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ABSTRACT

Evaluating long-term building reconstruction is essential to strengthen resilience to earthquakes. Field inves-
tigations provide detailed and accurate information for building assessments, but are often labour intensive,
costly, and time consuming, particularly when considering the regional-scale impact of earthquakes. In contrast,
satellite Remote Sensing (RS) techniques provide frequent data across vast areas, making them ideal for
regional-scale post-earthquake assessments, which can complement field surveys. Despite this, most RS studies
have relied on manual change detection of satellite data before and after the event, limiting their potential for
automated assessment and reducing their support for field investigations. In this study, we developed a novel
RS method designed to assist field investigations of post-earthquake building reconstruction on a regional scale.
The method automatically identifies target buildings for field teams to investigate, locating collapsed structures
or buildings that have changed due to post-earthquake reconstruction efforts. We applied Multi-Temporal
Synthetic Aperture Radar Interferometry (MT-InSAR) for the first time to evaluate post-earthquake building
reconstruction. The proposed method involves a two-stage analysis: first, a grid-level assessment on a regional
scale to detect areas with reconstruction activities following an earthquake, and then a detailed building-level
analysis to identify individual buildings that have undergone changes as part of the reconstruction process
within these areas. The method was used to assess building reconstruction efforts in Nepal after the 2015
Gorkha earthquake. For the MT-InSAR analysis, we acquired two stacks of 3-m-resolution SAR images, one
before and one after the earthquake. The grid-level analysis detected multiple urban areas with significant
changes, which were then subjected to a building-level analysis. This analysis pinpointed the locations of
affected buildings and determined the extent of changes related to reconstruction activities. A comparison of
the building-level results with field observations confirmed that the method successfully identified buildings
that have undergone changes. These changes included buildings that were left in a collapsed state, demolished,
under construction, or fully reconstructed. The MT-InSAR-based approach introduced in this study has the
potential to serve as a valuable tool to guide future field surveys related to post-earthquake reconstruction,
significantly reducing the time and effort needed for such assessment.

1. Introduction

250,000 residences and 30,000 commercial buildings (Green and Miles,
2011), with damage and losses exceeding $7.8 billion (Government of

Earthquakes are among the most destructive hazards, often causing
extensive building damage and collapses, and resulting in significant
loss of life. In recent years, many urban areas around the world have
been affected by earthquakes. For example, the 2010 Haiti earthquake
resulted in over 200,000 deaths and destruction of approximately
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the Republic of Haiti, 2010). More recently, the 2023 earthquake in
Turkey caused over 53,000 fatalities, 100,000 injuries, and widespread
building damage, with losses estimated at $84.1 billion (Aktas et al.,
2024). As populations continue to grow, the consequences of such
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disasters may become even more severe. This highlights the critical
need for effective post-earthquake management and disaster risk re-
duction strategies in earthquake-prone areas. A crucial component of
these efforts is assessing the building reconstruction process following
an earthquake (Ge et al., 2010; Hashemi Parast, 2017).

Post-earthquake reconstruction of buildings involves repairing, re-
inforcing, or demolishing and rebuilding damaged structures (Polese
et al.,, 2018). Typically, this process begins a few months after the
earthquake and can last several years (Lu and Xu, 2015; Polese et al.,
2018). For example, the reconstruction process was still in progress in
Bam, Iran, six years after the 2003 earthquake (Omidvar et al., 2010).
During the reconstruction process, there is an opportunity to identify
and address structural weaknesses, such as poor quality materials, that
prevent the ability of buildings to withstand earthquakes (Ahmed,
2017). By doing so, it is possible to mitigate risks that could compro-
mise the resilience and sustainability of future buildings, ensuring safer
and more resilient structures (Lyons et al., 2010). Assessment of the re-
construction process ensures that the process aligns with the established
recovery strategy and plans (Clinton, 2006; Mannakkara et al., 2014).
Additionally, it helps gather lessons to improve future post-disaster
management and reconstruction efforts (Mannakkara et al., 2014).

Conventional surveys have been widely used to evaluate the post-
earthquake condition of buildings, including assessing their reconstruc-
tion progress (Acharya et al., 2022). These methods include building-
by-building field inspections (Eghbali et al., 2020), household surveys,
and interviews (Platt et al., 2020; Westoby et al., 2021). While these
investigations provide detailed, context-specific data through direct
physical observations of structural conditions, they require experts to
manually collect information on site. As a result, these surveys are time
consuming, labour intensive, and costly (Brown et al., 2012; Platt et al.,
2016), making them impractical for assessing reconstruction progress
across affected large areas. Consequently, there is a growing need to
explore new methods for post-earthquake assessments that can cover
extensive regions more efficiently, helping to enhance traditional field
surveys by identifying priority locations.

One promising approach is satellite Remote Sensing (RS) technol-
ogy, which enables the observation of the Earth’s surface without
the need for physical presence. RS techniques offer large coverage,
cost effective, and frequent observations, making them well suited
for regional-scale post-disaster assessments and thus supporting field
investigations. Commonly used RS data include optical and Synthetic
Aperture Radar (SAR) imagery. Optical satellites acquire data in visible
and infrared light, as human eyes perceive it, making them suitable
for visual interpretation (Ge et al., 2020). SAR uses microwave signals,
offering imaging capabilities in all weather and at night (Bamler, 2000;
Hanssen, 2001).

Most RS studies have focused on the early phase of assessment, par-
ticularly on damage evaluation (Al-Khudhairy et al., 2005; Brown et al.,
2012; Anniballe et al., 2018; Giardina et al., 2023; Voelker et al., 2024;
Macchiarulo et al.,, 2024) and immediate demolition (Brown et al.,
2012; Kushiyama and Matsuoka, 2019). A smaller number of studies
have focused on the later reconstruction phase. These studies have pri-
marily used change detection approaches to identify alterations result-
ing from reconstruction activities. Change detection methods compare
two or more satellite observations taken before and after an event,
either at the pixel or object (e.g. buildings) level, to detect differences
between pre- and post-event conditions. For example, Derakhshan et al.
(2020) used a time series of medium-resolution Landsat optical data
to monitor building reconstruction over several years following earth-
quakes in Christchurch, New Zealand, L’Aquila, Italy, and Bam, Iran.
Their approach involved automating the classification of built-up areas
using spectral indices, followed by change detection on the classified
maps to assess changes in these areas. However, their analysis primarily
focused on estimating the rate of change in total built-up areas rather
than detecting changes at the individual building level. Consequently,
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this method lacks the ability to pinpoint the specific locations of altered
buildings, limiting its usefulness for guiding field surveys.

In contrast, other research has specifically focused on tracking
changes at the individual building level. For instance, Bevington et al.
(2010) evaluated post-earthquake reconstruction in Haiti four months
after the 2010 earthquake using optical satellite data. They manually
analysed changes in heavily damaged and collapsed buildings identi-
fied by the Global Earth Observation Catastrophe Assessment Network
(GEO-CAN), classifying the reconstruction progress into four stages:
unchanged, rubble removal, under construction, and rebuilding. Their
findings indicated that the reconstruction process varied both tempo-
rally and spatially, with most buildings remaining unchanged. This
suggested that many buildings required more time for reconstruction,
highlighting the need for a long-term assessment, which their study did
not cover. Other studies have focused on conducting extended evalua-
tions of post-earthquake building reconstruction using RS techniques.
For example, Hashemi Parast et al. (2017) evaluated the reconstruction
progress in Bam, Iran, after the 2003 earthquake using three high-
resolution optical images, one taken before, one immediately after
and one eight years after the earthquake. They manually classified
land cover within small regions to track changes in buildings over the
eight-year period. Similarly, Contreras et al. (2018) assessed building-
level reconstruction following the 2009 L’Aquila earthquake. They used
manual and semi-automatic change detection methods (Contreras et al.,
2016), analysing classified maps of buildings from optical satellite data
acquired in 2009 and 2011 to identify changes in individual buildings’
conditions during the reconstruction process. While these studies have
focused on building-level assessment, their approaches rely heavily on
expert manual interpretation, resulting in high time and labour costs.

In a different approach, Hoshi et al. (2014) conducted an automated
assessment of building-level reconstruction using machine learning,
specifically the Maximum Likelihood classification method, to identify
change patterns in buildings in Pisco from 2007 to 2011 after the 2007
Peru earthquake. This method detected changes in the ratios between
buildings and vacant areas. However, advanced machine learning clas-
sifications depend on training models with sample data collected from
ground-truth sources (Matin and Pradhan, 2022; Jia and Ye, 2023).
Gathering these sample data still requires field investigations, which
are time consuming and challenging to perform comprehensively, often
leading to unbalanced training sets. Additionally, models trained on
one dataset cannot always be generalised to other case studies, as
differences in building features or environmental conditions can limit
their applicability (Matin and Pradhan, 2022; Jia and Ye, 2023).

A well-established method that provides building-level informa-
tion is Multi-Temporal Interferometric SAR (MT-InSAR), which uses
stacks of SAR images. Thanks to the all-weather image acquisition
capability of SAR sensors and their ability to cover large areas with
short revisit times (Macchiarulo et al., 2024), MT-InSAR can monitor
extensive regions affected by earthquakes using frequent SAR data.
Additionally, high-resolution SAR data can be freely available through
open data programs (ESA, 2024), making it well suited to accurate
building-level assessments (Macchiarulo et al., 2024). The MT-InSAR
technique identifies stable points, known as Persistent Scatterers (PSs),
by analysing stacks of SAR images taken over time from the same area.
These PSs typically correspond to man-made objects such as buildings,
enabling detailed monitoring of changes at the building level. MT-
InSAR has been widely used for long-term displacement monitoring in
urban areas (Ciampalini et al., 2014; Bianchini et al., 2015; Foroughnia
et al.,, 2019). However, no study has yet explored this technique to
assess post-earthquake building reconstruction, nor has it been utilised
to support field investigations.

In this research, we aim to develop a novel MT-InSAR-based tool
to support post-earthquake field investigations by assessing building
reconstruction progress, including buildings left in a collapsed state,
demolished, under construction, or reconstructed. Compared to the
use of image-based change detection methods relying on a single
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pre-event image and long-term post-event imagery, this approach lever-
ages a time series of SAR data to better capture the gradual and
location-specific nature of reconstruction. MT-InSAR enables contin-
uous monitoring of structural changes by detecting variations in PSs
associated with buildings over time. This allows for automated identi-
fication of demolition, collapse, or reconstruction without the need for
supplementary datasets, offering a more robust and targeted method
for tracking post-disaster building reconstruction. The proposed method
can guide field surveys by automatically identifying the locations of
buildings that have changed from their pre-event state due to recon-
struction efforts or that are still collapsed years after an earthquake.
This approach provides target locations for field teams to investi-
gate, significantly reducing the time and effort required for on-site
assessments.

The proposed method was used to assess building reconstruction in
Nepal following the 2015 Gorkha earthquake. Stacks of high-resolution
Cosmo-SkyMed (CSK) SAR images were acquired before and after the
earthquake for the MT-InSAR analysis. PSs associated with buildings
were identified for both pre- and post-event time frames. A two-stage
PS differential analysis was then conducted to locate buildings that had
undergone changes. First, a grid-level analysis was performed to deter-
mine urban areas that showed significant changes, representing zones
of extensive damage or active reconstruction. Second, a building-level
PS differential analysis was conducted within these areas to pinpoint
specific buildings affected by reconstruction activities. This building-
level analysis not only identified the locations of these buildings but
also assessed the extent of the changes. Results were validated using
field observations collected during reconnaissance missions.

2. Methodology

This section describes the MT-InSAR technique, the parameters
used to generate PSs, and the PS differential analysis developed in
the study. The proposed method is based on the principle that a PS
will cease to persist if changes occur to its corresponding target, such
as collapses or modifications. Using this concept, the study applies a
grid-level PS differential analysis on a regional scale, along with a
building-level analysis, to detect significant changes and identify build-
ing locations with substantial changes, such as collapse, demolition, or
reconstruction.

2.1. Multi-Temporal Synthetic Aperture Radar Interferometry (MT-InSAR)

MT-InSAR is an advanced remote sensing technique that uses the
temporal phase information of SAR data to measure ground surface
displacements (Ferretti et al., 2001). The core objective of MT-InSAR
is to identify PSs, which consistently return strong backscatter signals
to the satellite and show stability in phase over time (Ferretti et al.,
2001), typically corresponding to natural features like rocks or man-
made structures like buildings. The MT-InSAR technique uses a stack
of SAR images to identify PSs.

To initiate this process, a primary set of points is selected as PS
Candidates (PSCs) based on their amplitude stability. This stability is
quantified using the Amplitude Dispersion Index (ADI), estimated as:

ADI =24 ~ g, )

where ¢, is the amplitude standard deviation, m, is the mean ampli-
tude, and o, is the phase standard deviation of the SAR data stack. A
point is chosen as a PSC if its amplitude consistently exceeds a defined
threshold. Ferretti et al. (2001) proved that assuming sufficient data
images, ADI below 0.25 indicates sufficient point stability and a high
signal-to-noise ratio.

Once the PSCs are selected, SAR interferometry is used to estimate
their displacements. MT-InSAR compares the interferometric phase
between a primary image and secondary SAR images of the stack,
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acquired at different times over the same area. The interferometric
phase consists of different components: displacement, topography, at-
mosphere, the Earth’s curvature, and noise (Hanssen, 2001). To isolate
the displacement component, other phase components are removed,
as detailed by Ferretti et al. (2001), Perissin and Wang (2011) and
Van Leijen (2014). The effects of Earth’s curvature and topography
are corrected using orbital data and an external Digital Elevation
Model (DEM). Depending on the DEM’s accuracy, a residual amount
of topography effect may remain in the interferometric phase, which
is later estimated with displacements. The atmospheric effect, known
as Atmospheric Phase Screen (APS), is removed based on a two-step
procedure. First, a temporal low-pass filter is applied to the residuals
to separate unmodeled displacement (temporally correlated) from the
atmospheric signal and noise, which are uncorrelated in time. Second,
a spatial low-pass filter is used to extract the spatially correlated atmo-
spheric signal from the remaining residuals, effectively isolating and
removing the APS (Van Leijen, 2014). After the APS removal, a second
set of PSs is selected using a higher threshold on ADI. Displacements
are then re-estimated for all PSs. The amount of remaining noise in
the interferometric phase per PS is used to calculate the Temporal
Coherence (TC) as a reliability metric. Higher TC values indicate more
accurate and stable PS estimates, ensuring the reliability of the analysis.

In this study, the MT-InSAR processing was performed using the
SARPROZ software (Perissin et al., 2011). Although displacement mea-
sures were not the primary focus, the complete MT-InSAR process was
crucial to identify reliable PSs corresponding to buildings. To select
PSCs, we applied a threshold on the Amplitude Stability Index (ASI),
implemented in the software as 1— ADI. Specifically, ASI values above
0.8 were used in the first processing stage and then reduced to 0.6
for the final PS selection. Only PSs with a TC higher than 0.7 were
considered valid for the PS differential analysis. These thresholds are
commonly adopted in standard MT-InSAR approaches, as established
in the literature (Ferretti et al., 2001; Macchiarulo et al., 2021; Wu
et al., 2022). The following section outlines the PS differential analysis
developed in this study to assess building reconstruction.

2.2. Persistent Scatterer (PS) differential analysis

During seismic events, buildings that have been damaged or col-
lapsed stop exhibiting the characteristics of PSs. Normally, an un-
damaged building maintains a consistent signal to the satellite over
time. However, after an earthquake, a severely damaged or collapsed
building exhibits irregular and disrupted signals. This disruption occurs
because the building either no longer exists in its original form or
undergoes further demolition and reconstruction, preventing it from
being tracked as a PS. We leveraged this property of PSs to detect
changes in buildings, first at a grid level and then at the level of
individual structures, as shown in Fig. 1.

The grid-level analysis aims to identify urban areas that have under-
gone significant changes in the years following an earthquake. These
areas can be prioritised for further evaluation to locate changed build-
ings through the building-level PS-differential analysis. To perform the
grid-level analysis, we divided the area of interest into 100 x 100 m?
grid cells. Within each grid cell, we quantified the number of PSs
derived from pre- and post-event time-series images processed using
MT-InSAR analysis. The difference in PS numbers at the grid level was
determined by subtracting the post-event PS count from the pre-event
PS count.

To identify grid cells with significant changes in PS numbers, we
normalised these differences using a representative number of PSs from
the entire area of interest obtained from the pre-event series (Eq. (2)).
This process involved dividing the number of pre-event data points
within each grid cell into equal quartiles and excluding the outliers. The
normalisation was based on the upper bound (UB) of the distribution
of the number of PSs within each grid cell (from the pre-event data),
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Fig. 1. Schematic representation of the PS differential analysis at grid and building levels.

defined as the largest data point excluding the outliers, and estimated
as follows:

UB=0Q3+15x(03-01) 2

where Q; represents the first quartile, which is the median of the
lower half of the dataset, below which 25% of the data points fall.
Similarly, Q3 is the third quartile, the median of the upper half of the
dataset, meaning that 75% of the data points fall below this value.
This approach helps prevent the impact of outliers from skewing the
analysis of PS differences. Fig. 10 in the Appendix Section illustrates
the distribution of the number of PSs obtained from the pre-event time
series and the parameter UB (N, ). The differences in the number of
PSs at the grid level, Dg,4, are then estimated as follows:

Nye — N,
DGrid _ _pre post 3)
UB (Npre)
where N, and N, are the number of PSs identified in each grid from

the pre- and post-event time series, respectively. UB (Npre) refers to the
upper bound of the number of points in the grid cells obtained from the
pre-event time series. Dg,q indicates the relative change between the
pre- and post-event conditions in each grid cell, compared to the other
grid cells in the area of interest.

The grid-level analysis was designed to prioritise grid cells with
more or larger buildings over those with fewer or smaller ones at
equivalent levels of PS loss. Since larger buildings and a higher number
of buildings typically generate more PSs (Ferretti et al., 2001; Hooper
et al., 2004; Crosetto et al., 2016), this approach emphasises grid cells
with more PSs when similar levels of PS loss are observed. Fig. 2
provides examples of how the grid-level analysis operates. A grid cell
with more pre-event PSs and a certain percentage of point loss due to
reconstruction will be prioritised over a grid cell with fewer pre-event
PSs in case of the same percentage of point loss. For example, according
to Fig. 2, and assuming UB (N,) is equal to 100 for simplicity, Grid
1 in the first example has 50 points and a 50% point loss (25 points
disappeared), resulting in a 25% differential change. In contrast, Grid

2, with 26 points and 13 points disappeared, shows a 13% differential
change. In other examples, where the percentage of point losses differ,
the differential changes directly depend on the level of point losses.
For example, in the same figure, Grid 2, even with 100% of point loss,
exhibits less of a differential change (26%) than Grid 1 (40%) with 80%
of point loss.

Importantly, the 100x100 m? grid resolution was chosen to balance
spatial granularity with computational efficiency. The methodology re-
mains robust across different grid sizes because it relies on a normalised
change metric that adjusts for variations in the number of PSs per grid.
The approach remains flexible and can be adapted to alternative grid
configurations depending on specific research needs.

The outcomes of the grid-level analysis served as a guiding frame-
work for performing a more detailed investigation at the building
level. The building-level PS differential analysis identifies buildings
that have undergone significant changes after the earthquake during
the reconstruction process. These building-level changes can include
structures that remain collapsed, have been demolished, are under con-
struction, or are fully reconstructed. We conducted the PS differential
analysis for buildings located in zones with high concentrations of
grid cells exhibiting significant changes. Building footprints from the
OpenStreetMap (OSM) database (OpenStreetMap, 2023) were used to
quantify the presence of PSs within each building for both pre- and
post-event data. The change in the number of PSs for each building was
estimated by subtracting the number of PSs in the post-event data from
the pre-event data. Similar to the grid-level analysis, the percentage of
PS differences was normalised using the ratio between each building’s
area and the upper bound of the building area dataset, which acted as
a weighting factor.

The percentage of PS differences at the building level, Dyyjiging Was
estimated as follows:

N, pre-bu — N, post-bu

Dyyiging =
8 Npre-bu UB (areabu)

areay,,

x 100, @

where Nprepy and Npogepy are the number of PSs identified from the
pre- and pos-event time series for each building footprint, respectively,
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Fig. 2. Examples of grid-level differential analysis. In Example 1, 50% of points have disappeared in a denser grid cell due to reconstruction years after the
earthquake. Example 2 shows an 80% point loss in Grid 1 compared to a 100% loss in Grid 2. In Example 3, 20% of points in Grid 1 and 80% in Grid 2 have
disappeared. The analysis indicates more changes in the denser Grid 1 for Example 1, while in Examples 2 and 3, the differential changes depend on the degree

of point loss in each grid.

areay, represents the area of each building rooftop, calculated using
the OSM building footprints, and UB (areay,, ) is the upper bound of the
building areas distribution (the largest value of areas without outliers)
in the detected zones. Similar to the grid-level analysis, this upper
bound was calculated based on Eq. (2), but using the size of buildings.
The values of UB (areay,) used in this study are reported in Table 1
in Appendix.

The weighting factor ensures that larger buildings have a greater
influence in terms of the magnitude of change associated with re-
construction. For example, a larger building unit will show a higher
amount Of Dyyjging compared to a smaller building with the same
normalised difference (as described in the first ratio in Eq. (4)). Ad-
ditionally, for buildings with the same area, similar to the grid-level
analysis, Dpyjiding depends entirely on the normalised difference, i.e. the
percentage of PS point loss during the reconstruction process. This
approach is based on the principle that larger buildings often represent
high-value infrastructure and densely populated areas, which can be
more critical to overall urban functionality than smaller buildings. By
applying the weighting factor based on the area of the buildings, we
ensure that larger buildings are given appropriate emphasis in the
analysis. The weighting factor may vary depending on the case study
considering specific purposes. For example, if residential buildings are
of particular interest, smaller buildings may also be prioritised by
defining a different weighting factor. This flexibility allows the method
to adapt to different contexts and focus on the most relevant types of
buildings.

3. Case study and datasets

On April 25, 2015, Nepal was struck by a moment magnitude (Mw)
7.8 earthquake. The epicentre was situated near Gorkha, approximately
80 km northwest of Kathmandu, the capital city. The earthquake
occurred at a focal depth of 19 km (USGS, 2015), and its impact
was extensive, resulting in widespread destruction in areas extending
from the epicentre to the east, including Kathmandu. Many aftershocks
followed the main earthquake, with the largest one occurring on May

12, 2015, recording a moment magnitude of Mw 7.3 (USGS, 2015).
Both urban and rural areas suffered significant damage to buildings
and infrastructure as a result of the main shock. By May 26, 2015,
the earthquake’s toll in Nepal included 8510 reported deaths and 199
missing people (Goda et al., 2015).

According to Lizundia et al. (2016), the earthquake caused exten-
sive damage to residential and governmental buildings, heritage sites,
schools, roads, bridges, water systems, and agricultural areas. Many
ancient cultural buildings were severely damaged or destroyed, along
with over 500,000 houses. The Center for Disaster Management and
Risk Reduction Technology (CEDIM, 2015) estimated the economic loss
to be around 10 billion U.S. dollars, which accounted for approximately
half of Nepal’s gross domestic product (Goda et al., 2015). Fig. 3 shows
the selected region of interest, covering the most affected areas in 2015.

Remote sensing data. We used Single Look Complex (SLC) imagery
from COSMO-SkyMed (CSK), an Italian constellation of SAR satellites
dedicated to Earth imaging. The purpose of this constellation is to
provide high-resolution SAR data within the X-band frequency range
for various applications, including Earth observation, environmental
monitoring, and disaster management (Italian Space Agency, 2019).
For this study, we collected two temporal series of SAR images
in Stripmap mode before and after the event. The post-event time
series started following the largest aftershock on May 12, 2015. All
images were acquired from a descending orbit in HH polarisation with
a minimum revisit time of four days and a spatial resolution of 3 m.
The pre-event series included 30 SAR images acquired from June 2014
to January 2015. For the post-event series, we considered different
time intervals with varying numbers of images to assess the impact of
time series length on the differential analysis. These time intervals were
selected to correspond to different phases of reconstruction activities.
The shortest post-event time series begins nearly a year after the earth-
quake, when collapsed buildings may have entered the late stages of
reconstruction, such as being under construction or fully reconstructed.
The other two time series start closer to the earthquake date, also cap-
turing the initial stages of reconstruction, such as debris removal and
demolition. Fig. 4 shows the temporal distribution of the pre-event and
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post-event time series. The post-event datasets, labelled 1 through 3,
consist of 29, 47, and 140 images, respectively. SAR image acquisition
dates with corresponding perpendicular and temporal baselines, and
Doppler Centroid (DC) relative to the primary image of the post-event
series number 2 are reported in Table 3 in Appendix.

Field data. To validate the results, we used field pictures collected by
the Earthquake Engineering Research Institute (EERI) and the Earth-
quake Engineering Field Investigation Team (EEFIT) during their post-
reconnaissance missions in 2015, as well as data from the 2022 EEFIT
return mission.

EERI is a nonprofit technical society focused on advancing the sci-
ence and practice of earthquake engineering. It actively contributes to
post-earthquake reconnaissance efforts, conducting field investigations

to assess the performance of structures and infrastructure after seismic
events (EERI, 2015). EEFIT is a collaborative initiative involving indus-
try and academic institutions, dedicated to conducting comprehensive
field investigations following significant earthquakes.

Two months after the 2015 Gorkha earthquake, EEFIT initiated
a reconnaissance mission to investigate the earthquake’s on-site im-
pact (EEFIT, 2019). In May 2022, EEFIT returned to Nepal for a
follow-up mission to gain insights into the country’s recovery process
and evaluate the effectiveness of the Build Back Better approach to dis-
aster recovery (Whitworth, 2023). During their building assessments,
the field team had two primary objectives: first, to verify any changes in
structures affected by the earthquake, and second, to document the sta-
tus of these buildings, noting the process of reconstruction efforts. Some
of their observations were gathered in Kathmandu and Bhaktapur,
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where a high level of damage was observed in 2015. The pictures they
collected depicted various changes to buildings, including those that
had remained collapsed, been demolished, were under reconstruction,
or were newly constructed. The locations of the field pictures within
the area of interest are represented in Fig. 3.

4. Results

The following sections present the results of the PS differential
analysis conducted at both the grid and building levels, along with the
validation of the identified buildings using field data.

4.1. Grid-level analysis

The MT-InSAR technique was applied to process one pre-event and
three distinct post-event CSK datasets, as presented in Fig. 4. The figure
also indicates the number of PSs with TC higher than 0.7 that were
identified for each time series used in the PS differential analysis. Due
to variations in the number of SAR images in the pre- and post-event
time series, the number of PSs identified in each pair differs. This
is explained by Eq. (1), which indicates that in a longer time series,
the likelihood of a point undergoing changes (e.g., due to vegetation
growth, construction, or other environmental factors) increases, reduc-
ing its stability as a PS. In our study, the varying time periods covered
by each pair influence the temporal coverage of building reconstruction
activities, which affects the number of PSs associated with buildings as
they undergo physical changes. Hereafter, we label the pre- and post-
event time-series pairs, each comprising the pre-event dataset paired
with one of the post-event datasets, as Pairs 1, 2, and 3.

The outcomes of the PS differential analysis conducted at the grid
level are illustrated in Fig. 5. This analysis provides a regional-scale
overview of differences in PS numbers, highlighting significant spatial
patterns of changes resulting from reconstruction activities years after
the earthquake. Each point in the figure corresponds to a grid cell, with
the colour indicating the magnitude of normalised differences between
the pre- and post-earthquake PSs available for that grid cell. The
variation in the number of PSs across different time series influences
the level of PS changes observed between the pre-event and the three
post-event situations. To effectively highlight areas with significant
changes, we categorised the PS differences into three levels using
different colour scales: green for small changes, yellow for moderate
changes, and red for extensive changes. Due to the variation in the
number of PSs across the different time-series pairs (Fig. 4) and the
different patterns of change observed in each pair, the colour scales
were adjusted individually for each pair. This approach ensures that
the concentration of PS differences is accurately reflected for each
period, allowing for a more meaningful comparison of changes across
the various time-series pairs.

The results of the grid-level analysis revealed distinct spatial pat-
terns in the distribution of PS differences across the study area (Fig.
5). The majority of grid cells were classified into the small change
category, primarily located on the outskirts of urban areas. These
regions experienced minimal alterations in PS point density, suggesting
little to no reconstruction activities. Some grid cells exhibited moderate
changes, indicating urban regions with moderate overall changes. For
example, these changes can correspond to structures that suffered
moderate damage during the earthquake, followed by moderate levels
of repair and modification activities. A significant number of grid cells
exhibited extensive changes, primarily in areas where buildings had
partially or totally collapsed. These extensive changes in these regions
could refer to structures that have collapsed and been demolished
or structures with ongoing reconstruction activities years after the
earthquake.

All pairs, except for Pair 1, show a consistent pattern of changes,
with more changes observed in longer series. The extent of detected
changes depends on the reconstruction activities during the periods
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covered by each pair, with buildings showing SAR signal instability
throughout reconstruction. For example, Pair 3 has the longest post-
event time series, starting about 20 days after the major aftershock
and continuing for nearly 3 years. This longer coverage captured more
changes associated with long-term reconstruction activities within the
area of interest. The extended reconstruction efforts led to a significant
reduction in the number of PSs, resulting in a greater number of grid
cells showing extensive PS differences. This can be due to the gradual
modification of collapsed buildings over time, including debris accu-
mulation, debris removal, demolition, and reconstruction. While short
gaps between acquisitions could potentially miss rapid reconstruction
activities, the overall trend in PS loss still provides a robust indication
of reconstruction dynamics.

In contrast, Pair 1, which has the shortest post-event time series,
showed a different pattern of changes than the other longer series in
the grid-level analysis (Fig. 5(a)). This is likely because the post-event
time series for Pair 1 started roughly a year after the earthquake and
included fewer SAR images (Fig. 4). As a result, there is a notable gap
in data from the critical period immediately following the earthquake
to one year later, possibly leaving reconstruction activities unrecorded.
Any changes during this one-year gap are not reflected in the time
series, limiting the understanding of building conditions. Additionally,
shorter time series with fewer SAR images are less capable of capturing
gradual reconstruction-related changes.

Fig. 5 shows that extensive levels of changes are widely distributed
across urban areas, with some zones having more grid cells exhibiting
extensive changes. In particular, two such zones are located in central
Kathmandu and Bhaktapur, as indicated by the black rectangles in Figs.
5(b) and 5(c). These zones were among the areas most severely affected
by the earthquake, as confirmed by the field investigations conducted in
2015 (Wilkinson et al., 2019). Consequently, these zones were selected
for a more detailed building-level analysis, as described in the next
section.

4.2. Building-level analysis

The PS differential analysis at the building level was performed in
urban zones (Fig. 6a) where a significant number of grid cells exhibited
extensive changes, as a result of the grid-level analysis described in the
previous section.

The distribution of the number of PSs within building footprints
from the pre-event and the longest post-event time series is presented
in Fig. 11 in Appendix. As a result of changes in the physical condition
of buildings after the event, the number of PSs detected post-event
decreased. Fig. 6 shows the outcomes of building-level PS differential
analysis for the zones indicated, using Pair 3. The percentage of PS
differences between the pre- and post-event time series was calculated
for buildings within the selected zones. These PS differences were
categorised into three levels of change, using consistent intervals across
all categories. Different colours were used to represent varying levels
of changes at the building level. Green represents a small percentage
of changes, ranging from 0% to 33%, indicating minimal variations
in PS point density associated with the building and suggesting stable
building conditions with little to no reconstruction activities. Yellow
indicates moderate changes, between 33% and 66%, corresponding to
buildings that likely experienced moderate damage during the earth-
quake or have undergone some level of repair or modification. Red,
representing changes above 66%, indicates extensive alterations, sig-
nifying buildings that likely suffered severe damage and are either
undergoing significant reconstruction or remained damaged or col-
lapsed. The division of the 0%-100% range into equal intervals was
selected solely for visualisation purposes. Fig. 6 shows that three years
after the earthquake, 58.11%, 29.55%, and 12.34% of the buildings
within the regions of interest have experienced small (0% < Dyyiiding <
33%), moderate (33% < Dyyjding < 66%), and extensive (Dpyjiging >
66%) changes, respectively.
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Fig. 5. Results of PS differential analysis on the regional scale in Nepal from (a) Pair 1, (b) Pair 2, and (c) Pair 3. Different colour scales were used to highlight
the concentration of changed areas in the maps separately. The black rectangles show areas with a high concentration of grid cells with extensive changes, linked
with two main affected areas in 2015, one in Kathmandu and one in Bhaktapur.. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
4.3. Validation of building-level results

We validated the building-level results using pictures taken by the
EEFIT and EERI teams during the 2015 post-event reconnaissance mis-
sion and by the EEFIT team during the 2022 return mission. From the
2015 missions, only images of severely damaged or collapsed buildings
were selected for validation, as those were the buildings expected to
undergo reconstruction. A total of 115 and 59 field pictures were cho-
sen from the 2015 EERI and EEFIT missions, respectively. Additionally,
531 pictures of collapsed, demolished, under-construction, or newly
constructed buildings were used from the 2022 EEFIT mission. A total
number of 152 and 553 pictures were used for validating the results
from Kathmandu and Bhaktapur, respectively.

For the validation, we extracted buildings with a relevant level of
changes by applying a threshold to the percentage of PS differences

at the building level. Specifically, buildings with a PS difference per-
centage (Dyyijging ) greater than 50% were selected for validation. The
number of identified buildings is reported in Table 2 in the Appendix
Section. To associate each field picture with a specific building, we
applied a buffer zone of 25m around the location of each picture. If
multiple pictures were taken of the same building, the average location
of those pictures was used. The 25-m buffer accounted for potential
errors, such as the Global Positioning System (GPS) accuracy of the
camera for picture locations and the distance between the surveyor and
the building being photographed. A picture was considered to corre-
spond to a building if its buffer zone intersected with the building’s
footprint. This counted as one positive correlation between the picture
and the building, indicating a match between the method’s identified
buildings and the field observation. In cases where a picture intersected
with multiple buildings, only one positive correlation was considered
to ensure that each picture was associated with a single building.
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The accuracy of the results was evaluated based on the percentage
of correlation between the detected buildings that underwent recon-
struction activities and the number of validation pictures. To obtain
this, for each area, we calculated the ratio of positive correlations to
the total number of validation pictures within the specific regions of
interest. Fig. 7 illustrates the estimated accuracy of the building-level
results for each area i.e., Kathmandu and Bhaktapur, using all pairs.
Fig. 7(a) shows the percentage of positive correlations per region and
per pair. Additionally, Fig. 7(b) illustrates the relationship between
the accuracy of the building-level results and the duration of the post-
event time series. In this graph, the X-axis represents the post-event
image numbers, while the Y-axis shows the percentage of positive
correlations.

The validation results revealed an increasing trend in the percentage
of positive correlation across all regions as we progress from Pair 1 to
Pair 3. The results from Pair 1, including the shortest post-event series,
had fewer matches between the pictures and the buildings with more
than 50% changes, resulting in correspondence rates between 56% and
70%. Conversely, Pair 3, which included the longest post-event time
series, closely correlated with field observations, with matching rates
from 81.7% to 83.5%. This confirms that longer post-event InSAR series
are more effective at identifying buildings experiencing significant
changes within the regions. The longer the post-event time series, the
more building condition changes related to reconstruction activities are
captured. As a result, more PS losses are detected in the longer time
series. Furthermore, in a longer series of SAR images, coherent signal
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and incoherent noise components of the SAR data can be separated
more effectively. This improves the signal-to-noise ratio and enhances
the ability to detect changes in the scattering properties of buildings,
resulting in a more accurate detection of PSs (D’Aria et al., 2009), and
leading to better identification of changes related to building recon-
struction. The distribution of buildings with more than 50% changes,
along with the distribution of field observations, is shown in Fig. 8.

Fig. 9 shows examples of field observations that positively corre-
lated with buildings with more than 50% changes. The figure also illus-
trates the footprint of a reconstructed building with the corresponding
PS loss. These positive correlations confirm that the buildings iden-
tified by the proposed method as experiencing high levels of change
correspond to those observed in the field as undergoing significant
post-earthquake modifications. The figure illustrates that the detected
buildings are correctly associated with structures that were demolished,
under construction, reconstructed, or remain collapsed.

5. Discussion

This study develops a new remote sensing approach that identifies
reconstruction areas on a regional scale, followed by a detailed analysis
at the individual building level. The building-level analysis identifies
the locations of structures that have undergone changes due to recon-
struction, particularly those heavily damaged during an earthquake and
likely to have been reconstructed afterwards.

To date, no studies have developed a tool specifically designed to
support field surveys to assess building reconstruction. As confirmed
by the validation results, this approach provides a valuable method
for guiding field investigations related to post-earthquake assessments
of building reconstruction, allowing on-site surveys to focus solely on
identified locations. By pinpointing specific buildings, the tool facil-
itates more cost-effective, timely, and targeted field data collection
during reconstruction assessments. In practical terms, identified build-
ing locations can be directly imported into a surveyor’s mobile phone
application, enabling surveyors to effectively track and visit each build-
ing individually. This streamlines the field investigation process by
reducing the workload and time required to manually identify target
areas. The status of building reconstruction, i.e. buildings that remain
collapsed, or were demolished, reconstructed or newly built, can be
classified during the field survey.

A comparison between the proposed method and traditional field
survey approaches highlights the significant efficiency gains in terms
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of time and human resources. Specifically for this study, the pro-
posed method, which includes SAR data processing and PS differential
analysis, required 32 h in total, equivalent to 4 working days for
a single person, to analyse 12387 buildings. In contrast, traditional
field investigations are far more resource intensive. For instance, the
post-earthquake reconnaissance of 5790 structures in rural Turkish
villages took 5 days, requiring multiple teams (Livaoglu et al., 2018).
Similarly, Goretti and Di Pasquale (2004) reported that the standard-
ised assessment of 23,000 buildings took 60 days and involved 100
inspection teams, amounting to approximately 80,000 person-hours.
This comparison clearly demonstrates that the proposed InSAR-based
approach offers a scalable and efficient alternative for the assessment
of post-disaster building reconstruction.

The implementation of the proposed method requires a time series
of high-resolution SAR imagery data acquired before and after an
earthquake. High-resolution data is essential for individual building
assessments (Miura et al., 2016; Macchiarulo et al., 2024), particularly
when the case study includes small buildings. In this study, we used
X-band CSK data with a 3-m-resolution cell size, capturing PSs associ-
ated with both small and large buildings within the area of interest.
The CSK data demonstrated good performance, successfully identifying
buildings of various sizes and reflecting their reconstruction conditions,
as shown in Fig. 6.

The results highlight the importance of carefully selecting the post-
earthquake time series period to effectively capture the full dynamics
of reconstruction. Pair 1 did not provide reliable insights, as its post-
event time series began a year after the earthquake and covered only
five months. As a result, both the early structural changes and much
of the subsequent reconstruction activity were missed. For effective
monitoring, the post-event time series should ideally start shortly after
the disaster, and include at least 20 to 25 images (Colesanti et al.,
2003; Crosetto et al., 2016), which is generally considered the mini-
mum required for reliable PS detection. Depending on the specific event
and the pace of reconstruction, the time series should be extended
as much as possible to fully capture all phases of the reconstruction
process.

The method is inherently robust against environmental factors, such
as vegetation growth, seasonal surface changes, or unrelated infras-
tructure modifications and is particularly given its focus on persistent,
long-duration changes indicative of post-earthquake reconstruction.
These effects are relatively minor compared to the significant structural
changes associated with building demolition or reconstruction. At the
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Fig. 9. Examples of surveyed buildings from the 2022 EEFIT mission that correspond to buildings with over 50% change. In (a) Figures A, G, and H correspond
to demolished buildings; B, C, and E show reconstructed buildings; and D and F show buildings under construction. (b) An example of a reconstructed building
in Kathmandu, showing the building footprint, corresponding field pictures, and the percentage of PS loss.

regional scale, MT-InSAR primarily captures signals from stable, reflec-
tive surfaces like buildings, minimising the influence of environmental
noise. At the building level, the footprint-based approach further en-
sures that PS points are directly linked to the structure itself, reducing
the likelihood of interference from surrounding vegetation or surface
conditions.

It is important to acknowledge that the proposed method involves
certain uncertainties. The validation results highly relied on the accu-
racy of the camera’s GPS, which was used to determine the location
of the on-site pictures. The median horizontal error of high-sensitivity
embedded GPS hardware of mobile phones is reported between 5 and
8.5m (Zandbergen and Barbeau, 2011). As a result, it can sometimes
be challenging to determine the exact building from which a picture
was captured. In practice, additional spatial uncertainty was introduced
because field pictures, although geotagged, were often taken from
across the street or at a distance from the target buildings. Furthermore,
pictures were captured using different devices with varying GPS accu-
racies, adding another layer of positional inaccuracy. The 25-m buffer
adopted in the validation was selected to take all these uncertainties
into account..
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Additional sources of uncertainty include layover and PS positioning
errors. Layover distortion, which is particularly significant in dense
urban areas with tall buildings, can be quantified using the building
height and the local incidence angle of the SAR signal. In the absence
of airborne Light Detection and Ranging (LiDAR) data for the study
area, layover effects were estimated based on reported building heights
and the local incidence angle of the central pixel in the SAR images.
Assuming an average building height of 12 m (Chaulagain et al., 2015;
Ohsumi et al., 2016) and an incidence angle of 26.58 degrees, the
average layover-affected area was estimated to be approximately 6 m.
Furthermore, the PS positioning error is influenced by the accuracy of
the DEM and the spatial resolution of the SAR sensor (Dorr et al., 2021),
with errors for the CSK sensor typically ranging within a few meters,
2.7 m in the azimuth and 1m in the slant range directions (Nitti et al.,
2015). Although these distortions may occasionally cause adjacent
buildings to be misidentified, the estimated error margins are small
enough that field teams can easily compensate for them during on-site
inspections.

Finally, the OSM database is not always complete and may lack
some building footprints. Consequently, these missing buildings might
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not be included in the building-level analysis, even if field pictures
were obtained for them. This might result in less positive correlations
between field observations and buildings identified as having under-
gone significant changes during the reconstruction process. However,
OSM has generally proven to be a reliable base map for urban studies,
with several studies showing that its quality is comparable to that of
official regional maps (Fan et al., 2014; Brovelli and Zamboni, 2018).
Alternative datasets, such as Microsoft Building Footprints (Microsoft,
2025) and Open Buildings Data (Open Buildings, 2025) were evalu-
ated but found to be either less accurate or in need of substantial
modifications. OSM offered more precise building outlines, particularly
for non-rectangular structures. We further validated OSM coverage
against Google Earth VHR imagery and found no significant omissions.
Therefore, despite its limitations, OSM remained the most appropriate
and practical choice for our analysis.

While these uncertainties are present, integrating complementary
datasets and techniques could mitigate their impact and enhance the
overall robustness of the methodology. For example, Building Informa-
tion Modelling (BIM) datasets, when available, offer detailed architec-
tural information that can validate and enrich SAR-based observations.
Alternative georeferencing approaches, such as aligning field photos
with high-resolution optical imagery, can reduce GPS-related inaccu-
racies and improve the spatial accuracy of field validations. Moreover,
incorporating ground-truth datasets such as structural health monitor-
ing data, governmental reconstruction reports, or drone-based imaging,
if available, can provide further validation data. Furthermore, using
datasets from additional earthquake events and extended reconstruc-
tion phases could improve its generalisability and applicability across a
broader range of scenarios. With sufficient labelled field data, integrat-
ing machine learning models into the methodology could be a valuable
extension, as these models have demonstrated strong performance in
automating classification tasks in remote sensing applications.

The core principle of the proposed method, detecting changes in the
number of PSs using MT-InSAR, is scalable and adaptable to various
disaster scenarios beyond earthquakes, such as floods, urban fires,
and landslides. For instance, in the case of urban fires, severe dam-
age or destruction of buildings leads to significant changes in radar
backscatter, as affected structures lose the stability and surface char-
acteristics needed for PS detection. The disappearance of these PSs
in the time series serves as a clear indicator of fire-induced damage
and subsequent reconstruction. This behaviour is directly observable
through the proposed method and allows for effective post-fire building
assessment. As long as a disaster results in substantial physical changes
that impact radar reflectivity, the approach remains effective. While
some adjustments, such as SAR data selection or temporal baseline
tuning, may be necessary, the core concept is widely applicable.

Ultimately, the method provides systematic and scalable monitoring
of urban areas in post-disaster scenarios, offering valuable insights for
guiding field teams, prioritising reconstruction efforts, and assessing
reconstruction progress over time. This ability to continuously track
structural changes and reconstruction dynamics makes the method a
valuable tool for long-term urban resilience planning. By analysing
trends in building stability over multiple time periods, decision makers
can better understand the pace of reconstruction and allocate resources
more efficiently.

6. Conclusion

This study introduced a novel method for evaluating post-
earthquake building reconstruction. Using the MT-InSAR technique, we
detected PSs linked to buildings by processing a time series of SAR
data collected before and after the earthquake. A two-stage differential
analysis was then performed to compare the number of PSs in pre- and
post-event scenarios. The method begins with a regional assessment,
analysing urban grid cells to identify areas affected by reconstruction
after the earthquake. In areas showing the most significant changes,
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a more detailed building-level analysis was conducted to pinpoint
specific buildings that had undergone reconstruction or remained col-
lapsed years after the event. The approach highlights building locations
where substantial changes have occurred, either from continued col-
lapse or reconstruction. These identified locations can help guide field
investigations at a regional scale to track reconstruction progress long
after the earthquake.

The proposed method was applied to the 2015 Gorkha earthquake in
Nepal using stacks of high-resolution CSK SAR images acquired before
and after the event. Through the grid-level analysis, several urban
areas showing significant changes were identified, prompting further
investigation at the building level. Time-series pairs of different lengths
were analysed, revealing that longer time series detected more changes
related to reconstruction activities in the PS differential analysis. This is
because longer time series can capture a broader range of activities over
time, including debris accumulation, removal, and other phases of the
reconstruction process. The building-level analysis identified specific
locations where buildings had changed years after the earthquake,
indicating buildings that remained collapsed, had been demolished,
were under construction, or had been reconstructed.

Field observations collected in 2015 and during a return mission to
Nepal in 2022 were used to validate the buildings identified by the PS
differential analysis. The validation results confirmed that the method
successfully located buildings that had undergone changes during the
reconstruction phase, either remaining collapsed, being demolished,
under construction, or reconstructed. The accuracy was higher when
longer time series were used, suggesting a stronger correlation between
the detected buildings and actual field observations. These results
confirm the method’s reliability in identifying locations affected by
reconstruction activities, providing valuable target areas for future field
surveys.

This study marks the first application of the MT-InSAR remote
sensing technique to support extensive field investigations, particularly
in the context of post-earthquake building reconstruction. It highlights
the potential of MT-InSAR in identifying buildings impacted by re-
construction, offering a practical tool to identify locations that can be
prioritised for field surveys. By doing so, this approach can significantly
reduce the time and effort required for extensive investigations of
building reconstruction progress across wide areas.

CRediT authorship contribution statement

Fatemeh Foroughnia: Validation, Formal analysis, Writing — orig-
inal draft, Methodology, Data curation, Conceptualisation, Writing —
review & editing, Visualisation, Investigation. Valentina Macchiarulo:
Writing — review & editing, Conceptualisation, Methodology, Data cu-
ration. Pietro Milillo: Methodology, Data curation, Formal analysis,
Writing — review & editing, Conceptualisation. Michael R.Z. Whit-
worth: Writing — review & editing, Data curation. Kenneth Gavin:
Writing — review & editing, Supervision. Giorgia Giardina: Supervi-
sion, Resources, Data curation, Writing — review & editing, Methodol-
ogy, Conceptualisation.

Funding

P.M. was funded by the National Aeronautics and Space Administra-
tion (NASA) under a contract with the Commercial Smallsat Data Scien-
tific Analysis Program (NNH22ZDAO001N-CSDSA), and the Decadal Sur-
vey Incubation Program: Science and Technology (NNH21ZDAOO1N-
DSI).

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



F. Foroughnia et al. International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104883

Acknowledgements Table 1
Upper bound values of building area distributions for each pair, used in the
building-level analysis.

We thank the Italian Space Agency (ASI) for providing COSMO- Pairs UB (areay,)
SkyMed data (original COSMO-SkyMed product ASI Agenzia Spaziale Pair 1 172
Italiana (2009-2024)) for this project. We also thank the Earthquake Pair 2 186.5

Engineering Research Institute (EERI) and the Earthquake Engineering Pair 3 184

Field Investigation Team (EEFIT) for the validation pictures used in this

study. Table 2
Number of buildings with over 50% change used for validation, categorised
by pair and regions of interest.
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Pair 1 1325 277
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See Figs. 10 and 11 and Tables 1-3. Pair 3 2310 483
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Table 3

Perpendicular and temporal baselines with Doppler Centroid (DC) differences for the time series

of Post 2.
Date Perpendicular baseline (m) Temporal baseline (days) DC (Hz/PRF)
2015-05-15 —163.999841 91.256504 —0.088485
2015-05-19 —159.999831 58.357024 0.105961
2015-05-27 —151.999865 614.610937 0.113940
2015-06-04 —143.999851 —196.962032 0.104766
2015-06-20 —127.999869 —325.837476 0.097149
2015-07-06 —111.999926 486.776836 0.140111
2015-07-14 —103.999943 264.811148 0.092809
2015-07-18 —99.999979 1192.506395 —0.045642
2015-07-22 —95.999926 —123.844859 0.110280
2015-07-30 —87.999966 467.612367 0.119710
2015-08-03 —83.999945 —534.329165 —0.074591
2015-08-07 —79.999975 1109.278368 0.136659
2015-08-15 —71.999961 —221.292560 0.087761
2015-08-19 —67.999988 623.834242 —0.059247
2015-08-23 —63.999964 389.072153 0.143078
2015-09-04 —51.999982 188.979467 —0.072350
2015-10-26 0.000000 0.000000 0.050749
2015-12-29 63.999856 907.377859 0.127257
2016-03-02 127.999720 —80.828071 0.110878
2016-03-10 135.999689 48.072930 0.137601
2016-03-14 139.999700 —495.239130 —0.072549
2016-03-18 143.999674 —125.467680 0.102930
2016-03-26 151.999649 —456.710045 0.115239
2016-03-30 155.999628 87.576926 —0.044917
2016-04-11 167.999586 —148.616509 0.142271
2016-04-15 171.999568 165.720698 —0.043453
2016-04-19 175.999542 548.992779 0.105197
2016-04-27 183.999523 —158.426957 0.141159
2016-05-05 191.999515 —757.475284 0.121716
2016-05-13 199.999446 76.252961 0.101724
2016-05-17 203.999461 —919.418826 -0.057127
2016-05-21 207.999421 —168.595003 0.078637
2016-05-29 215.999390 —660.762455 0.115580
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The authors do not have permission to share data.
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