2012; Platt et al., 
2016), making them impractical for assessing reconstruction progress 
across affected large areas. Consequently, there is a growing need to 
explore new methods for post-earthquake assessments that can cover 
extensive regions more efficiently, helping to enhance traditional field 
surveys by identifying priority locations.

One promising approach is satellite Remote Sensing (RS) technol-
ogy, which enables the observation of the Earth’s surface without 
the need for physical presence. RS techniques offer large coverage, 
cost effective, and frequent observations, making them well suited 
for regional-scale post-disaster assessments and thus supporting field 
investigations. Commonly used RS data include optical and Synthetic 
Aperture Radar (SAR) imagery. Optical satellites acquire data in visible 
and infrared light, as human eyes perceive it, making them suitable 
for visual interpretation (Ge et al., 2020). SAR uses microwave signals, 
offering imaging capabilities in all weather and at night (Bamler, 2000; 
Hanssen, 2001).

Most RS studies have focused on the early phase of assessment, par-
ticularly on damage evaluation (Al-Khudhairy et al., 2005; Brown et al., 
2012; Anniballe et al., 2018; Giardina et al., 2023; Voelker et al., 2024; 
Macchiarulo et al., 2024) and immediate demolition (Brown et al., 
2012; Kushiyama and Matsuoka, 2019). A smaller number of studies 
have focused on the later reconstruction phase. These studies have pri-
marily used change detection approaches to identify alterations result-
ing from reconstruction activities. Change detection methods compare 
two or more satellite observations taken before and after an event, 
either at the pixel or object (e.g. buildings) level, to detect differences 
between pre- and post-event conditions. For example, Derakhshan et al. 
(2020) used a time series of medium-resolution Landsat optical data 
to monitor building reconstruction over several years following earth-
quakes in Christchurch, New Zealand, L’Aquila, Italy, and Bam, Iran. 
Their approach involved automating the classification of built-up areas 
using spectral indices, followed by change detection on the classified 
maps to assess changes in these areas. However, their analysis primarily 
focused on estimating the rate of change in total built-up areas rather 
than detecting changes at the individual building level. Consequently, 
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this method lacks the ability to pinpoint the specific locations of altered 
buildings, limiting its usefulness for guiding field surveys.

In contrast, other research has specifically focused on tracking 
changes at the individual building level. For instance, Bevington et al. 
(2010) evaluated post-earthquake reconstruction in Haiti four months 
after the 2010 earthquake using optical satellite data. They manually 
analysed changes in heavily damaged and collapsed buildings identi-
fied by the Global Earth Observation Catastrophe Assessment Network 
(GEO-CAN), classifying the reconstruction progress into four stages: 
unchanged, rubble removal, under construction, and rebuilding. Their 
findings indicated that the reconstruction process varied both tempo-
rally and spatially, with most buildings remaining unchanged. This 
suggested that many buildings required more time for reconstruction, 
highlighting the need for a long-term assessment, which their study did 
not cover. Other studies have focused on conducting extended evalua-
tions of post-earthquake building reconstruction using RS techniques. 
For example, Hashemi Parast et al. (2017) evaluated the reconstruction 
progress in Bam, Iran, after the 2003 earthquake using three high-
resolution optical images, one taken before, one immediately after 
and one eight years after the earthquake. They manually classified 
land cover within small regions to track changes in buildings over the 
eight-year period. Similarly, Contreras et al. (2018) assessed building-
level reconstruction following the 2009 L’Aquila earthquake. They used 
manual and semi-automatic change detection methods (Contreras et al., 
2016), analysing classified maps of buildings from optical satellite data 
acquired in 2009 and 2011 to identify changes in individual buildings’ 
conditions during the reconstruction process. While these studies have 
focused on building-level assessment, their approaches rely heavily on 
expert manual interpretation, resulting in high time and labour costs.

In a different approach, Hoshi et al. (2014) conducted an automated 
assessment of building-level reconstruction using machine learning, 
specifically the Maximum Likelihood classification method, to identify 
change patterns in buildings in Pisco from 2007 to 2011 after the 2007 
Peru earthquake. This method detected changes in the ratios between 
buildings and vacant areas. However, advanced machine learning clas-
sifications depend on training models with sample data collected from 
ground-truth sources (Matin and Pradhan, 2022; Jia and Ye, 2023). 
Gathering these sample data still requires field investigations, which 
are time consuming and challenging to perform comprehensively, often 
leading to unbalanced training sets. Additionally, models trained on 
one dataset cannot always be generalised to other case studies, as 
differences in building features or environmental conditions can limit 
their applicability (Matin and Pradhan, 2022; Jia and Ye, 2023).

A well-established method that provides building-level informa-
tion is Multi-Temporal Interferometric SAR (MT-InSAR), which uses 
stacks of SAR images. Thanks to the all-weather image acquisition 
capability of SAR sensors and their ability to cover large areas with 
short revisit times (Macchiarulo et al., 2024), MT-InSAR can monitor 
extensive regions affected by earthquakes using frequent SAR data. 
Additionally, high-resolution SAR data can be freely available through 
open data programs (ESA, 2024), making it well suited to accurate 
building-level assessments (Macchiarulo et al., 2024). The MT-InSAR 
technique identifies stable points, known as Persistent Scatterers (PSs), 
by analysing stacks of SAR images taken over time from the same area. 
These PSs typically correspond to man-made objects such as buildings, 
enabling detailed monitoring of changes at the building level. MT-
InSAR has been widely used for long-term displacement monitoring in 
urban areas (Ciampalini et al., 2014; Bianchini et al., 2015; Foroughnia 
et al., 2019). However, no study has yet explored this technique to 
assess post-earthquake building reconstruction, nor has it been utilised 
to support field investigations.

In this research, we aim to develop a novel MT-InSAR-based tool 
to support post-earthquake field investigations by assessing building 
reconstruction progress, including buildings left in a collapsed state, 
demolished, under construction, or reconstructed. Compared to the 
use of image-based change detection methods relying on a single 
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pre-event image and long-term post-event imagery, this approach lever-
ages a time series of SAR data to better capture the gradual and 
location-specific nature of reconstruction. MT-InSAR enables contin-
uous monitoring of structural changes by detecting variations in PSs 
associated with buildings over time. This allows for automated identi-
fication of demolition, collapse, or reconstruction without the need for 
supplementary datasets, offering a more robust and targeted method 
for tracking post-disaster building reconstruction. The proposed method 
can guide field surveys by automatically identifying the locations of 
buildings that have changed from their pre-event state due to recon-
struction efforts or that are still collapsed years after an earthquake. 
This approach provides target locations for field teams to investi-
gate, significantly reducing the time and effort required for on-site 
assessments.

The proposed method was used to assess building reconstruction in 
Nepal following the 2015 Gorkha earthquake. Stacks of high-resolution 
Cosmo-SkyMed (CSK) SAR images were acquired before and after the 
earthquake for the MT-InSAR analysis. PSs associated with buildings 
were identified for both pre- and post-event time frames. A two-stage 
PS differential analysis was then conducted to locate buildings that had 
undergone changes. First, a grid-level analysis was performed to deter-
mine urban areas that showed significant changes, representing zones 
of extensive damage or active reconstruction. Second, a building-level 
PS differential analysis was conducted within these areas to pinpoint 
specific buildings affected by reconstruction activities. This building-
level analysis not only identified the locations of these buildings but 
also assessed the extent of the changes. Results were validated using 
field observations collected during reconnaissance missions.

2. Methodology

This section describes the MT-InSAR technique, the parameters 
used to generate PSs, and the PS differential analysis developed in 
the study. The proposed method is based on the principle that a PS 
will cease to persist if changes occur to its corresponding target, such 
as collapses or modifications. Using this concept, the study applies a 
grid-level PS differential analysis on a regional scale, along with a 
building-level analysis, to detect significant changes and identify build-
ing locations with substantial changes, such as collapse, demolition, or 
reconstruction.

2.1. Multi-Temporal Synthetic Aperture Radar Interferometry (MT-InSAR)

MT-InSAR is an advanced remote sensing technique that uses the 
temporal phase information of SAR data to measure ground surface 
displacements (Ferretti et al., 2001). The core objective of MT-InSAR 
is to identify PSs, which consistently return strong backscatter signals 
to the satellite and show stability in phase over time (Ferretti et al., 
2001), typically corresponding to natural features like rocks or man-
made structures like buildings. The MT-InSAR technique uses a stack 
of SAR images to identify PSs.

To initiate this process, a primary set of points is selected as PS 
Candidates (PSCs) based on their amplitude stability. This stability is 
quantified using the Amplitude Dispersion Index (ADI), estimated as: 

ADI =
𝜎𝐴
𝑚𝐴

≃ 𝜎𝑣, (1)

where 𝜎𝐴 is the amplitude standard deviation, 𝑚𝐴 is the mean ampli-
tude, and 𝜎𝑣 is the phase standard deviation of the SAR data stack. A 
point is chosen as a PSC if its amplitude consistently exceeds a defined 
threshold. Ferretti et al. (2001) proved that assuming sufficient data 
images, ADI below 0.25 indicates sufficient point stability and a high 
signal-to-noise ratio.

Once the PSCs are selected, SAR interferometry is used to estimate 
their displacements. MT-InSAR compares the interferometric phase 
between a primary image and secondary SAR images of the stack, 
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acquired at different times over the same area. The interferometric 
phase consists of different components: displacement, topography, at-
mosphere, the Earth’s curvature, and noise (Hanssen, 2001). To isolate 
the displacement component, other phase components are removed, 
as detailed by Ferretti et al. (2001), Perissin and Wang (2011) and 
Van Leijen (2014). The effects of Earth’s curvature and topography 
are corrected using orbital data and an external Digital Elevation 
Model (DEM). Depending on the DEM’s accuracy, a residual amount 
of topography effect may remain in the interferometric phase, which 
is later estimated with displacements. The atmospheric effect, known 
as Atmospheric Phase Screen (APS), is removed based on a two-step 
procedure. First, a temporal low-pass filter is applied to the residuals 
to separate unmodeled displacement (temporally correlated) from the 
atmospheric signal and noise, which are uncorrelated in time. Second, 
a spatial low-pass filter is used to extract the spatially correlated atmo-
spheric signal from the remaining residuals, effectively isolating and 
removing the APS (Van Leijen, 2014). After the APS removal, a second 
set of PSs is selected using a higher threshold on ADI . Displacements 
are then re-estimated for all PSs. The amount of remaining noise in 
the interferometric phase per PS is used to calculate the Temporal 
Coherence (TC) as a reliability metric. Higher TC values indicate more 
accurate and stable PS estimates, ensuring the reliability of the analysis.

In this study, the MT-InSAR processing was performed using the 
SARPROZ software (Perissin et al., 2011). Although displacement mea-
sures were not the primary focus, the complete MT-InSAR process was 
crucial to identify reliable PSs corresponding to buildings. To select 
PSCs, we applied a threshold on the Amplitude Stability Index (ASI), 
implemented in the software as 1− ADI. Specifically, ASI values above 
0.8 were used in the first processing stage and then reduced to 0.6 
for the final PS selection. Only PSs with a TC higher than 0.7 were 
considered valid for the PS differential analysis. These thresholds are 
commonly adopted in standard MT-InSAR approaches, as established 
in the literature (Ferretti et al., 2001; Macchiarulo et al., 2021; Wu 
et al., 2022). The following section outlines the PS differential analysis 
developed in this study to assess building reconstruction.

2.2. Persistent Scatterer (PS) differential analysis

During seismic events, buildings that have been damaged or col-
lapsed stop exhibiting the characteristics of PSs. Normally, an un-
damaged building maintains a consistent signal to the satellite over 
time. However, after an earthquake, a severely damaged or collapsed 
building exhibits irregular and disrupted signals. This disruption occurs 
because the building either no longer exists in its original form or 
undergoes further demolition and reconstruction, preventing it from 
being tracked as a PS. We leveraged this property of PSs to detect 
changes in buildings, first at a grid level and then at the level of 
individual structures, as shown in Fig.  1.

The grid-level analysis aims to identify urban areas that have under-
gone significant changes in the years following an earthquake. These 
areas can be prioritised for further evaluation to locate changed build-
ings through the building-level PS-differential analysis. To perform the 
grid-level analysis, we divided the area of interest into 100 × 100 m2

grid cells. Within each grid cell, we quantified the number of PSs 
derived from pre- and post-event time-series images processed using 
MT-InSAR analysis. The difference in PS numbers at the grid level was 
determined by subtracting the post-event PS count from the pre-event 
PS count.

To identify grid cells with significant changes in PS numbers, we 
normalised these differences using a representative number of PSs from 
the entire area of interest obtained from the pre-event series (Eq. (2)). 
This process involved dividing the number of pre-event data points 
within each grid cell into equal quartiles and excluding the outliers. The 
normalisation was based on the upper bound (UB) of the distribution 
of the number of PSs within each grid cell (from the pre-event data), 
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Fig. 1. Schematic representation of the PS differential analysis at grid and building levels.
defined as the largest data point excluding the outliers, and estimated 
as follows: 
UB = 𝑄3 + 1.5 ∗

(

𝑄3 −𝑄1
)

(2)

where 𝑄1 represents the first quartile, which is the median of the 
lower half of the dataset, below which 25% of the data points fall. 
Similarly, 𝑄3 is the third quartile, the median of the upper half of the 
dataset, meaning that 75% of the data points fall below this value. 
This approach helps prevent the impact of outliers from skewing the 
analysis of PS differences. Fig.  10 in the Appendix Section illustrates 
the distribution of the number of PSs obtained from the pre-event time 
series and the parameter UB (𝑁pre

)

. The differences in the number of 
PSs at the grid level, 𝐷Grid, are then estimated as follows: 

𝐷Grid =
𝑁pre −𝑁post

UB
(

𝑁pre
) , (3)

where 𝑁pre and 𝑁post are the number of PSs identified in each grid from 
the pre- and post-event time series, respectively. UB (𝑁pre

) refers to the 
upper bound of the number of points in the grid cells obtained from the 
pre-event time series. 𝐷Grid  indicates the relative change between the 
pre- and post-event conditions in each grid cell, compared to the other 
grid cells in the area of interest.

The grid-level analysis was designed to prioritise grid cells with 
more or larger buildings over those with fewer or smaller ones at 
equivalent levels of PS loss. Since larger buildings and a higher number 
of buildings typically generate more PSs (Ferretti et al., 2001; Hooper 
et al., 2004; Crosetto et al., 2016), this approach emphasises grid cells 
with more PSs when similar levels of PS loss are observed. Fig.  2 
provides examples of how the grid-level analysis operates. A grid cell 
with more pre-event PSs and a certain percentage of point loss due to 
reconstruction will be prioritised over a grid cell with fewer pre-event 
PSs in case of the same percentage of point loss. For example, according 
to Fig.  2, and assuming UB (𝑁pre

) is equal to 100 for simplicity, Grid 
1 in the first example has 50 points and a 50% point loss (25 points 
disappeared), resulting in a 25% differential change. In contrast, Grid 
4 
2, with 26 points and 13 points disappeared, shows a 13% differential 
change. In other examples, where the percentage of point losses differ, 
the differential changes directly depend on the level of point losses. 
For example, in the same figure, Grid 2, even with 100% of point loss, 
exhibits less of a differential change (26%) than Grid 1 (40%) with 80% 
of point loss.

Importantly, the 100×100 m2 grid resolution was chosen to balance 
spatial granularity with computational efficiency. The methodology re-
mains robust across different grid sizes because it relies on a normalised 
change metric that adjusts for variations in the number of PSs per grid. 
The approach remains flexible and can be adapted to alternative grid 
configurations depending on specific research needs.

The outcomes of the grid-level analysis served as a guiding frame-
work for performing a more detailed investigation at the building 
level. The building-level PS differential analysis identifies buildings 
that have undergone significant changes after the earthquake during 
the reconstruction process. These building-level changes can include 
structures that remain collapsed, have been demolished, are under con-
struction, or are fully reconstructed. We conducted the PS differential 
analysis for buildings located in zones with high concentrations of 
grid cells exhibiting significant changes. Building footprints from the 
OpenStreetMap (OSM) database (OpenStreetMap, 2023) were used to 
quantify the presence of PSs within each building for both pre- and 
post-event data. The change in the number of PSs for each building was 
estimated by subtracting the number of PSs in the post-event data from 
the pre-event data. Similar to the grid-level analysis, the percentage of 
PS differences was normalised using the ratio between each building’s 
area and the upper bound of the building area dataset, which acted as 
a weighting factor.

The percentage of PS differences at the building level, 𝐷building was 
estimated as follows: 

𝐷building =
𝑁pre-bu −𝑁post-bu 

𝑁pre-bu 
×

𝑎𝑟𝑒𝑎bu 
UB

(

𝑎𝑟𝑒𝑎bu
) × 100, (4)

where 𝑁pre-bu and 𝑁post-bu are the number of PSs identified from the 
pre- and pos-event time series for each building footprint, respectively, 
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Fig. 2. Examples of grid-level differential analysis. In Example 1, 50% of points have disappeared in a denser grid cell due to reconstruction years after the 
earthquake. Example 2 shows an 80% point loss in Grid 1 compared to a 100% loss in Grid 2. In Example 3, 20% of points in Grid 1 and 80% in Grid 2 have 
disappeared. The analysis indicates more changes in the denser Grid 1 for Example 1, while in Examples 2 and 3, the differential changes depend on the degree 
of point loss in each grid.
𝑎𝑟𝑒𝑎bu represents the area of each building rooftop, calculated using 
the OSM building footprints, and UB (𝑎𝑟𝑒𝑎bu

) is the upper bound of the 
building areas distribution (the largest value of areas without outliers) 
in the detected zones. Similar to the grid-level analysis, this upper 
bound was calculated based on Eq.  (2), but using the size of buildings. 
The values of UB (𝑎𝑟𝑒𝑎bu

) used in this study are reported in Table  1 
in Appendix.

The weighting factor ensures that larger buildings have a greater 
influence in terms of the magnitude of change associated with re-
construction. For example, a larger building unit will show a higher 
amount of 𝐷building compared to a smaller building with the same 
normalised difference (as described in the first ratio in Eq. (4)). Ad-
ditionally, for buildings with the same area, similar to the grid-level 
analysis, 𝐷building depends entirely on the normalised difference, i.e. the 
percentage of PS point loss during the reconstruction process. This 
approach is based on the principle that larger buildings often represent 
high-value infrastructure and densely populated areas, which can be 
more critical to overall urban functionality than smaller buildings. By 
applying the weighting factor based on the area of the buildings, we 
ensure that larger buildings are given appropriate emphasis in the 
analysis. The weighting factor may vary depending on the case study 
considering specific purposes. For example, if residential buildings are 
of particular interest, smaller buildings may also be prioritised by 
defining a different weighting factor. This flexibility allows the method 
to adapt to different contexts and focus on the most relevant types of 
buildings.

3. Case study and datasets

On April 25, 2015, Nepal was struck by a moment magnitude (Mw) 
7.8 earthquake. The epicentre was situated near Gorkha, approximately 
80 km northwest of Kathmandu, the capital city. The earthquake 
occurred at a focal depth of 19 km (USGS, 2015), and its impact 
was extensive, resulting in widespread destruction in areas extending 
from the epicentre to the east, including Kathmandu. Many aftershocks 
followed the main earthquake, with the largest one occurring on May 
5 
12, 2015, recording a moment magnitude of Mw 7.3 (USGS, 2015). 
Both urban and rural areas suffered significant damage to buildings 
and infrastructure as a result of the main shock. By May 26, 2015, 
the earthquake’s toll in Nepal included 8510 reported deaths and 199 
missing people (Goda et al., 2015).

According to Lizundia et al. (2016), the earthquake caused exten-
sive damage to residential and governmental buildings, heritage sites, 
schools, roads, bridges, water systems, and agricultural areas. Many 
ancient cultural buildings were severely damaged or destroyed, along 
with over 500,000 houses. The Center for Disaster Management and 
Risk Reduction Technology (CEDIM, 2015) estimated the economic loss 
to be around 10 billion U.S. dollars, which accounted for approximately 
half of Nepal’s gross domestic product (Goda et al., 2015). Fig.  3 shows 
the selected region of interest, covering the most affected areas in 2015.
Remote sensing data. We used Single Look Complex (SLC) imagery 
from COSMO-SkyMed (CSK), an Italian constellation of SAR satellites 
dedicated to Earth imaging. The purpose of this constellation is to 
provide high-resolution SAR data within the X-band frequency range 
for various applications, including Earth observation, environmental 
monitoring, and disaster management (Italian Space Agency, 2019).

For this study, we collected two temporal series of SAR images 
in Stripmap mode before and after the event. The post-event time 
series started following the largest aftershock on May 12, 2015. All 
images were acquired from a descending orbit in HH polarisation with 
a minimum revisit time of four days and a spatial resolution of 3m. 
The pre-event series included 30 SAR images acquired from June 2014 
to January 2015. For the post-event series, we considered different 
time intervals with varying numbers of images to assess the impact of 
time series length on the differential analysis. These time intervals were 
selected to correspond to different phases of reconstruction activities. 
The shortest post-event time series begins nearly a year after the earth-
quake, when collapsed buildings may have entered the late stages of 
reconstruction, such as being under construction or fully reconstructed. 
The other two time series start closer to the earthquake date, also cap-
turing the initial stages of reconstruction, such as debris removal and 
demolition. Fig.  4 shows the temporal distribution of the pre-event and 
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Fig. 3. A view of the region of interest, highlighting the locations where field pictures were taken. The close-up image on the right-hand side of the figure shows 
the distribution of these field pictures within Kathmandu. Google satellite imagery is used as a background layer. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Temporal distribution of CSK data images for the different time series before and after the earthquake. The detected number of PSs with Temporal 
Coherence higher than 0.7 is specified for each pair. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
post-event time series. The post-event datasets, labelled 1 through 3, 
consist of 29, 47, and 140 images, respectively. SAR image acquisition 
dates with corresponding perpendicular and temporal baselines, and 
Doppler Centroid (DC) relative to the primary image of the post-event 
series number 2 are reported in Table  3 in Appendix.

Field data. To validate the results, we used field pictures collected by 
the Earthquake Engineering Research Institute (EERI) and the Earth-
quake Engineering Field Investigation Team (EEFIT) during their post-
reconnaissance missions in 2015, as well as data from the 2022 EEFIT 
return mission.

EERI is a nonprofit technical society focused on advancing the sci-
ence and practice of earthquake engineering. It actively contributes to 
post-earthquake reconnaissance efforts, conducting field investigations 
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to assess the performance of structures and infrastructure after seismic 
events (EERI, 2015). EEFIT is a collaborative initiative involving indus-
try and academic institutions, dedicated to conducting comprehensive 
field investigations following significant earthquakes.

Two months after the 2015 Gorkha earthquake, EEFIT initiated 
a reconnaissance mission to investigate the earthquake’s on-site im-
pact (EEFIT, 2019). In May 2022, EEFIT returned to Nepal for a 
follow-up mission to gain insights into the country’s recovery process 
and evaluate the effectiveness of the Build Back Better approach to dis-
aster recovery (Whitworth, 2023). During their building assessments, 
the field team had two primary objectives: first, to verify any changes in 
structures affected by the earthquake, and second, to document the sta-
tus of these buildings, noting the process of reconstruction efforts. Some 
of their observations were gathered in Kathmandu and Bhaktapur, 
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where a high level of damage was observed in 2015. The pictures they 
collected depicted various changes to buildings, including those that 
had remained collapsed, been demolished, were under reconstruction, 
or were newly constructed. The locations of the field pictures within 
the area of interest are represented in Fig.  3.

4. Results

The following sections present the results of the PS differential 
analysis conducted at both the grid and building levels, along with the 
validation of the identified buildings using field data.

4.1. Grid-level analysis

The MT-InSAR technique was applied to process one pre-event and 
three distinct post-event CSK datasets, as presented in Fig.  4. The figure 
also indicates the number of PSs with TC higher than 0.7 that were 
identified for each time series used in the PS differential analysis. Due 
to variations in the number of SAR images in the pre- and post-event 
time series, the number of PSs identified in each pair differs. This 
is explained by Eq. (1), which indicates that in a longer time series, 
the likelihood of a point undergoing changes (e.g., due to vegetation 
growth, construction, or other environmental factors) increases, reduc-
ing its stability as a PS. In our study, the varying time periods covered 
by each pair influence the temporal coverage of building reconstruction 
activities, which affects the number of PSs associated with buildings as 
they undergo physical changes. Hereafter, we label the pre- and post-
event time-series pairs, each comprising the pre-event dataset paired 
with one of the post-event datasets, as Pairs 1, 2, and 3.

The outcomes of the PS differential analysis conducted at the grid 
level are illustrated in Fig.  5. This analysis provides a regional-scale 
overview of differences in PS numbers, highlighting significant spatial 
patterns of changes resulting from reconstruction activities years after 
the earthquake. Each point in the figure corresponds to a grid cell, with 
the colour indicating the magnitude of normalised differences between 
the pre- and post-earthquake PSs available for that grid cell. The 
variation in the number of PSs across different time series influences 
the level of PS changes observed between the pre-event and the three 
post-event situations.  To effectively highlight areas with significant 
changes, we categorised the PS differences into three levels using 
different colour scales: green for small changes, yellow for moderate 
changes, and red for extensive changes. Due to the variation in the 
number of PSs across the different time-series pairs (Fig.  4) and the 
different patterns of change observed in each pair, the colour scales 
were adjusted individually for each pair. This approach ensures that 
the concentration of PS differences is accurately reflected for each 
period, allowing for a more meaningful comparison of changes across 
the various time-series pairs.

The results of the grid-level analysis revealed distinct spatial pat-
terns in the distribution of PS differences across the study area (Fig. 
5). The majority of grid cells were classified into the small change 
category, primarily located on the outskirts of urban areas. These 
regions experienced minimal alterations in PS point density, suggesting 
little to no reconstruction activities. Some grid cells exhibited moderate 
changes, indicating urban regions with moderate overall changes. For 
example, these changes can correspond to structures that suffered 
moderate damage during the earthquake, followed by moderate levels 
of repair and modification activities. A significant number of grid cells 
exhibited extensive changes, primarily in areas where buildings had 
partially or totally collapsed. These extensive changes in these regions 
could refer to structures that have collapsed and been demolished 
or structures with ongoing reconstruction activities years after the 
earthquake.

All pairs, except for Pair 1, show a consistent pattern of changes, 
with more changes observed in longer series. The extent of detected 
changes depends on the reconstruction activities during the periods 
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covered by each pair, with buildings showing SAR signal instability 
throughout reconstruction. For example, Pair 3 has the longest post-
event time series, starting about 20 days after the major aftershock 
and continuing for nearly 3 years. This longer coverage captured more 
changes associated with long-term reconstruction activities within the 
area of interest. The extended reconstruction efforts led to a significant 
reduction in the number of PSs, resulting in a greater number of grid 
cells showing extensive PS differences. This can be due to the gradual 
modification of collapsed buildings over time, including debris accu-
mulation, debris removal, demolition, and reconstruction. While short 
gaps between acquisitions could potentially miss rapid reconstruction 
activities, the overall trend in PS loss still provides a robust indication 
of reconstruction dynamics.

In contrast, Pair 1, which has the shortest post-event time series, 
showed a different pattern of changes than the other longer series in 
the grid-level analysis (Fig.  5(a)). This is likely because the post-event 
time series for Pair 1 started roughly a year after the earthquake and 
included fewer SAR images (Fig.  4). As a result, there is a notable gap 
in data from the critical period immediately following the earthquake 
to one year later, possibly leaving reconstruction activities unrecorded. 
Any changes during this one-year gap are not reflected in the time 
series, limiting the understanding of building conditions. Additionally, 
shorter time series with fewer SAR images are less capable of capturing 
gradual reconstruction-related changes.

Fig.  5 shows that extensive levels of changes are widely distributed 
across urban areas, with some zones having more grid cells exhibiting 
extensive changes. In particular, two such zones are located in central 
Kathmandu and Bhaktapur, as indicated by the black rectangles in Figs. 
5(b) and 5(c). These zones were among the areas most severely affected 
by the earthquake, as confirmed by the field investigations conducted in 
2015 (Wilkinson et al., 2019). Consequently, these zones were selected 
for a more detailed building-level analysis, as described in the next 
section.

4.2. Building-level analysis

The PS differential analysis at the building level was performed in 
urban zones (Fig.  6a) where a significant number of grid cells exhibited 
extensive changes, as a result of the grid-level analysis described in the 
previous section.

The distribution of the number of PSs within building footprints 
from the pre-event and the longest post-event time series is presented 
in Fig.  11 in Appendix. As a result of changes in the physical condition 
of buildings after the event, the number of PSs detected post-event 
decreased. Fig.  6 shows the outcomes of building-level PS differential 
analysis for the zones indicated, using Pair 3. The percentage of PS 
differences between the pre- and post-event time series was calculated 
for buildings within the selected zones. These PS differences were 
categorised into three levels of change, using consistent intervals across 
all categories. Different colours were used to represent varying levels 
of changes at the building level. Green represents a small percentage 
of changes, ranging from 0% to 33%, indicating minimal variations 
in PS point density associated with the building and suggesting stable 
building conditions with little to no reconstruction activities. Yellow 
indicates moderate changes, between 33% and 66%, corresponding to 
buildings that likely experienced moderate damage during the earth-
quake or have undergone some level of repair or modification. Red, 
representing changes above 66%, indicates extensive alterations, sig-
nifying buildings that likely suffered severe damage and are either 
undergoing significant reconstruction or remained damaged or col-
lapsed. The division of the 0%–100% range into equal intervals was 
selected solely for visualisation purposes. Fig.  6 shows that three years 
after the earthquake, 58.11%, 29.55%, and 12.34% of the buildings 
within the regions of interest have experienced small (0% ≤ 𝐷building <
33%), moderate (33% ≤ 𝐷building < 66%), and extensive (𝐷building ≥
66%) changes, respectively.
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Fig. 5. Results of PS differential analysis on the regional scale in Nepal from (a) Pair 1, (b) Pair 2, and (c) Pair 3. Different colour scales were used to highlight 
the concentration of changed areas in the maps separately. The black rectangles show areas with a high concentration of grid cells with extensive changes, linked 
with two main affected areas in 2015, one in Kathmandu and one in Bhaktapur.. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
4.3. Validation of building-level results

We validated the building-level results using pictures taken by the 
EEFIT and EERI teams during the 2015 post-event reconnaissance mis-
sion and by the EEFIT team during the 2022 return mission. From the 
2015 missions, only images of severely damaged or collapsed buildings 
were selected for validation, as those were the buildings expected to 
undergo reconstruction. A total of 115 and 59 field pictures were cho-
sen from the 2015 EERI and EEFIT missions, respectively. Additionally, 
531 pictures of collapsed, demolished, under-construction, or newly 
constructed buildings were used from the 2022 EEFIT mission. A total 
number of 152 and 553 pictures were used for validating the results 
from Kathmandu and Bhaktapur, respectively.

For the validation, we extracted buildings with a relevant level of 
changes by applying a threshold to the percentage of PS differences 
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at the building level. Specifically, buildings with a PS difference per-
centage (𝐷building ) greater than 50% were selected for validation. The 
number of identified buildings is reported in Table  2 in the Appendix 
Section. To associate each field picture with a specific building, we 
applied a buffer zone of 25m around the location of each picture. If 
multiple pictures were taken of the same building, the average location 
of those pictures was used. The 25-m buffer accounted for potential 
errors, such as the Global Positioning System (GPS) accuracy of the 
camera for picture locations and the distance between the surveyor and 
the building being photographed. A picture was considered to corre-
spond to a building if its buffer zone intersected with the building’s 
footprint. This counted as one positive correlation between the picture 
and the building, indicating a match between the method’s identified 
buildings and the field observation. In cases where a picture intersected 
with multiple buildings, only one positive correlation was considered 
to ensure that each picture was associated with a single building.
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Fig. 6. Building-level PS differential results using Pair 3 across (a) two identified areas: (b) Kathmandu and (c) Bhaktapur. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Accuracy of the building-level results: (a) histogram showing the percentage of positive correlations between field pictures and buildings with over 50% 
changes per pair and (b) line graph showing the percentage of positive correlations between field pictures and buildings with more than 50% changes, based on 
varying numbers of post-event images for Kathmandu and Bhaktapur.. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
The accuracy of the results was evaluated based on the percentage 
of correlation between the detected buildings that underwent recon-
struction activities and the number of validation pictures. To obtain 
this, for each area, we calculated the ratio of positive correlations to 
the total number of validation pictures within the specific regions of 
interest. Fig.  7 illustrates the estimated accuracy of the building-level 
results for each area i.e., Kathmandu and Bhaktapur, using all pairs. 
Fig.  7(a) shows the percentage of positive correlations per region and 
per pair. Additionally, Fig.  7(b) illustrates the relationship between 
the accuracy of the building-level results and the duration of the post-
event time series. In this graph, the 𝑋-axis represents the post-event 
image numbers, while the 𝑌 -axis shows the percentage of positive 
correlations.
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The validation results revealed an increasing trend in the percentage 
of positive correlation across all regions as we progress from Pair 1 to 
Pair 3. The results from Pair 1, including the shortest post-event series, 
had fewer matches between the pictures and the buildings with more 
than 50% changes, resulting in correspondence rates between 56% and 
70%. Conversely, Pair 3, which included the longest post-event time 
series, closely correlated with field observations, with matching rates 
from 81.7% to 83.5%. This confirms that longer post-event InSAR series 
are more effective at identifying buildings experiencing significant 
changes within the regions. The longer the post-event time series, the 
more building condition changes related to reconstruction activities are 
captured. As a result, more PS losses are detected in the longer time 
series. Furthermore, in a longer series of SAR images, coherent signal 
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Fig. 8. Distribution of the detected buildings, which were in agreement with field pictures for areas (a) Kathmandu and (b) Bhaktapur. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
and incoherent noise components of the SAR data can be separated 
more effectively. This improves the signal-to-noise ratio and enhances 
the ability to detect changes in the scattering properties of buildings, 
resulting in a more accurate detection of PSs (D’Aria et al., 2009), and 
leading to better identification of changes related to building recon-
struction. The distribution of buildings with more than 50% changes, 
along with the distribution of field observations, is shown in Fig.  8.

Fig.  9 shows examples of field observations that positively corre-
lated with buildings with more than 50% changes. The figure also illus-
trates the footprint of a reconstructed building with the corresponding 
PS loss. These positive correlations confirm that the buildings iden-
tified by the proposed method as experiencing high levels of change 
correspond to those observed in the field as undergoing significant 
post-earthquake modifications. The figure illustrates that the detected 
buildings are correctly associated with structures that were demolished, 
under construction, reconstructed, or remain collapsed.

5. Discussion

This study develops a new remote sensing approach that identifies 
reconstruction areas on a regional scale, followed by a detailed analysis 
at the individual building level. The building-level analysis identifies 
the locations of structures that have undergone changes due to recon-
struction, particularly those heavily damaged during an earthquake and 
likely to have been reconstructed afterwards.

To date, no studies have developed a tool specifically designed to 
support field surveys to assess building reconstruction. As confirmed 
by the validation results, this approach provides a valuable method 
for guiding field investigations related to post-earthquake assessments 
of building reconstruction, allowing on-site surveys to focus solely on 
identified locations. By pinpointing specific buildings, the tool facil-
itates more cost-effective, timely, and targeted field data collection 
during reconstruction assessments. In practical terms, identified build-
ing locations can be directly imported into a surveyor’s mobile phone 
application, enabling surveyors to effectively track and visit each build-
ing individually. This streamlines the field investigation process by 
reducing the workload and time required to manually identify target 
areas. The status of building reconstruction, i.e. buildings that remain 
collapsed, or were demolished, reconstructed or newly built, can be 
classified during the field survey.

A comparison between the proposed method and traditional field 
survey approaches highlights the significant efficiency gains in terms 
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of time and human resources. Specifically for this study, the pro-
posed method, which includes SAR data processing and PS differential 
analysis, required 32 h in total, equivalent to 4 working days for 
a single person, to analyse 12387 buildings. In contrast, traditional 
field investigations are far more resource intensive. For instance, the 
post-earthquake reconnaissance of 5790 structures in rural Turkish 
villages took 5 days, requiring multiple teams (Livaoğlu et al., 2018). 
Similarly, Goretti and Di Pasquale (2004) reported that the standard-
ised assessment of 23,000 buildings took 60 days and involved 100 
inspection teams, amounting to approximately 80,000 person-hours. 
This comparison clearly demonstrates that the proposed InSAR-based 
approach offers a scalable and efficient alternative for the assessment 
of post-disaster building reconstruction.

The implementation of the proposed method requires a time series 
of high-resolution SAR imagery data acquired before and after an 
earthquake. High-resolution data is essential for individual building 
assessments (Miura et al., 2016; Macchiarulo et al., 2024), particularly 
when the case study includes small buildings. In this study, we used 
X-band CSK data with a 3-m-resolution cell size, capturing PSs associ-
ated with both small and large buildings within the area of interest. 
The CSK data demonstrated good performance, successfully identifying 
buildings of various sizes and reflecting their reconstruction conditions, 
as shown in Fig.  6.

The results highlight the importance of carefully selecting the post-
earthquake time series period to effectively capture the full dynamics 
of reconstruction. Pair 1 did not provide reliable insights, as its post-
event time series began a year after the earthquake and covered only 
five months. As a result, both the early structural changes and much 
of the subsequent reconstruction activity were missed. For effective 
monitoring, the post-event time series should ideally start shortly after 
the disaster, and include at least 20 to 25 images  (Colesanti et al., 
2003; Crosetto et al., 2016), which is generally considered the mini-
mum required for reliable PS detection. Depending on the specific event 
and the pace of reconstruction, the time series should be extended 
as much as possible to fully capture all phases of the reconstruction 
process.

The method is inherently robust against environmental factors, such 
as vegetation growth, seasonal surface changes, or unrelated infras-
tructure modifications and is particularly given its focus on persistent, 
long-duration changes indicative of post-earthquake reconstruction. 
These effects are relatively minor compared to the significant structural 
changes associated with building demolition or reconstruction. At the 
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Fig. 9. Examples of surveyed buildings from the 2022 EEFIT mission that correspond to buildings with over 50% change. In (a) Figures A, G, and H correspond 
to demolished buildings; B, C, and E show reconstructed buildings; and D and F show buildings under construction. (b) An example of a reconstructed building 
in Kathmandu, showing the building footprint, corresponding field pictures, and the percentage of PS loss.
regional scale, MT-InSAR primarily captures signals from stable, reflec-
tive surfaces like buildings, minimising the influence of environmental 
noise. At the building level, the footprint-based approach further en-
sures that PS points are directly linked to the structure itself, reducing 
the likelihood of interference from surrounding vegetation or surface 
conditions.

It is important to acknowledge that the proposed method involves 
certain uncertainties. The validation results highly relied on the accu-
racy of the camera’s GPS, which was used to determine the location 
of the on-site pictures. The median horizontal error of high-sensitivity 
embedded GPS hardware of mobile phones is reported between 5 and 
8.5m (Zandbergen and Barbeau, 2011). As a result, it can sometimes 
be challenging to determine the exact building from which a picture 
was captured. In practice, additional spatial uncertainty was introduced 
because field pictures, although geotagged, were often taken from 
across the street or at a distance from the target buildings. Furthermore, 
pictures were captured using different devices with varying GPS accu-
racies, adding another layer of positional inaccuracy. The 25-m buffer 
adopted in the validation was selected to take all these uncertainties 
into account..
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Additional sources of uncertainty include layover and PS positioning 
errors. Layover distortion, which is particularly significant in dense 
urban areas with tall buildings, can be quantified using the building 
height and the local incidence angle of the SAR signal. In the absence 
of airborne Light Detection and Ranging (LiDAR) data for the study 
area, layover effects were estimated based on reported building heights 
and the local incidence angle of the central pixel in the SAR images. 
Assuming an average building height of 12m (Chaulagain et al., 2015; 
Ohsumi et al., 2016) and an incidence angle of 26.58 degrees, the 
average layover-affected area was estimated to be approximately 6m. 
Furthermore, the PS positioning error is influenced by the accuracy of 
the DEM and the spatial resolution of the SAR sensor (Dörr et al., 2021), 
with errors for the CSK sensor typically ranging within a few meters, 
2.7m in the azimuth and  1m in the slant range directions (Nitti et al., 
2015). Although these distortions may occasionally cause adjacent 
buildings to be misidentified, the estimated error margins are small 
enough that field teams can easily compensate for them during on-site 
inspections. 

Finally, the OSM database is not always complete and may lack 
some building footprints. Consequently, these missing buildings might 



F. Foroughnia et al. International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104883 
not be included in the building-level analysis, even if field pictures 
were obtained for them. This might result in less positive correlations 
between field observations and buildings identified as having under-
gone significant changes during the reconstruction process. However, 
OSM has generally proven to be a reliable base map for urban studies, 
with several studies showing that its quality is comparable to that of 
official regional maps (Fan et al., 2014; Brovelli and Zamboni, 2018). 
Alternative datasets, such as Microsoft Building Footprints (Microsoft, 
2025) and Open Buildings Data (Open Buildings, 2025) were evalu-
ated but found to be either less accurate or in need of substantial 
modifications. OSM offered more precise building outlines, particularly 
for non-rectangular structures. We further validated OSM coverage 
against Google Earth VHR imagery and found no significant omissions. 
Therefore, despite its limitations, OSM remained the most appropriate 
and practical choice for our analysis.

While these uncertainties are present, integrating complementary 
datasets and techniques could mitigate their impact and enhance the 
overall robustness of the methodology. For example, Building Informa-
tion Modelling (BIM) datasets, when available, offer detailed architec-
tural information that can validate and enrich SAR-based observations. 
Alternative georeferencing approaches, such as aligning field photos 
with high-resolution optical imagery, can reduce GPS-related inaccu-
racies and improve the spatial accuracy of field validations. Moreover, 
incorporating ground-truth datasets such as structural health monitor-
ing data, governmental reconstruction reports, or drone-based imaging, 
if available, can provide further validation data. Furthermore, using 
datasets from additional earthquake events and extended reconstruc-
tion phases could improve its generalisability and applicability across a 
broader range of scenarios. With sufficient labelled field data, integrat-
ing machine learning models into the methodology could be a valuable 
extension, as these models have demonstrated strong performance in 
automating classification tasks in remote sensing applications.

The core principle of the proposed method, detecting changes in the 
number of PSs using MT-InSAR, is scalable and adaptable to various 
disaster scenarios beyond earthquakes, such as floods, urban fires, 
and landslides. For instance, in the case of urban fires, severe dam-
age or destruction of buildings leads to significant changes in radar 
backscatter, as affected structures lose the stability and surface char-
acteristics needed for PS detection. The disappearance of these PSs 
in the time series serves as a clear indicator of fire-induced damage 
and subsequent reconstruction. This behaviour is directly observable 
through the proposed method and allows for effective post-fire building 
assessment. As long as a disaster results in substantial physical changes 
that impact radar reflectivity, the approach remains effective. While 
some adjustments, such as SAR data selection or temporal baseline 
tuning, may be necessary, the core concept is widely applicable. 

Ultimately, the method provides systematic and scalable monitoring 
of urban areas in post-disaster scenarios, offering valuable insights for 
guiding field teams, prioritising reconstruction efforts, and assessing 
reconstruction progress over time. This ability to continuously track 
structural changes and reconstruction dynamics makes the method a 
valuable tool for long-term urban resilience planning. By analysing 
trends in building stability over multiple time periods, decision makers 
can better understand the pace of reconstruction and allocate resources 
more efficiently.

6. Conclusion

This study introduced a novel method for evaluating post-
earthquake building reconstruction. Using the MT-InSAR technique, we 
detected PSs linked to buildings by processing a time series of SAR 
data collected before and after the earthquake. A two-stage differential 
analysis was then performed to compare the number of PSs in pre- and 
post-event scenarios. The method begins with a regional assessment, 
analysing urban grid cells to identify areas affected by reconstruction 
after the earthquake. In areas showing the most significant changes, 
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a more detailed building-level analysis was conducted to pinpoint 
specific buildings that had undergone reconstruction or remained col-
lapsed years after the event. The approach highlights building locations 
where substantial changes have occurred, either from continued col-
lapse or reconstruction. These identified locations can help guide field 
investigations at a regional scale to track reconstruction progress long 
after the earthquake.

The proposed method was applied to the 2015 Gorkha earthquake in 
Nepal using stacks of high-resolution CSK SAR images acquired before 
and after the event. Through the grid-level analysis, several urban 
areas showing significant changes were identified, prompting further 
investigation at the building level. Time-series pairs of different lengths 
were analysed, revealing that longer time series detected more changes 
related to reconstruction activities in the PS differential analysis. This is 
because longer time series can capture a broader range of activities over 
time, including debris accumulation, removal, and other phases of the 
reconstruction process. The building-level analysis identified specific 
locations where buildings had changed years after the earthquake, 
indicating buildings that remained collapsed, had been demolished, 
were under construction, or had been reconstructed.

Field observations collected in 2015 and during a return mission to 
Nepal in 2022 were used to validate the buildings identified by the PS 
differential analysis. The validation results confirmed that the method 
successfully located buildings that had undergone changes during the 
reconstruction phase, either remaining collapsed, being demolished, 
under construction, or reconstructed. The accuracy was higher when 
longer time series were used, suggesting a stronger correlation between 
the detected buildings and actual field observations. These results 
confirm the method’s reliability in identifying locations affected by 
reconstruction activities, providing valuable target areas for future field 
surveys.

This study marks the first application of the MT-InSAR remote 
sensing technique to support extensive field investigations, particularly 
in the context of post-earthquake building reconstruction. It highlights 
the potential of MT-InSAR in identifying buildings impacted by re-
construction, offering a practical tool to identify locations that can be 
prioritised for field surveys. By doing so, this approach can significantly 
reduce the time and effort required for extensive investigations of 
building reconstruction progress across wide areas.
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Appendix

See Figs.  10 and 11 and Tables  1–3.
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Table 1
Upper bound values of building area distributions for each pair, used in the 
building-level analysis.
 Pairs UB

(

𝑎𝑟𝑒𝑎bu
) 

 Pair 1 172  
 Pair 2 186.5  
 Pair 3 184  

Table 2
Number of buildings with over 50% change used for validation, categorised 
by pair and regions of interest.
 Pairs Kathmandu Bhaktapur 
 Pair 1 1325 277  
 Pair 2 1186 323  
 Pair 3 2310 483  
Fig. 10. Number of PSs per grid cell based on pre-event data: (a) histogram showing the frequency distribution and (b) box plot showing the variability of PS 
numbers (pre-event time series) per grid cell. The upper bound of the number of PSs (pre-event time series) used for grid-level analysis is 224.
Fig. 11. Number of PSs per building footprint from the (a) pre-event and (b) post-event data (Post 3).
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Table 3
Perpendicular and temporal baselines with Doppler Centroid (DC) differences for the time series 
of Post 2.
 Date Perpendicular baseline (m) Temporal baseline (days) DC (Hz/PRF)
 2015-05-15 −163.999841 91.256504 −0.088485 
 2015-05-19 −159.999831 58.357024 0.105961 
 2015-05-27 −151.999865 614.610937 0.113940 
 2015-06-04 −143.999851 −196.962032 0.104766 
 2015-06-20 −127.999869 −325.837476 0.097149 
 2015-07-06 −111.999926 486.776836 0.140111 
 2015-07-14 −103.999943 264.811148 0.092809 
 2015-07-18 −99.999979 1192.506395 −0.045642 
 2015-07-22 −95.999926 −123.844859 0.110280 
 2015-07-30 −87.999966 467.612367 0.119710 
 2015-08-03 −83.999945 −534.329165 −0.074591 
 2015-08-07 −79.999975 1109.278368 0.136659 
 2015-08-15 −71.999961 −221.292560 0.087761 
 2015-08-19 −67.999988 623.834242 −0.059247 
 2015-08-23 −63.999964 389.072153 0.143078 
 2015-09-04 −51.999982 188.979467 −0.072350 
 2015-10-26 0.000000 0.000000 0.050749 
 2015-12-29 63.999856 907.377859 0.127257 
 2016-03-02 127.999720 −80.828071 0.110878 
 2016-03-10 135.999689 48.072930 0.137601 
 2016-03-14 139.999700 −495.239130 −0.072549 
 2016-03-18 143.999674 −125.467680 0.102930 
 2016-03-26 151.999649 −456.710045 0.115239 
 2016-03-30 155.999628 87.576926 −0.044917 
 2016-04-11 167.999586 −148.616509 0.142271 
 2016-04-15 171.999568 165.720698 −0.043453 
 2016-04-19 175.999542 548.992779 0.105197 
 2016-04-27 183.999523 −158.426957 0.141159 
 2016-05-05 191.999515 −757.475284 0.121716 
 2016-05-13 199.999446 76.252961 0.101724 
 2016-05-17 203.999461 −919.418826 −0.057127 
 2016-05-21 207.999421 −168.595003 0.078637 
 2016-05-29 215.999390 −660.762455 0.115580 
Data availability

The authors do not have permission to share data.
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