
Flexibility options in electricity markets
with high shares of renewable energies

An agent-based analysis of
economic viability and system impacts

Dissertation
zur

Erlangung des Grades
Doktor-Ingenieur

der
Fakultät für Maschinenbau

der Ruhr-Universität Bochum

von

Felix Johann Nitsch

aus

Linz, Österreich

Bochum, 2025



Eingereicht am 22. Juli 2025

Mündliche Prüfung am 22. September 2025

Erstgutachter: Prof. Dr. Valentin Bertsch

Zweitgutachter: Prof. Dr. Dogan Keles





“A system is more than the sum of its parts.
It may exhibit adaptive, dynamic, goal-seeking, self-preserving, and sometimes
evolutionary behavior.”

— DONELLA H. MEADOWS, Thinking in Systems: A Primer



Abstract
As part of the energy transition, the electricity sector and its power generation infrastruc-
ture must be extensively transformed to reduce greenhouse gas emissions. Intermittent
renewable energy sources are rapidly replacing fossil fuel-based electricity generation. Con-
sequently, there is an increasing need for balancing supply and demand. Flexibility options
are critical technological solutions for this challenge, however, significant knowledge gaps
remain regarding their profitability and deployment in future electricity systems.

This thesis contributes to closing these gaps by conducting agent-based electricity
market simulations that target several key research objectives. First, it investigates ope-
rational strategies for flexibility options and their economic performance in electricity
markets. The analysis reveals that strategies must consider the price impacts of flexi-
bility options on both an individual and collective level. Second, the research examines
profitable technical parameters and demonstrates that medium-term storage configurati-
ons likely offer the greatest revenue potential in day-ahead markets. This is particularly
relevant in scenarios with increased competition between flexibility options. Third, the
analysis identifies significant cannibalisation effects when substantial flexibility option ca-
pacity is integrated into the system. Due to their impact on electricity price dynamics,
the overall revenue decreases, thus affecting profitability.

These findings lead to the following recommendations for future research and policy.
Endogenous modelling of large-scale flexibility options is necessary to understand future
energy systems, as isolated analysis significantly underestimates market interactions. Ad-
ditionally, the profitability of flexibility options is strongly linked to cost assumptions,
particularly storage costs, which require consideration in investment decisions. Further-
more, planned investments in flexibility options should be accurately monitored, as can-
nibalisation effects and changing market dynamics will substantially impact profitability.

The endogenous modelling of these complex phenomena represents a key methodolo-
gical advancement of this thesis. This is achieved through extensions and application of a
state-of-the-art electricity market model coupled with machine learning-based electricity
price forecasting. This thesis contributes multiple software packages and data sets that
adhere to FAIR principles, thereby enhancing reproducibility and facilitating future rese-
arch. The presented work advances the understanding of the role of flexibility options in
energy transition scenarios, while also revealing important avenues for future investiga-
tion. Key limitations to be addressed in further research include the focus on day-ahead
market analysis rather than multi-market simulations, and simplified consideration of
sector coupling dynamics.
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Kurzzusammenfassung
Im Rahmen der Energiewende müssen der Elektrizitätssektor und seine Stromerzeugungs-
infrastruktur umfassend umgestaltet werden, um die Treibhausgasemissionen zu verrin-
gern. Erneuerbare Energiequellen ersetzen zunehmend die fossile Stromerzeugung. Durch
die fluktuierende Einspeisung von Wind- und Solarenergie ist jedoch eine Ausbalancie-
rung von Angebot und Nachfrage erforderlich. Flexibilitätsoptionen sind technologische
Lösungen, um diese Herausforderung zu bewältigen.

Dennoch bestehen erhebliche Wissenslücken bezüglich ihrer Rentabilität und ihres
Einsatzes in zukünftigen Elektrizitätssystemen. Diese Dissertation trägt zur Schließung
dieser Lücken bei, indem agentenbasierte Strommarktsimulationen durchgeführt werden,
die mehrere wichtige Forschungsziele verfolgen. Zunächst werden Betriebsstrategien für
Flexibilitätsoptionen analysiert und hinsichtlich ihrer Wirtschaftlichkeit auf Elektrizitäts-
märkten bewertet. Es zeigt sich, dass Betriebsstrategien die Preisauswirkungen von Fle-
xibilitätsoptionen sowohl auf individueller als auch auf kollektiver Ebene berücksichtigen
müssen. Zweitens werden rentable Speichersystemparameter untersucht. Dabei werden
mittelfristige Speicherkonfigurationen als Systeme mit dem besten Ertragspotenzial auf
Day-Ahead-Märkten identifiziert. Dies gilt insbesondere in Szenarien mit verstärktem Fle-
xibilitätswettbewerb. Drittens werden Kannibalisierungseffekte sichtbar, sobald erhebli-
che Flexibilitätskapazitäten in das System integriert werden. Aufgrund ihrer signifikanten
Auswirkungen auf die Strompreisdynamik kommt es zu sinkenden Gesamterträgen, welche
wiederum Auswirkungen auf die Rentabilität von Flexibilitätsoptionen haben.

Auf Basis dieser Ergebnisse lassen sich die folgenden Empfehlungen für die künftige
Forschung und Politik ableiten. Um künftige Energiesysteme besser zu verstehen, ist die
endogene Modellierung von Flexibilitätsoptionen erforderlich, da bei einer isolierten Ana-
lyse die Marktinteraktionen erheblich unterschätzt werden. Die Rentabilität von Flexibili-
tätsoptionen hängt außerdem stark von Kostenannahmen ab, insbesondere von den Spei-
cherkosten, die bei Investitionsentscheidungen sorgfältig berücksichtigt werden müssen.
Geplante Investitionen in Flexibilitätsoptionen sollten darüber hinaus genau beobachtet
werden, da Kannibalisierungseffekte und veränderte Marktdynamiken ihre Rentabilität
erheblich beeinflussen werden.

Die endogene Modellierung dieser komplexen Phänomene stellt einen wichtigen me-
thodischen Fortschritt dieser Dissertation dar. Erreicht wird dies durch Erweiterungen
und die Anwendung eines modernen Elektrizitätsmarktmodells, das mit Methoden des
maschinellen Lernens für die Erstellung von Strompreisprognosen gekoppelt ist. Mit die-
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ser Dissertation werden mehrere Softwarepakete und Datensätze bereitgestellt, die den
FAIR-Prinzipien entsprechen. Dadurch wird die Reproduzierbarkeit verbessert und wei-
terführende Forschung in diesem Bereich erleichtert. Zudem erweitert diese Dissertation
das Verständnis der Rolle von Flexibilitätsoptionen in Energiewendeszenarien und zeigt
gleichzeitig wichtige Aspekte für künftige Untersuchungen auf. Zu den wichtigsten Ein-
schränkungen, die in der weiteren Forschung adressiert werden müssen, gehören die Be-
schränkung auf die Analyse des Day-Ahead-Marktes anstelle der Simulation mehrerer
Märkte sowie die vereinfachte Berücksichtigung der Dynamik der Sektorenkopplung.
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1 Introduction
This chapter provides an introduction to the content of this thesis, with Section 1.1
explaining the need for flexibility options (FOs) in future electricity markets. Section 1.2
provides a brief overview of the current state of the literature in this field, followed by
a presentation of the identified research gaps and research targets. The structure of the
thesis is outlined in Section 1.3.

1.1 Background and motivation

The Paris Agreement, which was reached in December 2015, is a significant milestone
defining global efforts to combat climate change (Schleussner et al. 2016). Its main ob-
jective is to limit the global temperature increase to well below 2°C above pre-industrial
levels. It has shaped international climate policy and set ambitious targets for reducing
greenhouse gas emissions. However, recent reports once again highlight the urgency of
accelerating climate action (IPCC 2024). Therefore, a rapid and comprehensive energy
transition from fossil fuels to renewable energy (RE) sources is critical.

At the heart of the energy transition is the balance between three fundamental pillars:
energy security, social and environmental considerations, and cost efficiency (Löschel et
al. 2020). Energy security refers to the reliable availability of electricity at all times,
which is essential for human welfare and economic stability. The increasing integration of
RE sources, which are inherently variable and weather dependent, poses new challenges
in maintaining this security. Therefore, it is necessary to ensure that electricity can be
generated or stored to meet demand, even when RE sources are insufficient or unavailable
at that time. Social and environmental considerations cover a wide range of factors, from
public acceptance of RE technologies to biodiversity protection and land use concerns.
Public perception of energy systems and their transformation can have a significant impact
if there is opposition to certain infrastructure projects (Enserink et al. 2022). In addition,
the environmental impact of the technologies used, whether through land use, resource
extraction, or impact on ecosystems, must also be considered (Rahman, Farrok, and
Haque 2022). Cost efficiency is another important aspect, as it is necessary to ensure
that the transition to RE sources is economically viable. In liberalised markets, the
energy transition depends on individual investments that are incentivised by attractive
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business cases. Investors must evaluate capital expenditures, ongoing operational costs,
and expected revenues within a low-emission energy system. At the same time, policy and
market frameworks should also account for the broader, long-term economic benefits of
achieving climate targets and mitigating climate change at the system level (Bogdanov,
Ram, et al. 2021; Osman et al. 2023). Therefore, it is critical to consider both these
micro- and macroeconomic perspectives for the success of the energy transition.

The ultimate goal of the energy transition is to reduce global greenhouse gas emis-
sions (Rogelj et al. 2019). This thesis thereby focuses particularly on the electricity sector,
which is a major contributor (IEA 2024). To achieve the emission reduction targets, new
power plants must be implemented, especially those based on RE sources, such as wind,
solar, and hydropower (Twidell 2021). It also involves electrification of various sectors,
which will increase demand for electricity (Staffell and Pfenninger 2018). In particular, the
transition to electric vehicles, the electrification of heating systems through heat pumps,
and the transformation of industrial processes away from fossil fuels all contribute to
this increase in demand. Growing shares of fluctuating RE sources also require a flexible
and responsive energy system that can adapt to changes in supply and demand across
timescales from seconds to seasons (Leonard, E. Michaelides, and D. Michaelides 2020).
This flexibility can be provided through various technological solutions, collectively re-
ferred to as flexibility options (FOs) (Zöphel et al. 2018).

FOs can be characterised by several key parameters such as capacity (the total amount
of energy that can be stored, i.e., MWh), power (the rate at which energy can be charged
or discharged, i.e., MW), ramping capability (the rate of change of power, i.e., MW/min),
and cost (both capital and operating costs, i.e., EUR/MW, EUR/MWh) (Alizadeh et al.
2016). A well-established example of a FO is pumped hydro storage (Babatunde, Munda,
and Hamam 2020). This mature and widely used technology stores energy by pumping
water uphill to a reservoir during periods of low demand/price and releasing it during pe-
riods of high demand/price to generate electricity, profiting from this arbitrage. Although
it offers significant capacity, its scalability can be limited by geographical restrictions that
require significant up-front investment (Hunt et al. 2020). In contrast, battery storage
systems, particularly lithium-ion batteries, have experienced rapid cost reductions and
efficiency improvements in recent years (Cole, Frazier, and Augustine 2021). These sys-
tems are highly scalable and can provide short-term flexibility services, making them an
increasingly attractive solution for integrating RE sources into the energy system. An-
other concept for providing flexibility is “sector coupling”, which refers to the integration
and coordination of different energy sectors (Fridgen et al. 2020). This involves linking the
electricity sector with other areas, such as heating, industry, and transportation (Orths
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et al. 2019). Although, it is estimated that the flexibility potential is significant (Bernath,
Deac, and Sensfuß 2021), it is challenging to assess specific economic feasibility as all
solutions compete with each other (Ramsebner et al. 2021).

As with RE technologies, there are additional considerations in addition to technical
specifications that are relevant to the successful application of FOs. These are related to
scalability and expansion potential. Social acceptance can have a significant impact on
the feasibility of projects, as shown by public opposition to new pumped hydro projects
in environmentally sensitive or scenic areas (Pickard 2011). Many technologies are still
evolving and may not yet be available on a scale or at the cost required for widespread
deployment. This may already affect today’s investment decisions (Koltsaklis and Knápek
2023). As these projects typically are large in capital with long payback periods, an
accurate evaluation of their economic potential is essential (Keles 2013). Therefore, a
thorough ex ante analysis is needed to assess the economic and operational viability of
these FOs for application in future market scenarios (Ölmez, Ari, and Tuzkaya 2024).
Several analyses have already been carried out in this area and will be discussed in the
next section.

1.2 Research targets

Existing studies of FOs in electricity systems generally fall into two categories. The first
category focuses on individual devices, examining the technical and economic performance
of individual storage devices without considering their market implications (Elalfy et al.
2024). While these studies provide valuable information on operational characteristics,
they often use historical price time series. This is a critical limitation because they cannot
capture the potential impact of large-scale FOs deployment on electricity market dynamics
and profitability (Lund et al. 2015). The second category uses system optimisation with
a “central planner” approach, assuming perfect coordination between all components of
the system to achieve a global optimum (Mancò et al. 2024; A. M. Barbosa et al. 2024).
These models often assume perfect foresight, which does not reflect the reality of decision-
making under multiple uncertainties (Fodstad et al. 2022). In addition, they tend to be
computationally expensive, which limits the number of scenarios that can be explored (Ma
and Nakamori 2009). Furthermore, energy systems are highly complex because they are
interconnected across multiple dimensions, from technical and social to environmental
concerns (Bale, Varga, and Foxon 2015). Therefore, models studying FOs must capture
not only technical aspects, but also social aspects such as the behavior of individual
actors (Pfenninger 2024). These limitations and challenges highlight the need for modeling
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approaches that can handle such complexity.
What is missing is a comprehensive analysis that accounts for agent behaviour in elec-

tricity markets characterised by increasingly high RE shares while explicitly considering
operational uncertainty and forecasting limitations (Bessa et al. 2019). Future electricity
markets will exhibit fundamentally different price dynamics. On the one hand, RE will
increase the price spreads between peak (low RE generation) and off-peak prices (high RE
generation). On the other hand, various FOs will exploit these attractive spreads through
arbitrage, thereby reducing them over time. Yet current FO profitability assessments re-
main largely based on historical market patterns that neglect these dynamic interactions.
Market imperfections and uncertainty, such as participants not bidding at marginal cost,
can further significantly affect revenue potential, but are often overlooked in current stud-
ies (Reza et al. 2023). Moreover, the impact of strategic individual behaviour by market
participants, especially FOs, should be accounted for in these transformed market condi-
tions (Siala et al. 2022). To address these complex interactions between individual agent
decisions and system-wide market outcomes, electricity market simulation methods offer a
proven analytical framework (Weidlich and Veit 2008). Agent-based models (ABMs) are
a particularly powerful approach within this framework, as they place individual actors at
the centre of analysis and examines how system-level effects emerge from their strategic
interactions (J. Castro et al. 2020). Despite this potential, more research applying ABMs
to energy systems analysis (ESA) is needed to explicitly address these identified research
gaps (Heider et al. 2021).

There is also a gap in open research software and data availability. Although there are
notable developments in the domain of open science in ESA (Gils et al. 2022), open soft-
ware that is well documented, thoroughly tested, and modularised for flexible application
can further contribute to the field. Adherence to the findable, accessible, interoperable,
reusable (FAIR) principles (Barker et al. 2022) for research software would enhance the
transparency and reproducibility of the results. Open data repositories, which can be
freely used, facilitate simple and convenient application and extension of ESA models,
and thus accelerating progress in the field (Chang et al. 2021).

This thesis addresses the identified research gaps through advancements in two in-
terconnected domains: energy economics and energy informatics. Within the energy
economics domain, the following research targets are identified.

1.1 Identify operational strategies for FOs that perform reliably in future electricity
market scenarios with increasingly high RE shares.

1.2 Evaluate how technical specifications (e.g., capacity & power) of FOs influence re-
financing potential under varying cost assumptions.
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1.3 Quantify the impact of increasing market penetration of competing FOs on their
profitability in day-ahead market (DAM).

From an energy informatics perspective, the objective is to extend and enhance exist-
ing models to enable a detailed representation of FOs and their market interactions, as
outlined below.

2.1 Expand ABM to simultaneously capture both individual FO economics and their
collective impact on system dynamics.

2.2 Develop modular open-source software packages to enhance reproducibility and fa-
cilitate comparative assessment of FOs.

The novelty of this research lies in the combination of different modelling techniques,
from ABM to optimisation and machine learning (ML), to provide a more comprehensive
understanding of FO in systems with high shares of RE. Given that individual actions can
aggregate into emergent, often unintended outcomes at scale (Schelling 2006), I explic-
itly examine this phenomenon in the context of increasing FO deployment. Furthermore,
this work contributes numerous software packages to the field, adhering to open science
practices, specifically following the FAIR principles (Barker et al. 2022), thus facilitating
future research. By bridging the gap between theoretical optimality and realisable out-
comes, this research provides valuable insights for policy makers, investors, and system
operators navigating the complexities of the energy transition.

Figure 1.1: Spatial, temporal, technological, and economic scopes of the applied energy
system models. Illustration based on Cao et al. 2021.
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Figure 1.1, which is based on an illustration by Cao et al. 2021, shows the spatial,
temporal, technological, and economic scope of the ESA models applied in this thesis. The
spatial scope primarily targets the German DAM zone with extensions to neighbouring
market zones. Temporarily, the analysis ranges from accounting for RE fluctuations to
seasonal weather effects, partially covering investment planning perspectives. Although
the work features some aspects of sector coupling and system services, the technological
scope focuses primarily on the mix of power generation. From an economic perspective, I
address the interactions between companies who could operate a FO, and whole markets.

1.3 Structure of the thesis

The structure of the thesis is presented in Figure 1.2. Chapter 2 provides a high-level
presentation of the applied materials and methods. This includes a detailed description of
the applied ESA models in Section 2.1, complementary tools and methods in Section 2.2,
and model calibration in Section 2.3. The four main research papers are presented in
Chapter 3, specifically in Sections 3.1 to 3.4, each with bibliographic information including
an executive summary and author contributions. A synthesis of all the research papers
presented is provided in Section 3.5, which describes how the papers contribute to filling
the identified research gaps. Chapter 4 outlines the limitations of the presented theses,
summarises the overarching findings, and draws conclusions. The Appendix contains
supplementary peer-reviewed and supplementary non-peer-reviewed papers in Chapters A
and B respectively. A short academic curriculum vitae is presented in Chapter C.

Figure 1.2: Outline of the thesis.
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2 Material and methods
This chapter presents an overview of the approaches and models used to address the
research targets presented. In contrast to the individual materials and methods sections
in the research papers (see Chapter 3), this chapter provides an overview of the primary
methods used and lists my major methodological contributions. In the beginning, the field
of energy systems analysis (ESA) is introduced in Section 2.1 by outlining two prominent
and widely used approaches, agent-based models (ABMs) (Subsection 2.1.1)and energy
systems optimisation models (ESOMs) (Subsection 2.1.2). An overview of complementary
methods, such as machine learning (ML) and model coupling, is given in Section 2.2.
Section 2.3 on scenario definition and data provides insights in the modelling assumptions,
model validation, and also tools which are used to perform multi-scenario analysis.

2.1 Energy system models

System models in the energy domain were already in use in the mid 20th century (Barnett
1950). During the oil crisis in the 1970s, ESA contributed to the public discussion (Mead-
ows et al. 1972; Hoffman and Wood 1976). More recently, the transition to low-carbon
energy systems and its implications along the transformation lead to increasingly complex
problems (Nakata, Silva, and Rodionov 2011). It is important to find an optimal allo-
cation of power plant technologies under the consideration of meeting the demand while
staying below the emission limits (Davis et al. 2018). For many stakeholders, from policy
makers to investors, it is crucial to know how target systems may be specified. This allows
them to pursue relevant investments and avoid potential lock-in effects (Bertram et al.
2021).

ESA modellers have faced new challenges in the last decade due to the increasing
complexity of both real-world systems and the models employed (Pfenninger, Hawkes,
and Keirstead 2014). There is a wide range of ESA models available, each with its own
temporal, technological, sectoral, or spatial focus (Fodstad et al. 2022). Increasing com-
putational capacities foster the development and application of comprehensive ESA mod-
els, realising detailed model coupling workflows. Open modelling approaches, including
methodological transparency and data accessibility, enhance the credibility and impact of
energy systems research (Pfenninger, Hirth, et al. 2018).
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In this thesis, I focus on two main approaches, ESOMs and ABMs. ESOMs are widely
applied to identify optimal energy systems under the consideration of, e.g., emission con-
straints (Hoffmann et al. 2024). They can also be used for dispatch planning and unit
commitment purposes. ABMs focus on individual or prototypical agents and model the
outcomes by agent interaction. These models can be used to assess specific system designs
in an exploratory way, combining micro- and macroeconomic viewpoints. These analyses
may be attributed to the field of energy economics, which studies the supply and demand
of energy. In this regard, electricity markets are a fundamental component of energy
systems, as they facilitate the allocation of energy from producers to consumers. As the
energy transition leads to more electrification across all sectors, the demand for electric-
ity is expected to increase (IEA 2024). Electricity markets will therefore become more
important. In the context of this research, my focus is primarily on day-ahead markets
(DAMs), which provide crucial price signals to all market actors in several markets (Silva-
Rodriguez et al. 2022). In particular, the electricity exchange collects bids and asks, and
periodically clears the market. The electricity market is shaped by various actors, includ-
ing producers, consumers, traders, flexibility providers, and regulators. These actors can
be represented as (prototypical) agents in an ABM.

2.1.1 Agent-based simulation

ABM is a computer simulation approach explicitly modelling interactions between agents
that can reveal emergent behaviour (Helbing and Balietti 2012). Starting from an initial
scenario configuration, ABM allows exploratory analysis of potential outcomes (Tesfat-
sion 2006). In the context of ESA, ABM offers a number of significant strengths (Ringler,
Keles, and Fichtner 2016). First, by incorporating the perspective of individual actors,
researchers can identify potential emergent effects (Frey, Klein, et al. 2020). Secondly,
the use of heterogeneous agents in an ABM simulation allows for the representation of a
range of actor characteristics, including their objectives, risk profiles, information levels,
and interactions with their environment (Kraan, Kramer, and Nikolic 2018). Thirdly,
ABM offers superior practical applicability to address real-world energy transition chal-
lenges while maintaining computational feasibility (Hansen, Liu, and Gregory M. Morrison
2019b). Fourthly, uncertainties of various origins can be considered, ranging from system
design to imperfect information (Hansen, Liu, and Gregory M Morrison 2019a). Finally,
in contrast to optimisation models, there is no global objective function to be maximised
or minimised (Ma and Nakamori 2009), however, individual agents can use optimisation
models for their own decision-making (Klein, Frey, and Reeg 2019).
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It is also important to consider the challenges of ABM, which can be caused by param-
eterisation issues (Hammond 2015). As (prototypical) actors are the core of any ABM
problem, detailed knowledge on the individual actor’s is critical (Janssen and Ostrom
2006). Due to its exploratory nature, even minor changes in input parameter configu-
rations can yield significantly different results (J. Castro et al. 2020). Therefore, model
validation, such as backtesting against historical data, is an important step in ABM ap-
plication (F. Maurer et al. 2024).

2.1.1.1 AMIRIS

The open Agent-based M arket model for the Investigation of Renewable and Integrated
energy Systems AMIRIS is a state-of-the-art ABM to analyse renewable energy (RE)
market integration and policy effects (Schimeczek, Nienhaus, et al. 2023). It was created
by the German Aerospace Center (DLR) over a decade ago and has been continuously de-
veloped ever since, with the software being openly available since 2021. The various types
of agents perform tasks based on their own inputs and their surrounding environment,
as illustrated in Figure 2.1. Modellers can adjust the level of information for each agent
individually by defining the so-called contracts. They represent a formalised method of
exchanging information at a specified time between agents.

Figure 2.1: AMIRIS model structure revealing agent types and their connection (Schi-
meczek, Nienhaus, et al. 2023).
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The focus of AMIRIS is the DAM, where uniform electricity prices are determined
in an hourly resolution. In order to achieve this, the energy exchange agent collects bids
and asks from the relevant agents, either providing electricity supply or requesting to
meet electricity demand. Electricity supply can be provided by conventional power plants
or a RE plants. These units can be as detailed as a single block of a power plant to
an aggregated fleet of power plants. Each power plant operator maintains a connection
with a respective trader whose objective is to sell their power generation potential on
the DAM. In order to facilitate this, the trading agent receives marginal cost informa-
tion from the power plant operators, which are determined by operational costs, fuel
costs, and emission certificate costs. Traders are then able to add optional markups to
marginal costs, accounting for ramp-up costs (Liberopoulos and Andrianesis 2016), and
markdowns, accounting for ramp-down costs (Pape, Hagemann, and Weber 2016), both
of which represent non-convex nature of such costs (Makkonen and Lahdelma 2006). De-
mand traders are defined as actors who seek to procure a specified quantity of energy at
a designated point in time. A “value of lost load” is assigned to the bid, which represents
the maximum price the bidder is willing to pay for the requested demand. Flexibility
option (FO) agents, such as storage operators, control a storage device, enabling them to
purchase and sell energy to the market according to their internal state of charge (SoC).
As this is a time-dependent matter, the operator must develop an operational schedule
based on a forecasted electricity price. This optimisation problem is solved using dy-
namic programming (Bellman 1957) and discrete levels of SoC. From a strategic point
of view, the objective may be to maximise profits or to minimise overall system costs.
A policy agent enables the examination of various policy instruments with the objective
of supporting the operations of RE power plants. Furthermore, additional neighbour-
ing DAMs can be interconnected through a central market coupling agent (Nitsch and
El Ghazi 2023). Time-dependent transmission capacities between market zones account
for the comprehensive states of interconnected electricity markets. The central coupling
algorithm is designed with the objective of optimising the collective welfare of all in-
terconnected markets. A comprehensive account of all agent types can be found in the
AMIRIS-Wiki1.

The Python package AMIRIS-Py provides a convenient wrapper for all modelling
tasks (Schimeczek and Nitsch 2024). Specifically, AMIRIS-Py handles the installation,
setup, model execution, and post-processing of the results. With AMIRIS-Examples,
there is also an open scenario data collection available (Nienhaus et al. 2025). This ensures
an easy on-boarding for new users, but also convenient workflow adaptations for more ex-

1https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis
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perienced users. All components of AMIRIS are designed in a modular way, so that model
extensions and model coupling are easily possible, such as AMIRIS-PriceForecast (see
Section 2.2.1.2) or AMIRIS-Scengen (see Section 2.2.3). Converters to other ESA mod-
els allow for a convenient coupling of the model, such as AMIRIS-CHARGIN which con-
verts the results of AMIRIS to the electric vehicle simulation model CHARGIN (Nitsch
2025a). Thorough software development standards, such as unit testing, documentation,
tutorials, and individual user support, are important aspects to establish AMIRIS in the
ESA modelling domain (Nitsch 2023a). Strong efforts are put into community building,
which is a declared target of the AMIRIS developers (Nitsch, Schimeczek, Nienhaus, et
al. 2025).

AMIRIS has been used in several research projects and publications, the most promi-
nent of which are described below. In-depth interviews and detailed agent parameterisa-
tion have been carried out, focusing on the transformation of real actors into simulated
agents in (Reeg 2019). A feedback loop caused by inadequate policy instruments in sce-
narios with high shares of RE lead to undesirable price effects, demonstrating the need for
ongoing policy evaluation (Frey, Klein, et al. 2020). Strong efforts in model harmonisa-
tion led to uniform model results between an optimisation model and AMIRIS, revealing
the so-called “efficiency gap” of energy system scenarios (Torralba-Diaz et al. 2020). The
effects of extreme weather events, in particular periods of low RE generation and high
electricity demand, have been investigated quantifying the mitigation potential of in-
ternational trade, finding that additional transmission capacity can only partially limit
large-scale events in Central Europe (Nitsch, Scholz, et al. 2023). AMIRIS is coupled
with an optimisation model in (Sarfarazi, Sasanpour, and Bertsch 2024) which addresses
the integration of energy communities in the electricity market. The potentials for de-
mand response, i.e. shifting power on the demand side, have been analysed by a new load
shifting agent that provides flexibility to the system (Kochems 2024). A study on flexible
heat pump operation showed that significant electricity cost savings can be achieved, but
also revealed substantial impact on overall market dynamics (Sperber et al. 2025).

From a technical point of view, AMIRIS is implemented in Java and configured using
YAML and CSV files. The FAME framework manages agent creation and communication
overhead, as well as overall model execution. The next section provides more detail on
FAME.

2.1.1.2 FAME

The need to rapidly adapt scientific models to changing environments, while maintain-
ing the highest scientific standards and providing users with easy-to-use tools, requires a
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dedicated framework for agent-based electricity market analysis. The “Open F ramework
for Distributed Agent-Based M odelling of Energy Systems” FAME (Schimeczek, Nitsch,
et al. 2020) addresses these challenges by providing robust tools for developing, executing
and managing ABM (Figure 2.2). It simplifies model parallelisation, reduces program-
ming effort, and achieves low overhead, enabling researchers to create accurate and easily
adaptable models that reflect the real-world complexity of modern energy systems.

Figure 2.2: FAME components and their roles within the framework (Schimeczek, Nitsch,
et al. 2020).

There are two main components to the FAME framework, namely FAME-Core (Schi-
meczek, Deissenroth-Uhrig, et al. 2023) and FAME-Io (Nitsch, Schimeczek, Frey, et al.
2023). FAME-Core is a Java library that supports the development and execution of
ABM simulations. It also provides options for running models in parallel on different
platforms, reducing the complexity and skill requirements typically associated with high-
performance ABM development. It streamlines the management of common tasks, such
as input/output handling and agent scheduling, simplifying the creation and maintenance
of ABM. It also provides discrete event scheduling, guaranteed message delivery, and suit-
ability for scientific modelling through extensive documentation and adherence to high
coding standards.

FAME-Io facilitates the creation, validation and conversion of complex ABM simula-
tion configurations, ensuring data integrity and simplifying the workflow for researchers.
Specifically, it handles configuration files in YAML and CSV formats, allowing easy setup
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and pre-run validation of simulations, speeding up programming exercises. The package
allows configurations to be split into multiple files, supports structured YAML config-
urations, and validates these against schemas derived from the associated ABM. The
Python package is operating system independent and follows state-of-the-art software
development practices while efficiently handling large data sets and configurations.

Other FAME components, such as FAME-Mpi and FAME-Protobuf, serve as
supporting tools for FAME-Core and FAME-Io. The example model FAME-Demo

shows the main features and illustrates the interaction of all components. In addition,
FAME-Gui provides a graphical user interface.

2.1.2 Energy system optimisation

The domain of ESOMs is diverse, ranging from a single-unit dispatch optimisation to
planning global energy systems (Hoffmann et al. 2024). State-of-the-art ESOMs are very
comprehensive tools that can solve extensive real-world problems. New advances, such as
multi-criteria optimisation (Finke 2024), or solving highly sector-coupled systems (Bog-
danov, Gulagi, et al. 2021), provide in-depth insights to pressing questions in ESA. Promi-
nent open source ESOMs are, e.g., Backbone (Helistö et al. 2019), oemof.solph (Krien
et al. 2025), OSeMOSYS (Howells et al. 2011), PyPSA (Brown et al. n.d.), and REMix

(Wetzel et al. 2024). All applications have in common that an objective function is
maximised or minimised by defining the decision variable(s) under consideration of con-
straints (Hillier 1967). A simplified energy system model for dispatch optimisation could
be formulated where the demand dt has to be met at all times t by the supply si,t of
technology i. Generation of electricity causes emissions of ei and operational cost ci,t.
The total system cost ctotal should be minimised as

Ctotal = min
∑
t

ci,t × si,t

The following constraints must be taken into account. First, the demand dt must be met
at all times ∑

t

si,t = di,t

Secondly, the supply cannot exceed its individual limits smax
i,t

0 ≤ si,t ≤ smax
i,t ∀i, t
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Thirdly, total emissions should not exceed a specified maximum emission limit emax∑
t

ei × si,t ≤ emax

The optimiser would therefore decide on the optimal dispatch of all technologies i leading
to minimised total cost. If one were to find the optimal capacity expansion of power
plants, the problem could be adapted as follows. The calculation of the total system cost
ctotal could also be extended considering the expansion cost cinvest

i as

ctotal = min
∑
t

ci,t × si,t + cinvest
i × si,t

Optimisation methods are applied not only for comprehensive ESA but also widely for
detailed FO schedule planning (Song et al. 2024).

2.2 Complementary tools and methods

In the context of the rapidly evolving landscape of computer science and methods, the
development and deployment of comprehensive, reliable, and modular research software
becomes more important. This section therefore lists the tools and methods used or
developed specifically for this research to complement ESOMs and ABMs.

2.2.1 Machine learning

ML enables computers to perform tasks without explicit instructions (Zhou 2021). It
relies on learning from data to discover patterns and to make decisions or predictions.
There are several steps in the successful application of ML including data collection and
preparation, model selection and training, and evaluation and (hyperparameter) optimisa-
tion (Alpaydin 2021). Data collection involves gathering and preprocessing data to ensure
its quality and relevance. Model selection refers to choosing the appropriate algorithms,
such as decision trees, support vector machines, or neural networks (NN), which are then
trained on the data to learn the underlying patterns. Evaluation and optimisation involve
assessing the model’s performance using metrics like accuracy or mean squared error and
fine-tuning the model to improve its predictive power. ML is used in various applications
achieving significant advancements in recent years. Notable achievements include the
prediction of three-dimensional protein structures (Jumper et al. 2021), synthetic image
generation (Rombach et al. 2022), robust speech recognition (Radford et al. 2023), and
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generative models capable of processing image or text inputs (OpenAI et al. 2024).
Although time series forecasting might not capture as much public attention, extensive

research is being conducted in various domains (Petropoulos et al. 2022). These applica-
tions range from climate time series (Mudelsee 2019), emergency patient volume (Jones
et al. 2008), retail sales (Alon, Qi, and Sadowski 2001; Böse et al. 2017), tourism arrivals
and overnight stays (Claveria and Torra 2014), web traffic (Madan and Mangipudi 2018),
commercial electricity demand (Pallonetto, Jin, and Mangina 2022), industrial electricity
demand (Walser and Sauer 2021), to crop prices (Jha and Sinha 2013). In addition to
classical statistical methods such as autoregressive–moving-average models, NN, particu-
larly deep learning, are gaining popularity due to impressive performance and increased
availability of computational power (Lim and Zohren 2021; Vaswani et al. 2023). Recur-
rent NN are capable of directly modelling seasonality and provide a competitive method
in timeseries forecasting (Hewamalage, Bergmeir, and Bandara 2021). Quantification of
uncertainty represents another critical aspect of time series forecasting (Gal and Ghahra-
mani 2016; Bjerregøard, Møller, and Madsen 2021; Nado et al. 2021), a prominent issue in
weather forecasting research (Rasp and Lerch 2018; Baran et al. 2020; Schulz and Lerch
2022).

2.2.1.1 focapy

focapy (Nitsch 2023b) is a Python package that offers a feature-complete time series
forecasting pipeline. In detail, focapy handles data pre-processing, model training, and
results evaluation in a convenient way, see Figure 2.3. It is based on the powerful library
darts (Herzen et al. 2022). In order to forecast n target values, the user provides input
data such as past target values and optional covariate values, see Figure 2.4. Based on
the selection of the forecasting technique, focapy handles the data flow to the training
procedure. A comprehensive configuration file provides convenient analysis of multiple
approaches and data sets. During model training, the class structure in focapy ensures
that the data are stored separately in training, test and validation sections, see Figure 2.5a.
The corresponding data scaler object, which is used to normalise and de-normalise the
data, is also stored alongside. Several different types of chunks, specific slices of the
training data, allow for a versatile training routine. The evaluation of the results is
structured similarly, specifically in a dedicated class structure as shown in Figure 2.5b.
Each focapy result contains the trained model with some accompanying information
such as timestamps, colour codes, and scenario names, as well as a structured view of the
error metrics. For each specified error metric, such as mean absolute error (MAE) or root
mean squared error (RMSE), corresponding errors are calculated on multiple temporal
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scales, from individual hourly values to aggregated errors by hour of the day, allowing
for a detailed examination of error distribution patterns (Nitsch and Schimeczek 2023).
It can be called via the terminal or imported as a dependency in external scripts. To
use the models trained with focapy during runtime in AMIRIS, a specific interface was
created, AMIRIS-PriceForecast, see Section 2.2.1.2 below.

Figure 2.3: focapy model workflow.

Figure 2.4: focapy input data.
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(a) Training workflow in focapy. (b) Evaluation workflow in focapy.

Figure 2.5: focapy class diagrams.

2.2.1.2 AMIRIS-PriceForecast

FOs, such as battery storage systems, play a key role in most energy scenarios by shift-
ing energy over time. Both in reality and in many electricity market simulations, FOs
typically require electricity price forecasts to optimise their operational schedules. For
instance, Figure 2.6 shows how this procedure is implemented in AMIRIS. Specifically,
a ForecastAgent collects preliminary bids and asks from supply and demand traders,
except those of the FOs. It then sends a “naive” - as it does not include any actions of
the FOs - electricity price forecast to the FOs. This electricity price information, either
a point in time or a merit order information, is used to optimise the bidding behaviour
of the FOs. If there is only a single simulated FO in a scenario, it can accurately con-
sider its own impact on the electricity price forecast, and therefore it can be considered a
perfect forecasting situation. However, when multiple FOs are simulated simultaneously,
the naive electricity price forecast does not take into account the bidding behaviour of
(competing) FOs. Therefore, the revenue of individual FOs are negatively affected by
the so-called “avalanche effect”, where multiple actors react on the same signal, thus they
may not achieve their expected outcome (Kühnbach, Stute, and Klingler 2021). This can
also occur when the collective impact of individual actions reduces the overall revenue
potential through “cannibalisation effects,” as observed for RE sources (Hirth 2013) or
FOs (Ölmez, Ari, and Tuzkaya 2024).
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Figure 2.6: Flexibility option implementation in AMIRIS.

To address the limitations of these naive forecasts, I have developed a dedicated
Python package that extends the current forecasting procedure in AMIRIS by coupling
external forecasting algorithms (Nitsch and Schimeczek 2025b). The package AMIRIS-

PriceForecast (Nitsch and Schimeczek 2025a) hosts modular forecasting architectures
from simple time-shift models (Hyndman 2018) to comprehensive NN based forecasts
like Transformers (Lim, Arık, et al. 2021). Figure 2.7 shows the interaction between
PriceForecasterApi, a new Java agent designed to improve electricity price fore-
casting, its ForecastClient, such as a StorageTrader in AMIRIS, and the ex-
ternal AMIRIS-PriceForecast model itself (Nitsch 2025b). The ForecastClient

requests an electricity price forecast for a defined period, e.g., the next 24 hours in
the simulation. The PriceForecasterApi agent receives the request and passes it
to AMIRIS-PriceForecast where the actual forecast is calculated. Once the fore-
cast electricity price time series has been received, the PriceForecasterApi agent
returns the price time series to its client. Communication between AMIRIS and AMIRIS-

PriceForecast is handled by HTTP requests with data in JSON format using FastAPI2.
AMIRIS waits for the response message from the external model and then continues the
simulation.

2https://github.com/fastapi/fastapi
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Figure 2.7: Enhanced electricity price forecasting in AMIRIS by calling an external
forecasting model.

During a stress test (Nitsch, Sperber, et al. 2025), AMIRIS-PriceForecast was
called every simulation hour with a payload consisting of 16 time series, each contain-
ing 168 time steps. The communication overhead between the models had a minimal
impact on the overall runtime. The main cost driver is the execution of the ML predic-
tion itself. In general, a yearly AMIRIS simulation with hourly resolution takes about
20 seconds when using the external model, compared to just 10 seconds for a standard
run. If runtime of the model is critical, users can reduce the number of calls to AMIRIS-

PriceForecast by specifying an extension window that contains additional forecasted
time steps. If the realised electricity prices remain below the specified tolerance threshold,
PriceForecasterApi will fulfil the forecast requests using its internal memory.

Table 2.1 provides an overview of the forecast algorithms available in AMIRIS-

PriceForecast and accessible from AMIRIS. At the time of writing, there are three
“naive” models and two NN models. The first group are TimeShift models, which use
the last 1, 24 or 168 hours as a forecast and shift it into the future. If the requested
forecast horizon exceeds the last prices, they are propagated continuously. For example,
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when pT represents the price at time T , p̂T+h|T denotes the forecasted price at time T +h

which follows a 24 hour pattern:

p̂T+h|T = pT+h−24

There is also a SimpleNN model which consists of PyTorch (Paszke et al. 2019)
layers. The exact specification and depth can be parameterised using a flexible YAML

configuration file. Finally, there is a Transformer (Lim, Arık, et al. 2021) implemen-
tation based on the darts (Herzen et al. 2022) package. This architecture has proven
to be a powerful yet flexible algorithm for modeling future electricity markets (Nitsch,
Schimeczek, and Bertsch 2024). To account for forecast uncertainty through ensemble
forecasting, a common approach in practice, the model can be called multiple times to
generate individual forecasts. This then enables the application of probabilistic oper-
ational strategies. As the field of time series forecasting advances rapidly, AMIRIS-

PriceForecast was designed in such a way that adding new forecasting architectures,
such as TabPFN-TS (Hoo et al. 2025) is straightforward. Depending on the complexity
of the underlying energy system scenario, time series forecasting can be a challenging
task that demands detailed domain knowledge for selecting appropriate models and (hy-
per) parameters (Keles et al. 2016). Within this thesis, Paper III investigates anticipated
shifts in energy transition scenarios, focusing specifically on how electricity price dynamics
change in systems with significant shares of RE.

Table 2.1: Available forecast algorithms in AMIRIS-PriceForecast.

Name Description Probabilistic Features
TimeShift1 Predictor using last hour as forecast – Past Targets
TimeShift24 Predictor using last 24 hours as forecast – Past Targets
TimeShift168 Predictor using last 168 hours as forecast – Past Targets

SimpleNN Basic NN based on PyTorch (Paszke et al. 2019) – Past & Future Covariates
Transformer Temporal Fusion Transformer (Lim, Arık, et al. 2021) Yes Past & Future Covariates

Figure 2.8 shows the workflow used for automated ML training. In contrast to fo-

capy, this workflow extends the functionality by also generating synthetic training data
using AMIRIS-Scengen (see Section 2.2.3). Specifically, user-generated scenario tem-
plates are converted into actual AMIRIS simulation input files and prepared for training.
Then a ML of choice is trained within the AMIRIS-PriceForecast package. Finally,
both model and the scenario data are saved to disk.

2 Material and methods 20



F. Nitsch

Figure 2.8: AMIRIS-PriceForecast training workflow.

After model training is completed, it can be used for inference during an AMIRIS sim-
ulation. The associated workflow, shown in Figure 2.9, handles AMIRIS-PriceForecast

and the actual AMIRIS simulation. First, the trained model is loaded and the forecasting
service endpoint is set up. Second, the AMIRIS simulation is started, where the Price-

ForecasterApi agent can request external electricity price forecasts. Once the model
has run, all programmes, including the forecasting service endpoint, are shut down.

Figure 2.9: AMIRIS-PriceForecast inference workflow.

2.2.2 Model coupling and workflow management

Models in ESA are often specialised in a particular aspect or focus on a method. In
order to extend the capability and functionality of a model, we can use model coupling.
Model coupling can be achieved at different levels, ranging from loose/soft types (e.g. data
exchange) to tight/hard types (e.g. interconnected modules) (Yourdon and Constantine
1979). In this thesis, there are different implementations of model coupling, which are
outlined below.
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In the first paper (Nitsch, Deissenroth-Uhrig, et al. 2021) the ABM AMIRIS is cou-
pled with a dispatch optimisation model from the perspective of a storage operator trading
on the DAM and automatic Frequency Restoration Reserves (aFRR). In the second pa-
per (Nitsch, Wetzel, et al. 2024) a coupling between two comprehensive ESA models,
namely REMix (Wetzel et al. 2024) and AMIRIS, is implemented. For this, REMix

defines the power plant park from an optimal system perspective, while AMIRIS anal-
yses the performance of the Carnot battery storage. The technical component of such a
coupling is ideally performed by a workflow manager. In this thesis, the Python workflow
manager ioproc (Fuchs et al. 2020) is used for such tasks. It provides a powerful frame-
work for flexible coupled workflows, such as iog2x (Nitsch, Schimeczek, Wetzel, et al.
2023) which is also used in (Nitsch, Wetzel, et al. 2024).

2.2.3 Multi scenario analysis using AMIRIS-Scengen

Conducting multiple model runs enables comprehensive analysis of the scenario dynamics
and parameter sensitivity. However, this requires variation of the input data, which can be
tedious and error-prone when created manually. I have therefore developed the scenario
generator AMIRIS-Scengen (Nitsch, Frey, and Schimeczek 2023). AMIRIS-Scengen

is a lightweight Python package that runs with minimal requirements on Windows and
UNIX-based operating systems. It is designed for the electricity market model AMIRIS

(Section 2.1.1.1), but with little modification it could also be applied to other FAME

models (Section 2.1.1.2). As shown in Figure 2.10, AMIRIS-Scengen divides the work-
flow into dedicated tasks, facilitating integration with external programmes and enabling
model coupling (Section 2.2.2).

The core functionality of AMIRIS-Scengen is to randomly generate AMIRIS sce-
narios based on a user-defined set of rules, assess the plausibility of the scenarios, feed the
scenarios to AMIRIS where they are executed, and evaluate the final results. Specifically,
the user defines a scenario that allows parameters to be associated with certain keywords,
such as

• a random draw of discrete values of type string, integer or float,
• a random file path within a given directory,
• a random integer or float between a minimum and maximum value, or
• a fixed value.

In addition, agents and their associated contracts can be automatically added. Finally,
the user specifies the number of different scenarios to be generated. Reproducibility
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is ensured by a trace file that stores the random seed and a counter for the number
of scenarios generated, allowing AMIRIS-Scengen to assign a unique and traceable
identifier to each generated scenario. The generated scenario is passed to a pre-simulation
check (“Estimation” stage) where the user can define a set of rules that make certain
parameter configurations invalid. If this is the case, the current scenario is discarded
and a new scenario is generated. The valid scenarios are then passed to AMIRIS, which
performs the actual simulation. The processing of the result files is carried out in a post-
simulation check (“Evaluation” stage) where the user can define certain conditions for a
scenario, e.g. uncovered load due to missing electricity generation potential. Similarly to
the “Estimation” stage, scenarios that fail any of the tests are discarded. This workflow
ensures that the user can easily and reliably create numerous AMIRIS scenarios in a
flexible and convenient way, see also Figure 2.11. AMIRIS-Scengen is employed in
this thesis to generate training, test, and validation data sets for the paper on time series
forecasting (Nitsch, Schimeczek, and Bertsch 2024) and to conduct multi-scenario analysis
in preparatory work (Nitsch and Schimeczek 2024) for main Paper IV (section 3.4), which
assesses FOs potential (Nitsch, Schimeczek, and Bertsch 2025).

Figure 2.10: AMIRIS-Scengen model workflow showing the different modules and their
interactions (Nitsch, Frey, and Schimeczek 2023).
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Figure 2.11: Multi-scenario analysis using AMIRIS-Scengen.

2.3 Model calibration

Model calibration and back-testing are critical steps in the development of reliable an-
alytical tools for ESA. The accuracy and impact of any modelling approach depend
significantly on both the quality of the input data and the structural validity of the
model itself. Comparison with historical DAM results ensures that models can reproduce
historical patterns before being applied to future scenarios or policy assessments.

2.3.1 Data

This thesis uses open data sources primarily, adhering to the principles of transparency
and reproducibility of research. The AMIRIS-Examples data set (Nienhaus et al. 2025),
first published in 2022 and continuously updated since then, serves as the primary source
of AMIRIS data, providing comprehensive data under the Creative Commons Attribu-
tion 4.0 International (CC BY 4.0) licence. This data set integrates information from
several sources, including the European Network of Transmission System Operators for
Electricity (ENTSO-e), the German Electricity Market Data Platform (SMARD), the
Federal Statistical Office of Germany (Destatis), the Federal Ministry for Economic Af-
fairs and Climate Action (BMWK), the European Power Exchange (EPEX SPOT), and
the Austrian Power Grid (APG). The compilation includes key parameters for energy
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system modelling, including generation profiles across different technologies, temporal de-
mand patterns, installed power plant capacity, and costs. At the time of writing, the data
mainly covers the German and Austrian market zones and spans historical years from
2015 to 2019. The ongoing expansion efforts aim to include additional years and market
zones, which will further enhance the utility of the data set for a broader analysis and
long-term trend assessment (Nitsch, Schimeczek, Nienhaus, et al. 2025).

2.3.2 Benchmarking

Benchmarking against other established models is an effective way to understand the
specifics of a model and identify strengths and limitations, while promoting transparency
within the research community. The AMIRIS model was systematically compared with
the ASSUME market model (F. Maurer et al. 2024). This comparison showed that both
models can reproduce the dynamics on the German DAM with errors below 6.4 EUR/MWh.
The dispatch of power plants was also compared, where AMIRIS achieved a good fit of
the simulation results to the historical data from 2019. Additional AMIRIS back-testing
against historical data was performed for the German DAM (Nitsch, Deissenroth-Uhrig,
et al. 2021) and the Austrian DAM (Nitsch, Schimeczek, and Wehrle 2021). These vali-
dation analyses examine how accurately the model reproduces historical market clearing
prices and dispatch patterns when calibrated with historical input data. Both studies
identified specific areas for model refinement, in particular regarding the representation
of strategic bidding behaviour of FOs and RE operators in situations where negative prices
occurred in reality.
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3 Publications
This chapter provides a summary of the publications included in this cumulative the-
sis. The thesis comprises four research papers, three of which have been published in
peer-reviewed journals and one of which is currently under review. For each full paper,
Sections 3.1 to 3.4 provide bibliographic information. This includes an executive summary,
which differs from the individual abstract by providing targeted results without repeating
extensive general contextualisation. I then describe the contributions of myself and all
co-authors. These descriptions are in line with the contribution statements included in
the publications, but are more detailed in certain aspects. In addition, the journal arti-
cles are included in full text in their respective journal format1. Finally, in Section 3.5,
I elaborate on how the publications are connected and form a coherent overall structure,
contributing to the individual research targets identified in Section 1.2. For this, some
additional complementary papers are provided in the Appendix A (peer-reviewed) and
Appendix B (non-peer-reviewed).

1Abbreviations and reference numbering are specific to each individual article.
Additionally, the journal articles use American English while this thesis uses British English.
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3.1 Paper I: Economic evaluation of battery storage

systems bidding on day-ahead and automatic fre-

quency restoration reserves markets

Authors: Felix Nitsch, Marc Deissenroth-Uhrig, Christoph Schimeczek, Valentin Bertsch
Corresponding Author: Felix Nitsch
Journal: Applied Energy
Volume: 298
DOI: 10.1016/j.apenergy.2021.117267
Status: Published 23 June 2021
Licence: Open Access, CC BY 4.0
Executive Summary: In the transition to low-carbon electricity systems, not only
electricity generation but also frequency stabilisation must be managed through low-
carbon technologies. Battery storage systems offer a promising solution to address this
challenge, but uncertainties regarding their revenue potential can hinder investment. To
explore this, I used the agent-based electricity market model AMIRIS to simulate both
a DAM and an aFRR market, focusing on scenarios with high shares of REs. I first
back-tested the model using historical DAM data from Germany in 2019, finding that the
simulated mean DAM prices (39.20 EUR/MWh) were very close to the historical prices
(38.70 EUR/MWh), validating the model’s accuracy. I then modeled both markets for
2030, projecting higher average DAM prices than today, with 550 hours annually where RE
fully covers the load. The variance in prices was slightly higher than historically observed.
Bids for the aFRR market, based on the opportunity costs of not participating in the
DAM, showed prices of up to 45 EUR/MW for positive reserves, while prices for negative
reserves were 0 EUR/MW. When evaluating the revenue potential for battery storage, I
found improved economic prospects compared to 2019, with high-power battery systems
performing best. While improvements in round-trip-efficiency (RTE) had a marginal
impact on revenues, the DAM played an increasingly important role. Although the model
was demonstrated for Germany, it is modular and adaptable to international markets,
enabling comprehensive assessments of battery storage economics in diverse regions. This
study offers valuable insights to a potential future role of battery storage in electricity
markets.
Author Contributions: I am the lead author of this paper. I led the conception of the
article, including the methodology and the experimental design. I also led the software
development and created the novel implementation of the aFRR market in AMIRIS.
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I carried out the experiments and compiled a comprehensive data set for analysis. In
terms of visualisation, I designed several metrics and graphs to illustrate the results and
communicate our findings. Finally, I was responsible for writing the original manuscript.
Marc Deissenroth-Uhrig, a senior researcher at DLR at that time, contributed to both the
conceptualisation and the methodology. He also contributed to software development by
helping to debug certain modules in the code. Christoph Schimeczek, a senior researcher
at DLR, helped to validate and investigate the results. Valentin Bertsch, Professor at
Ruhr-Universität Bochum holding the Chair of Energy Systems and Energy Economics,
supervised the work on the paper. All three co-authors reviewed and edited the original
draft, improving the clarity and impact of the final manuscript.
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Economic evaluation of battery storage systems bidding on day-ahead and 
automatic frequency restoration reserves markets 

Felix Nitsch a,*, Marc Deissenroth-Uhrig b, Christoph Schimeczek a, Valentin Bertsch c 

a Department of Energy Systems Analysis, Institute of Networked Energy Systems, German Aerospace Center (DLR), Curiestraße 4, 70563 Stuttgart, Germany 
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H I G H L I G H T S  

• Implementation of reserves market in an agent-based electricity market model. 
• Evaluation of battery storage bidding on day-ahead market and reserves market. 
• Improved economic potential in German case study 2030 compared to 2019. 
• Main source of revenues shifts from reserves market to day-ahead market. 
• Highest revenues are found for short-term battery storages.  

A R T I C L E  I N F O   

Keywords: 
Energy system modeling 
Agent-based modeling 
Battery storage system 
Day-ahead market 
Automatic Frequency Restoration Reserves 
market 

A B S T R A C T   

In future electricity systems, not only electricity generation but also frequency stabilization must be provided by 
low-carbon technologies. Battery systems are a promising solution to fill this gap. However, uncertainties 
regarding their revenue potential may hinder investments. Therefore, we apply the agent-based electricity 
market model AMIRIS to simulate a day-ahead market and an automatic frequency restoration reserves market. 
Demonstrating the model setup, we chose a scenario with high shares of renewable energies. First, we back-test 
our model with historic market data from Germany in 2019. The simulation results’ mean day-ahead prices of 
39.20 EUR/MWh are close to the historic ones of 38.70 EUR/MWh. Second, we model both markets in a scenario 
for 2030. The simulated day-ahead market prices are higher on average than observed today, although, we find 
around 550 h/yr in which the load is fully covered by renewable energies. The variance in simulated prices is 
slightly higher compared to historic values. Bids on the reserve capacity market are derived from opportunity 
costs of not participating in the day-ahead market. This results in prices of up to 45 EUR/MW for positive reserve 
while the prices for negative reserve are 0 EUR/MW. Finally, we evaluate revenue potentials of battery storages. 
Compared to 2019, we see an improved economic potential and increased importance of the day-ahead market. 
High power battery storages perform best whereas improvements in round-trip efficiency only marginally 
improve revenues. Although demonstrated for Germany, the presented modular approach can be adapted to 
international markets enabling comprehensive battery storage assessments.   

1. Introduction 

Rising shares of fluctuating renewable energy (RE) ultimately lead to 
growing demand in flexibility options on various temporal scales. One 
prominent example is maintaining the frequency of power grids which is 
very sensitive to changes either in electricity demand or generation. 
There are various different mechanisms to ensure a stable frequency. In 

most countries, some kind of frequency restoration reserves markets are 
implemented to provide market-based system services. In Germany, for 
instance, the automatic Frequency Restoration Reserves (aFRR) – in 
combination with the Frequency Containment Reserves (FCR) and the 
manual Frequency Restoration Reserves (mFRR) – ensure frequency 
stabilization of the electricity system. At the moment, these markets are 
mostly supplied by conventional power plants and pumped hydro stor
ages [1]. In future electricity systems, this may become a challenge, as 
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there could be too little dispatchable capacity available. There are 
already discussions on the adaptation of the underlying power plant 
park and aFRR market design adjustments [2]. In theory, battery storage 
systems (BSS) are an attractive technology for maintaining grid fre
quency and participating in FCR markets and aFRR markets due to their 
short ramping times [3]. Hollinger, Diazgranados, & Erge [4] reviewed 
trends in the German FCR market concluding that the transition to 
distributed and renewable power plant infrastructure comes with op
portunities for BSS under the assumption of higher volatility of day- 
ahead (DA) prices due to higher shares of fluctuating generation ca
pacities. Nevertheless, there are currently hardly any significant BSS 
capacities providing balancing energy [1]. 

1.1. Regulatory and technical perspective 

Policy-wise, the European Commission [5] provides a guideline for 
balancing the pan-European electricity supply system. This contains 
principles for reservation and accounting of several different frequency 
reserves. In addition, a uniform method for frequency reserve activation 
should be established. The regulation affects transmission system op
erators, distribution system operators, as well as the regulatory au
thorities of the EU member states. Ocker, Ehrhart, & Belica [6] modeled 
future auctions on balancing markets while taking into account the 
proposals by the European Union. The results show that those auctions 
with uniform pricing lead to systematic underbidding of market par
ticipants compared to the present pay-as-bid pricing due to the repeti
tive nature of the bidding by an invariant supplier side. Looking at the 
operator level, several studies have already assessed the implications 
and revenue potential of BSS in different energy systems and case 
studies. Thorbergsson, Knap, Swierczynski, Stroe, & Teodorescu [7] 
investigated the application of Li-Ion BSS providing FCR and compared 
several different control strategies varying the state of charge (SOC) set 
point of the BSS. A different analysis looking at the impact of multiple 
operation strategies for BSS providing FCR is conducted in Fleer & 
Stenzel [8] showing measures such as SOC limits have significant impact 
on the operation characteristics and therefore the expected revenues. A 
multi-use BSS is simulated in Zeh, Mueller, Hesse, Jossen, & Witzmann 
[9] calculating the economic benefits of additional aFRR market 
participation with only minor effects on the aging of the BSS. Braeuer, 
Rominger, McKenna, & Fichtner [10] conducted a comprehensive 
analysis of a BSS participating in the FCR market, intraday market, and 
DA market while providing peak shaving for small and medium sized 
enterprises in Germany. They found, that in all scenarios the net present 
values are negative concluding that it is economically not attractive 
under the scenario assumptions to invest and operate in BSS. Xu, 
Oudalov, Poland, Ulbig, & Andersson [11] looked at control strategies 
for BSS providing FCR and compared the situation in Germany with a 

selected market in the USA also finding a more profitable situation in the 
latter. Many more studies concerning BSS in DA markets and reserve 
markets exist, e.g. Tian, Bera, Benidris, & Mitra [12], Vejdan & Grijalva 
[13], Hu, Sarker, Wang, Wen, & Liu [14]. 

Flexibility cannot only be provided by BSS, but by various technol
ogies. The most prominent one is pumped-hydro storage, such as 
described in Borsche, Ulbig, Koller, & Andersson [15], Doherty, Lalor, & 
O’Malley [16], Ela et al. [17], Kirby & Kueck [18], O’Sullivan, Power, 
Flynn, & O’Malley [19] and Wu, Lee, Cheng, & Lan [20]. There are 
studies on prosumers [21] which could also be active on reserve markets 
as presented in the case studies by Iria, Soares, & Matos [22] and Iria, 
Soares, & Matos [23]. Flexibility for the aFRR could also be made 
available by the aggregation of electric vehicles, as demonstrated in 
Ricardo J Bessa & Matos [24] and Ricardo Jorge Bessa & Matos [25] and 
Vatandoust et al. [26]. Other technologies are also investigated for their 
application for flexibility such as solar plants and BSS [27], gravity 
storage systems [28], hydropower [29], spinning reserves [30]. 

1.2. Modeling perspective 

Modeling and evaluation of these applications has a long record in 
research. Important works have been conducted regarding the bidding 
on energy markets. Swider & Weber [31] present a methodology for 
actors bidding on multiple electricity markets under price uncertainty, 
explicitly including pay-as-bid reserve markets, by maximizing a sto
chastic non-linear objective function of expected profit. The specifics of 
sequential bidding in DA markets and reserve markets is addressed in 
Swider [32], whereas simultaneous bidding on the same markets is 
described in Swider [33]. Regarding the price mechanisms and in
teractions between DA markets and reserve markets, Chao & Wilson 
[34] present an assessment concluding that the separation of power bids 
and energy bids is essential for an efficient market design. Mazzi, 
Kazempour, & Pinson [35] look at bidding strategies in electricity 
markets where pay-as-bid remuneration schemes are implemented 
presenting a two-stage stochastic problem as a mixed-integer and linear 
problem. A fundamental analysis of the German balancing power mar
kets is compiled in Müsgens, Ockenfels, & Peek [36] where the authors 
identify the scoring and settlement rules, which are based on the work of 
Chao & Wilson [34], as key elements of the market design. Loesch, 
Rominger, Nainappagari, & Schmeck [37] investigate the impact of 
energy prices in the German aFRR market on the probability of reserve 
energy activation and therefore the revenue potential based on historic 
market data from 2012 to 2016. Fleer et al. [38] analyze a BSS active on 
the German FCR market finding that the investigated bidding strategies 
do not have any significant influence on the profitability of BSS owners, 
whereas the development of FCR prices and BSS costs are crucial for the 
economic feasibility. The implementation of bidding strategies into 
models can be accomplished by several different techniques such as 
stochastic optimization [39], multi-stage stochastic optimization [40], 
probabilistic optimization [41], non-linear optimization [42], bi-level 
optimization [43], fuzzy optimization [44], evolutionary program
ming [45] and dynamic programming [46]. While most of these models 
apply some kind of optimization model, we use an agent-based modeling 
(ABM) approach. ABM puts the actors, their interactions and their 
environment to the center of the simulation. Thus, ABM allows for 
assessing the challenges of the energy transition taking the behavior of 
actors into account (Tesfatsion [47], Deissenroth, Klein, Nienhaus, & 
Reeg [48]). Additionally, ABM enables the researcher to look at the 
system’s perspective and conduct analyses on energy system trans
formation pathways. 

There are various studies investigating how future energy systems 
with a large reduction in green-house gas emissions could be achieved 
specifically taking into account the characteristics of BSS, such as 
Stiphout, De Vos, & Deconinck [49], Alqurashi, Etemadi, & Khodaei 
[50], Wierzbowski, Lyzwa, & Musial [51], Belderbos, Virag, D’hae
seleer, & Delarue [52], Limpens, Moret, Jeanmart, & Maréchal [53]. 

Nomenclature 

ABM Agent-based electricity market model 
AMIRIS ABM developed at the German Aerospace Center 
aFRR automatic Frequency Restoration Reserves 
BSS Battery storage system 
DA Day-Ahead (market) 
Dspat Spatial differentiation 
Dtech Technical differentiation 
Dtemp Temporal differentiation 
E2P Energy-to-power (ratio) 
FCR Frequency Containment Reserves 
mFRR manual Frequency Restoration Reserves 
RE Renewable energy 
SOC State of charge  
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However, they are missing the spotlight on the individual actor who is 
responsible for investing in new technologies, such as BSS. Investments 
in the energy system are characterized by significant expenditures 
resulting in long depreciation periods. It is therefore important to 
consider the perspective and revenue potential of an individual actor in 
order to estimate how investments in e.g. BSS could be refinanced on the 
markets. Existing literature mostly covers only a single market [54], 
small regions in remote areas [55], or peer-to-peer systems [56] when 
assessing the profitability of BSS. Different incentives for regulated 
versus market-driven BSS installations and their remuneration is 
described in Huang, Xu, & Courcoubetis [57]. 

1.3. Novelty of the present paper 

The aim of this paper is to assess the economic potentials of a pri
vately owned BSS which is active on the DA market and the aFRR market 
using synergies when serving both markets [58]. As described in the 
previous section, existing literature often applies different types of 
optimization models for analyzing wholesale electricity markets. In our 
opinion, however, such approaches cannot adequately account for the 
liberalized character of todays’ electricity markets. Our fundamental 
electricity market model simulating the two markets and their in
teractions, therefore follows no overall objective function as used in 
optimization models. Instead, we can account for the outcome caused by 
the actions of individual actors participating in these markets which is 
much closer to actual market situations. Subsequently, the revenues and 
possible applications of a BSS operator in a future scenario will be 
determined and applied to a case-study simulating a whole market re
gion rather than only a small test-region. An additional novelty of the 
present study is the combined modelling of the DA market and aFRR 
market following a model-within-model approach. This means that we 
integrate an optimization model for the revenue maximization of an 
individual BSS operator with a fundamental ABM simulation approach 
depicting the German electricity market. The two markets are explicitly 
modelled and the respective bidding and agent’s behavior is imple
mented according to market theory described in detail in Section 2.1. 
Compared to the existing literature, our integrated assessment enables 
us to fundamentally model the market situation of future electricity 
markets. We derive the question of how the market situation is changing 
with increasing shares of RE and how it will affect the economic po
tential of BSS. Therefore, we set up a back-testing scenario and a future 
scenario in which agents participate on the DA market and aFRR market 
based on their marginal or opportunity costs, respectively. Hence, we 
simulate the prices on both markets. Subsequently, we evaluate the 
economic potential of BSS operators in order to assess their revenue 
potential. With some adaptations, the developed approach can be used 
to account for different market specifications and is therefore relevant 
for a wide international audience. The remainder of the paper is struc
tured as follows. In Section 2, we describe our method and the data used. 
In Section 3, we elaborate the main findings consisting of the prices on 
the DA market and aFRR market as well as the revenue potential of a BSS 
operator on these markets. In Section 4, we compare our results with 
similar assessments in the literature and discuss the limitations of the 
presented approach. In Section 5, we conclude and give an outlook on 
future expansion and model developments. 

2. Methodology and data 

In order to investigate the market situation in a future energy system, 
we deploy two different kinds of models. The agent-based electricity 
market model AMIRIS simulating future electricity markets is presented 
in Section 2.1, whereas the linear optimization model depicting the BSS 
is described in Section 2.2. The back-testing scenario and the scenario 
for 2030 are outlined in Section 2.3 and Section 2.4, respectively. 

2.1. Electricity market simulation model 

The ABM AMIRIS [48] was developed to investigate the integration 
of renewable power plants in electricity markets. The behavior of indi
vidual prototyped groups of actors can be considered under different 
framework conditions such as varying market design or different 
remuneration schemes. In contrast to equilibrium and optimization 
models, there is no superordinate, centrally specified objective function 
that, e.g. minimizes system costs. Instead, the focus of the bottom-up 
model is on the actors of the electricity system represented as agents 
with their objectives and options for action. In AMIRIS, the relevant 
actors (e.g. direct marketers of RE plants or storage operators) are rep
resented as prototypical agents [59]. Their microeconomic decisions are 
based both on the assessment of electricity market prices and generation 
forecasts. These are associated with uncertainties and the consideration 
of current support instruments for RE (variable and fixed market pre
miums or capacity premiums). The bids of the agents result in simulated 
market prices. For example, AMIRIS can be employed to examine the use 
of storage technologies in the electricity market from a business 
perspective. The central market in AMIRIS is the DA market, where an 
hourly market clearing of the power supply bids and demand bids is 
carried out resulting in simulated electricity prices. Conventional power 
plant owners place their bids with their marginal costs which are 
determined by fuel prices, CO2 prices, technology-specific efficiencies 
and other variable costs. The DA electricity price results from the 
intersection of sorted supply bids and demand bids. A detailed 
description of the methodology of AMIRIS can be found in Deissenroth 
et al. [48] and Table A4. As elaborated in Section 1.3, we present a novel 
work of further developing and enhancing AMIRIS by the implementa
tion of the aFRR market, which extends the possibility to generate rev
enues for the power plant operators. These actors can sell their flexible 
power generation either on the DA market or the aFRR market and aim 
to maximize their profit. The bidding behavior is fundamentally 
modeled and based on the technology-specific marginal costs of elec
tricity generation. It is based on a theoretical comparison of the potential 
revenues on the DA market and those on the aFRR market [36]. 
Participation in the aFRR market is remunerated for reserving power 
(positive and negative) and for the actual provision of energy (positive if 
frequency below 50 Hz and negative if frequency above 50 Hz). The 
corresponding opportunity costs are calculated for the four products of 
the aFRR market (positive & negative power prices and positive & 
negative energy prices) as seen in equations (1) to (4). The calculation of 
the opportunity costs of the power prices requires an assessment of 
whether the power plant’s offered output can be provided at prices less 
than or equal to the forecasted DA exchange price pforecast (i.e. infra- 
marginal state), or whether it must be generated at higher prices 
(extra-marginal state). The aFRR market bids are calculated as follows: 

Bidpower,pos =

⎧
⎪⎨

⎪⎩

pforecast − c, c ≤ pforecast

(
c − pforecast

)
*
Powermin

Powerpos
, c > pforecast

(1)  

Bidpower,neg =

⎧
⎪⎨

⎪⎩

0, c ≤ pforecast

(
c − pforecast

)
*
(
Powermin + Powerneg

)

Powerneg
, c > pforecast

(2)  

Bidenergy,pos = c (3)  

Bidenergy,neg = 0 (4) 

With Bidpower,pos,Bidpower,neg as the power bids for positive and negative 
aFRR in EUR/MW, Bidenergy,pos,Bidenergy,neg as the energy bids for positive 
and negative aFRR in EUR/MWh, pforecast as the forecasted DA market 
price in EUR/MWh, c as the marginal cost of generating electricity in 
EUR/MWh, Powermin as the minimum power generation of the power 
plant in MW and Powerpos,Powerneg as the offered positive and negative 
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power in MW used to determine power prices and energy prices. 
The bidding logic process was implemented as shown in Fig. 1 and 

consists of three main phases: preparation, market activities and eval
uation. In the beginning, the forecasts for the DA market are received. 
Based on the expected market participation, any missing capacity to 
achieve the must-run capacity is determined and results in bids at 
minimum prices to ensure that the must-run capacity is met. The aFRR 
bids are then formulated on the basis of equations (1) to (4). In the next 
phase, the market clearing of the aFRR market, both for the required 
positive and negative power, takes place. Once the bids are awarded on 
the aFRR market, they are evaluated in the final phase. This includes the 
adaptation of DA market bids corresponding to the awarded bids on the 
aFRR market in order to comply with the power plant’s capacities. Final 
DA market bids are then forwarded to the DA market where a market 
clearing takes place determining the electricity prices. In the simulation, 
the described procedure is executed for each simulated hour. 

Finally, the results of AMIRIS are price time series of the DA market 
and aFRR market depending on the available capacity of the technolo
gies as well as the corresponding dispatch profiles of the power plants. 
These results are used in the optimization model as described in the 
following section. The presented electricity market model is currently 

representing the situation in Germany. However, it can also be applied 
to assess other international markets. This may necessitate minor ad
justments in order to meet different market specifics, such as modifi
cations to the market clearing mechanisms. The method of agent-based 
modeling and the object-oriented structure of the model enables re
searchers to accomplish the required changes with little effort. 

2.2. Battery storage system optimization model 

While the energy system model AMIRIS (Section 2.1) focuses on the 
electricity system from the system’s perspective, we also set up an 
optimization model representing the market situation from the business 
perspective of a BSS operator. In other words, we apply a linear opti
mization model to evaluate the economic performance of a BSS in the 
presented scenario. The model is designed to find the optimal operation 
strategy of the BSS on the DA market and aFRR market under consid
eration of perfect foresight. The price time series are therefore used as 
input data in the optimization model. The BSS is constrained by tech
nical specifications, such as charging and discharging efficiencies, 
ramping restrictions, and its state of charge. The optimization model is 
implemented as a mixed integer programming model in GAMS [60] 

Fig. 1. Schematic bidding procedure of power plants participating in the aFRR market and DA market in the agent-based electricity market model AMIRIS.  
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using the CPLEX solver [61]. It is assumed that the BSS is prequalified for 
trading on the DA market and aFRR market aiming to maximize its total 
revenue under perfect foresight over the observation period of one year. 
The function 

RevenueTotal =
∑8760

i=1
RevenueDA,i +RevenueaFRR,i (5) 

describes the total revenues consisting of the summed revenues in 
hour i in the two markets which the storage operator tries to maximize. 
The revenues from trading on the DA market are defined by 

RevenueDA,i = pDA,i*(EnergyDA Sell,i − EnergyDA Buy,i) (6) 

with pDA,i as the price at the DA market, EnergyDA Sell,i as the energy 
sold at the DA market and EnergyDA Buy,i as the energy bought at the DA 
market in hour i. 

The revenues from the aFRR consist, on the one hand, of the income 
from the provision of power RevenueaFRR,Power,i in positive or negative 
direction 

RevenueaFRR,Power,i = paFRR,Power,positive,i*PoweraFRR,positive,i 

+ paFRR,Power,negative,i*PoweraFRR,negative,i (7) 

which are awarded with the prices paFRR,Power,positive,i and 
paFRR,Power,negative,i assuming that the BSS places its bids at the same price as 
the most expensive power plant which is still in the market; on the other 
hand, the revenue ReveueaFRR,Energy,i from the actual energy flows 

ReveueaFRR,Energy,i = paFRR,Energy,positive,i*EnergyaFRR,positive,i 

+ paFRR,Energy,negative,i*EnergyaFRR,negative,i (8) 

which is awarded with the prices paFRR,Energy,positive,i and paFRR,Energy,negative,i 

when reserve capacities are actually called.By its specifications, the BSS 
is equipped with technical parameters that characterize its performance. 
First of all, the state of charge (SOCi) must at no hour i fall below the 
minimum SOCmin or exceed the maximum SoCmax at any time. 

Accordingly, the following condition 

SOCmin ≤ SOCi ≤ SoCmax (9) 

applies for each hour of the optimization. Participating and trading 
on the DA market or the aFRR market has a direct effect on the SOCi 

which is represented in 

SOCi = SOCi− 1 − EnergyDASell ,i +EnergyDA Buy,i − EnergyaFRR,positive,i 

+EnergyaFRR,negative,i (10) 

where the SOCi is updated every time step i. At the beginning of the 
optimization, the battery is half charged. Additionally, a ramping con
dition depicted by 

∀Energyi ≤
SOCmax

E2P
(11) 

applies. This means, that all energy flows ∀Energyi, i.e. all purchases 
or sales on both markets, are subject to the maximum output rate. The 
energy-to-power (E2P) ratio indicates the charge or discharge in relation 
to its maximum capacity SOCmax. A BSS with an E2P ratio of 1 is fully 
charged in one hour from an empty state or can deliver full power for 
1 hour, provided that it was originally fully charged. At an E2P ratio of 
10, this would mean 10 h of charging or 10 h of continuous power. 
Therefore, the smaller the E2P ratio, the more suitable the storage is for 
short-term deployment. Battery degradation has not been considered in 
this model since the effect is expected to be very minor when inter
preting the results of a single simulation year. Self-discharge has also not 
been considered in this work since the timescale of relevant self- 
discharge is in the order of months and thus much longer than the 
time interval of typical battery storage use in the order of days. A binary 
constraint prohibits the BSS from simultaneous charging and discharg
ing in the same hour. 

Finally, the optimization algorithm tries to find the best operating 
decision in each hour to maximize the operating result in the whole year 

max{RevenueTotal|conditions (9) to (11) } (12) 

while considering the restrictions defined in (9) to (11). We do not 
consider other operational costs, taxes, costs of market participation, nor 
prequalification costs in the presented assessment. A description of the 
full parameterization of all input variables to the BSS model can be 
found in the Appendix in Table A7. 

2.3. Back-testing scenario 2019 

Back-testing is an important method for evaluating the outcome of 
energy systems models. That is why we have set up a reference scenario 
for Germany in 2019 in order to compare simulated prices to historic 
ones. The power plant park is listed in Table 1. Despite already high 
shares of RE plants in Germany, electricity generation is still dominated 
by fossil-based generators [62]. 

Historic electricity prices at the DA market, load data including im
ports and exports as well as RE generation are derived from the SMARD 
data platform which is hosted by the Bundesnetzagentur [63]. European 
Emission Allowances were taken from the EEX [64] and used for CO2 
price information. Fuel price indices are used from the monthly reports 
from the Federal Statistical Office of Germany [65]. The full list of model 
parameters is described in the Appendix in Table A5. 

2.4. Scenario 2030 

In order demonstrate the feasibility of the developed approach, we 
decided to define a case study for Germany in 2030. However, the model 
set-up can also be parameterized to serve similar international elec
tricity markets. The presented scenario follows the results of the simu
lations in a study on the macroeconomic effects of the energy system 
transformation in Germany in Lutz et al. [66]. This study aims for an 

Table 1 
Installed power plant capacities in Germany at the end of 
2018 [62]  

Technology GWinst 

Nuclear 9.5 
Lignite 20.9 
Hard coal 23.8 
Natural gas 23.8 
Other non-renewable 10.1 
Pumped hydro storage 9.7 
Run-of-river 3.8 
Biomass 7.7 
Wind onshore 50.3 
Wind offshore 5.4 
PV 42.3  

Table 2 
Installed power plant capacities in the presented scenario for Germany derived 
from  

Technology Installed Power in GW 

Nuclear 0 
Lignite 9 
Hard coal 11 
Natural gas 53 
Other non-renewable 5 
Storage 8 
Run-of-river and hydro storage 6 
Biomass 6 
Wind onshore 58 
Wind offshore 15 
PV 73  
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electricity system with almost 85% CO2 reduction in 2050 compared to 
1990 and describes a pathway to this goal. The power plant park was 
derived from the scenario year 2030. The structure of the power plant 
park is listed in Table 2. There are significant capacities of photovoltaics 
(PV) and wind power (onshore and offshore) installed. 60% of the yearly 
total energy demand of 539 TWh is supplied by RE technologies. A 

complete nuclear-phase out is already accomplished, whereas 11 GW of 
hard coal and 9 GW of lignite powered plants are still in service. The 
price for one ton of emitted CO2 is defined at 35 EUR/t. The market 
premiums for RE are assumed to be variable under the current legal 
framework. Accordingly, the amount of the premium is adjusted 
monthly according to the market values of the respective technology. 

An overview of all model-related assumptions and input parameters, 
such as fuel prices, specific emissions, power plant availability, eco
nomic factors and storage parameters can be found in the Appendix in 
Table A6 for the AMIRIS model and in Table A7 for the BSS optimization 
model. 

In the presented market model, no electricity transmission grid is 
considered. Therefore, the regulation of generation plants is only based 
on economic principles and not caused by the grid restrictions. The net 
frequencies and the required power for frequency stabilization are not 
simulated, but are exogenously derived from historic data. We estimated 
the demand for positive and negative aFRR with 1.7 GW each which is 
based on historic averages for the German aFRR market [67]. For the 
supply side, the total capacity of each technology which participates in 

Table 3 
Capacities of technologies supplying the German aFRR market and total German 
aFRR demand as defined for the 2030 scenario    

Positive aFRR in GW Negative aFRR in GW 

Supply Hard coal 0.2 0.2 
Lignite 0.1 0.1 
Gas 3.6 3.2 
Oil 0.4 0.2 
Hydro power 6.6 8.4  
RE (Wind/PV/ 
Biomass) 

7.6 7.6 

Demand Total power requested 1.7 1.7  

Fig. 2. Comparison of simulated and historic day-ahead price-duration curves.  

Fig. 3. Monthly positive aFRR capacity prices, showing the median, 1st, and 3rd quartile.  
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the aFRR is shown in Table 3. We estimated the share of total installed 
capacities which can theoretically supply aFRR based on Hasche et al. 
[1] and for wind, PV and biomass from Spieker, Kopiske, & Tsatsaronis 
[68]. In the present market simulation, we have integrated an hourly 
bidding procedure. This is a simplification, since in reality on the 
German aFRR market, bids had to be submitted on a weekly, or – after 
changes in market design in 2018 [69] – daily basis. This adaptation had 
to be made in order to keep the problem solvable in the AMIRIS model. 
We expect, however, additional adjustments in the future which will 
likely introduce an even more short-term tender for the required aFRR. 

3. Results 

The following results are divided in Section 3.1 where we describe 
the outcomes of the back-testing of AMIRIS whereas in Section 3.2 we 
present the result of the scenario for 2030. 

3.1. Results back-testing scenario 2019 

The simulated and historic DA prices are plotted in Fig. 2 for the year 
2019 as price-duration curve. When comparing to historic prices, we 
observe a higher price level for simulated prices. The mean price is 
38.70 EUR/MWh for the historic prices and 39.20 EUR/MWh for the 

Fig. 4. Annual revenues per storage capacity of the BSS operator on the DA market and aFRR market based on 2016 historic market data (left), a simulated market 
for 2019 (middle) and the 2030 scenario (right). 

Table A4 
Model characteristics of AMIRIS; *Dtemp, Dtech, Dspat - temporal, technological, 
spatial differentiation.  

Model name AMIRIS - Agent-based market model for the investigation of 
renewable and integrated energy systems 

Author 
(Institute) 

German Aerospace Center (DLR), Institute of Networked Energy 
Systems 

Model type Agent based electricity market model 
Technical 

focus 
Electricity market, use of renewable energies under regulatory 
framework conditions at actor level 

Geographic 
focus 

Germany 

Spatial 
resolution 

Single bidding zone 

Temporal 
resolution 

Hourly 

Input 
parameters  

Dtemp Dtech Dspat  

• Costs (fixed and variable) for 
investment operators and direct 
marketers 

x x   

• Power plant efficiencies x x   
• General market conditions x x   
• Fuel prices and CO2 certificate prices x x   
• Load profile x    
• Power plant park (conventional and 

renewable) 
x x  

Output 
parameters  

• Profiles of storages under different 
operation strategies 

x x   

• Profiles of RE plants under different 
regulatory frameworks 

x x   

• Electricity prices x    
• Revenues of direct marketers x x   
• Operational costs and emissions x x   

Table A5 
Input parameters to the ABM AMIRIS in the back-testing 2019 scenario   

Parameter Value Unit Note 

Fuel prices Nuclear 3.03 EUR/ 
MWh 

Federal Statistical 
Office of Germany 
[65] Gas 27.29 EUR/ 

MWh 
Lignite 5.00 EUR/ 

MWh 
Hard coal 7.86 EUR/ 

MWh  
Oil 30.70 EUR/ 

MWh  
Specific emissions Nuclear 0 tCO2/ 

MWh  
Gas 0.202 tCO2/ 

MWh  
Lignite 0.364 tCO2/ 

MWh  
Hard coal 0.341 tCO2/ 

MWh   
Oil 0.267 tCO2/ 

MWh  
Availabilities Nuclear 85 %   

Gas 97 %   
Lignite 98 %   
Hard coal 96 %   
Oil 93 %  

Minimum and 
maximum 
efficiencies 

Nuclear 33.0 – 
33.0 

% Open Power 
System Data [81] 

Gas 27.6 – 
61.2 

% 

Lignite 31.3 – 
43.1 

% 

Hard coal 28.5 – 
49.0 

%  

Oil 30.5 – 
39.7 

%  

Technical 
parameters of 
storage 
technologies 

E2P  5 h  
Charging 
efficiency 

87 %  

Discharging 
efficiency 

87 %  

Forecast 
period 

168 h  

Planning 
period 

24 h   
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simulated ones. Especially for lower prices, AMIRIS tends to over
estimate the prices. This effect can be explained by the fact that AMIRIS 
does not incorporate ramping and start-up costs of power plants in a 
bottom-up manner. Prices in the mid-range are simulated more accu
rately. In hours of high demand we find a higher level of prices in the 
simulation compared to the historic observations. The standard devia
tion is 10.60 EUR/MWh in the historic case compared to 11.50 EUR/ 
MWh in the simulated scenario. The remaining deviations may be 
caused by costs for ramping power plants or due to missing depiction of 
block-bids in the current AMIRIS model. The correlation of the two price 
time series is 0.81. 

3.2. Results scenario 2030 

Besides the power plant dispatch, the main outputs of the AMIRIS 
model are the simulated price time series. Specifically, we derive a price 
time series for the DA market with 8760 h. The mean simulated DA price 
is 63 EUR/MWh. The price deviation is 12 EUR/MWh and therefore 
slightly higher compared to prices from 2015 to 2019 where prices 
deviated with 11 EUR/MWh around the mean of 35 EUR/MWh. 

Fig. 3 shows the capacity prices in EUR/MW for positive aFRR as 
boxplots for each month of the modeled scenario year 2030. We have 
refrained from comparing the simulated aFRR prices with 2019, as the 
recent changes in German aFRR market regulations mean that this is no 
longer viable. Instead, as described in Section 2.1, we have applied the 
theory according to Müsgens et al. [36]. A high variability of aFRR 
prices can be observed in January, February, and April; whereas espe
cially the summer months June, July, and August have the lowest mean 
and additionally the smallest deviation of prices. This effect may be 
explained by the interplay with the DA market where lower prices are 
usually also found in summer. The maximum prices are around 45 EUR/ 
MW. 

Regarding the negative aFRR capacity prices and following the the
ory of equation (2) described in Section 2.1, we observe prices of 0 EUR/ 
MW. This means, that power plants with marginal costs below the 
forecasted DA market price can fully supply the negative aFRR capac
ities leading to this result. 

In additional calculations, we altered the required demand from 
currently 1.7 GW to 2 GW in a “High demand” scenario, and to 1.4 GW 
in a “Low demand” scenario. These variations should account for the 
uncertainty of future aFRR demand and their effect on prices. However, 
these alterations did not change the prices significantly since the ca
pacities are sufficient to meet the demand for the aFRR. Therefore, these 
results are not described in more detail. 

While AMIRIS focuses on the whole electricity system, we can get 
insights in the situation for the BSS operator using our optimization 
model, which is described in Section 2.2. We use the price time series 
from the AMIRIS model as input to the optimization model and calculate 
the optimal BSS operation strategy. We assume that the BSS, which 
operates under perfect foresight, calculates its bids at the same price as 
the highest power plant which is still in the market. This leads to the 
identification of an upper limit regarding the revenue potential of the 
BSS operator. The results in the present scenario, however, disclose a 
very competitive situation on the DA market and aFRR market with 
overall low revenue margins for the BSS operator. Fig. 4 shows the 
annual revenues of a BSS on both markets with E2P ratios between 1 and 
10 and a fixed roundtrip efficiency of 85% in three different situations. 
We compared the results from the presented scenario 2030 to revenue 
evaluations based on historic market data from 2016, and to the 2019 
market simulations as presented in Section 3.1. 

The analysis for the historic market data 2016 shows the highest 
annual revenues. Although the power plant park has not significantly 
changed from 2016 to 2019, we observe reduced economic revenue 
potentials in the simulated market 2019. This indicates that prices on the 
aFRR market are probably not fully described by the theory as stated by 
Müsgens, Ockenfels, & Peek [36], see Section 2.1, and the simulation is 

Table A6 
Input parameters to the ABM AMIRIS in the 2030 simulation scenario   

Parameter Value Unit Note 

Fuel prices Gas 27.0 EUR/ 
MWh 

Lutz et al.  
[66]  

Lignite 6.0 EUR/ 
MWh  

Hard coal 9.0 EUR/ 
MWh  

Oil 112.5 EUR/ 
MWh 

Specific emissions Gas 0.202 tCO2/ 
MWh  

Lignite 0.364 tCO2/ 
MWh  

Hard coal 0.341 tCO2/ 
MWh  

Oil 0.267 tCO2/ 
MWh  

Availabilities Gas 97 %   
Lignite 98 %   
Hard coal 96 %   
Oil 93 %  

Minimum and 
maximum 
efficiencies 

Gas 27.6 – 
61.2 

% Open Power 
System Data  
[81] Lignite 31.3 – 

43.1 
% 

Hard coal 28.5 – 
49.0 

% 

Oil 30.5 – 
39.7 

% 

Technical parameters 
of storage 
technologies 

E2P  5 h  
Charging 
efficiency 

87 %  

Discharging 
efficiency 

87 %  

Forecast period 168 h  
Planning 
period 

24 h   

Table A7 
Input parameters to the BSS optimization model   

Parameter Value Unit Notes 

Time series DA prices, 
historic 2016 

Timeseries EUR/ 
MWh 

Bundesnetzagentur  
[63] 

DA prices, from 
AMIRIS 

Timeseries EUR/ 
MWh 

Power prices 
aFRR market, 
historic 2016 

Timeseries EUR/ 
MW 

Power prices 
aFRR market, 
from AMIRIS 

Timeseries EUR/ 
MW 

Energy prices 
aFRR market, 
historic 2016 

Timeseries EUR/ 
MWh 

Energy prices 
aFRR market, 
from AMIRIS 

Timeseries EUR/ 
MWh 

Technical 
parameters 
of BSS 

Minimum SOC 0 MWh  
Maximum SOC 1 MWh  
Initial SOC 0.5 MWh  
E2P  1–10 h  
Charging 
efficiency 

[92.20, 
93.54, 
94.87] 

%  

Discharging 
efficiency 

[92.20, 
93.54, 
94.87] 

%  

Forecast 8760 h  
Planning period 8760 h   
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probably lacking to account for strategic bidding. The distribution of 
revenues between the DA market and aFRR market, however, is very 
similar. When looking at the situation in the scenario 2030 we find that 
total revenues are higher compared to the simulated market 2019, but 
still considerably lower than in the historic market data 2016 situation. 
Yet, the revenues from the DA market increase strongly until 2030 
because of higher fluctuations in DA prices, leading to a major shift for 
the primary source of revenues towards the DA market in the scenario 
2030. In other words, we hardly see any significant revenues from the 
aFRR market in the scenario 2030 since the BSS is mainly active on the 
DA market. The revenue split between the DA market and aFRR market 
is therefore significantly different in the 2030 scenario compared to the 
historic case (2016 and 2019). In the latter, the revenue share on the 
aFRR market ranges between 77% (for E2P = 1) to 27% (for E2P = 10) 
meaning that more short-term BSS generate more revenues from 
providing system services such as aFRR. The picture is different for the 
scenario 2030 in which we observe hardly any significant revenue from 
the aFRR market. This is contradictory to the study by Ela et al. [70] who 
state that system services may become a greater proportion of revenue 
sources. 

Generally, assuming a fixed BSS capacity, the smaller the E2P ratio, 
the higher the expected yearly revenues. This is caused by short-term 
fluctuations of prices which favor short-term BSS (smaller E2P ratio). 
Calculations with different roundtrip efficiency levels showed that an 
increase in the roundtrip efficiency of one percentage point generates 
approximately 2.5% additional revenue for the BSS operator when 
operating on the DA and aFRR market. 

Our results show a very challenging situation for BSS operators in the 
future scenario for 2030. Although the BSS operator acts under perfect 
foresight, one cannot expect revenue opportunities as observed in 2016. 
This low expected profitability may lead to reduced private investments 
in BSS. In case BSS are identified as an essential part of future energy 
systems [71] investors would need access to additional, more profitable 
markets or require further incentives to build flexibility options, such as 
BSS. 

4. Discussion 

4.1. Limitations of the modeling approach 

The following points should be considered when applying the pre
sented modeling approach and drawing conclusions from the results. 
First, the presented analysis does not consider all possible technologies 
for the provision of flexibility on the aFRR market, but uses only those 
listed in Table 3. For example, demand response or dispatchable loads of 
large consumers (e.g. industry) are not modeled. Similarly, there is 
neither Power-to-X nor a high penetration of electric vehicles imple
mented. Theoretically, these technologies expand the available capacity 
for frequency stabilization and could thus have an impact on prices at 
the DA market and aFRR market. However, they may require regulatory 
adaptations, which would allow them to participate at ancillary markets 
such as the aFRR market. Second, due to the downstream setup of the 
optimization model, the power supply of the modeled BSS has no in
fluence on the coverage of the required quantity for frequency stabili
zation in the AMIRIS model. In the presented scenario, however, the 
simulated BSS has no system-relevant size. Therefore, we estimate the 
influence of the considered BSS operator as minimal on the change of the 
power prices. However, we do see the necessity of additional analyses in 
future work addressing the interplay of actors and their feedback on the 
prices. Regarding the implications of strategic bidding, Maaz [72] found 
that market participants add markups to their bids which can deviate 
from their marginal costs. Ocker, Ehrhart, & Ott [73] made an analysis 
of bidding strategies in the German and Austrian balancing markets, 
finding that the expected profits of the energy bid are taken into 
consideration for the calculation of the optimal power bid. Also Merten, 
Rücker, Schoeneberger, & Sauer [74] describe a comparison of different 

statistical approaches taking the acceptance probability of German aFRR 
bids into account. These issues may be addressed in future work to 
investigate the impacts on the prices and revenue potentials. Third, since 
the future demand for balancing power is very difficult to estimate, 
several variations of the required reserve power were assumed. How
ever, only the quantity of required power, both positive and negative, 
was changed, but not the energy actually demanded. These quantities 
are difficult to project fundamentally, as they are very difficult to model 
and would require at least a basic implementation of the electricity grid, 
forecasting errors regarding load and generation as well as a represen
tation of outages of power plants and power consumers. For these rea
sons, historic data on called energy is used for the analysis in this study. 
Fourth, the BSS in our test setup has access to the DA market and the 
aFRR market, as described in Section 2.2. However, BSS are also suitable 
for use in more short-term markets such as the Intraday market or FCR 
market due to their very fast response time [3]. However, these markets 
require a very high temporal resolution which currently cannot be 
modeled with AMIRIS. At the moment, we can conduct calculations on 
an hourly basis as described in Section 2.1. For this assessment, the 
aggregation of short-term markets to hourly values is not meaningful 
and would not achieve reasonable results. Alternatively, BSS can be 
active on mFRR markets competing with other large-scale power plants 
but also more innovative solutions such as virtual power plants or load 
shifting technologies in industry. The lack of these potential additional 
sources of income (FCR, Intraday, mFRR), however, could improve the 
economic situation in favor of the BSS operators. Fifth, the optimization 
calculation of the BSS is carried out under the assumption of perfect 
foresight. This means that the algorithm determining the BSS operation 
strategy has complete information, which is not available to this extent 
in reality. Therefore, the solver can calculate with market prices that will 
later occur exactly as expected. Additionally, we do not include taxes 
and levies on revenues or costs of market participation (e.g. pre- 
qualification costs for the aFRR market) for the BSS. Changes 
regarding the efficiency of the BSS showed no significant influence on 
the economic potentials. Furthermore, because cell degradation is 
driven primarily by calendar aging rather than cycle aging [75], we do 
not explicitly model this effect. In a long-term analysis of BSS, however, 
this has to be considered as a prominent driver in the economic evalu
ation. In general, we interpret the presented results as an upper-limit 
regarding BSS revenue potentials on the modeled markets. Finally, the 
lacking consideration of competition among the flexibility options 
should be mentioned. Such competition may lead to cannibalization 
effects and a further decrease of revenue potentials. The Europeaniza
tion of the electricity markets could also lead to more competition and 
greater pressure on individual operators in the markets and subse
quently reduce the revenue opportunities of individual BSS. 

4.2. Interpretation of the scenario 2030 

The analysis by Braeuer et al. [10] is in line with our findings, as they 
conclude that investing in and operating BSS is not economically 
reasonable from a current point of view, despite they also considered 
multiple revenue possibilities. Berrada et al. [28] conducted a profit 
comparison between different storage technologies on DA markets and 
ancillary markets. Although their findings also show negative profits for 
innovative market participants – e.g. gravity storage – a valid compar
ison to our approach is not possible since they model only a single day 
whereas we simulate a full year. The analysis by Merten, Olk, Schoe
neberger, & Sauer [76] investigates the combined use of BSS on the 
Intraday market and aFRR market concluding a potential economic 
feasibility of such systems in 2025. Angenendt, Merten, Zurmühlen, & 
Sauer [77] state solely the provision of frequency restoration reserve by 
BSS is less economical than a combined use with e.g. a PV system. The 
declining revenue potential for BSS over the last years is also found by 
Spodniak, Bertsch, & Devine [78]. Regarding different E2P ratios, the 
findings by He et al. [42], Engels et al. [75] and Pusceddu et al. [58] 
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point in similar direction by showing largest revenue potentials for 
short-term orientated BSS and declining profits for BSS with higher E2P 
ratios. As Xu et al. [11] already proposed in their study, there is a need 
for adapting the regulations of existing ancillary markets, such as aFRR, 
to compensate for the specifics of BSS. Otherwise, a market-driven 
integration of BSS is not likely based on current regulations. 
Regarding the future demand for balancing power markets in electricity 
systems with high shares of RE, Ocker & Ehrhart [79] addressed the 
questions raised by Hirth & Ziegenhagen [80], concluding that the 
improvement of grid control cooperation can lead to significant effi
ciency savings. The situation in our 2030 scenario, however, is still very 
unclear and we cannot model the demand endogenously. According to 
the prequalified capacities for the aFRR market presented in Hasche 
et al. [1], we assume that a rising demand for aFRR could be met without 
any problems, even in a scenario with reduced conventional capacities. 
However, since the uncertainty regarding the demand remains, we 
investigated the effect of different demand levels for aFRR power in a 
sensitivity analysis. Yet, we did not find any significant changes in prices 
nor in the economic potential of a BSS. This is especially true for the 
scenario 2030, where the prevailing share is earned at the DA market. As 
described in Section 3.2, the technical specifications of the BSS in form 
of the E2P ratio have much greater influence on its total revenues. 
Therefore, we renounced to alter the scenario in this regard in more 
detail. 

5. Conclusions 

We present a novel approach for simulating the automatic frequency 
restoration reserves market alongside the day-ahead market in an agent- 
based electricity market model. For this purpose, we calculate bids 
based on the opportunity costs of market players in order to participate 
at the two modeled markets. First, the model was back-tested for Ger
many for the most recent available year 2019 achieving an overall good 
fit. Then, we have set up a scenario for 2030 according to a recently 
published study for a low-emission electricity system in Germany. The 
simulated electricity system features a significant share of renewable 
power plants supplying already 60% of the yearly electricity demand. 
From this scenario and model setup, we derive price time series for both 
investigated markets. We then assess the revenue potentials of battery 
storage system operators which are active on these two markets. In an 
optimization model, we calculate the optimal storage dispatch strategy 
and evaluate its profitability. When we compare the simulated potential 
revenues in the given scenario 2030 to those revenues in a simulated 
market 2019, we see an improved economic potential in the simulated 
future scenario. Additionally, in the scenario 2030 the distribution of 
revenues shifts towards the day-ahead market which is explained by 
higher price fluctuations. The technical specifications of the battery 
storage system are crucial for an optimal use-case. We find that the 
ability to provide power in the short-term leads to the highest revenues 
concluding that high power battery storage systems perform best in the 
given scenarios. Higher round-trip efficiency only contributes to minor 
improvements regarding the annual revenues. Additional calculations 
could further enhance the presented results by taking the investment 
and operational costs of battery storage systems into account. Future 
work may also improve the presented approach by including additional 
markets such as the Frequency Containment Reserves market or 
Intraday market into the model to generate a more comprehensive view 
of the revenue potentials. As discussed, the battery storage system 
operator may increase its revenue when employing a multi-use strategy 
to serve various markets simultaneously. While the presented modeling 
approach is demonstrated for the specifications of the German market, 
the developed methodology can be adapted to describe the situation on 
different national electricity markets such as North America or European 
countries. This enables policy makers, companies, and investors to get a 
better understanding of the application of battery storage systems. For 
this purpose, technical specifications may have to be adjusted to reflect 

the corresponding market design and rules. In addition, the region- 
specific power plant parks and market prequalification requirements 
to participate in the day-ahead market and frequency restoration re
serves market must be considered accordingly. 
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Executive Summary: Carnot batteries, high-temperature heat storage systems,
promise an attractive solution to meet growing flexibility needs systems with high RE
shares. To assess the future economic potential of such Carnot batteries, I coupled the
energy systems optimisation model REMix with the agent-based electricity market model
AMIRIS. REMix evaluates the least-cost infrastructure configuration of the energy sys-
tem, while AMIRIS focuses on the profitability of these storage systems. I applied this
modelling chain in a case study of a zero-emission energy system in Central Europe for the
year 2050. To guide the development of this promising technology, I conducted a parame-
ter scan of costs and efficiencies of Carnot batteries in this system. My findings show that
the availability of a low-cost storage medium is a key driver for the use of Carnot batter-
ies from an energy system design perspective. Additionally, combining Carnot batteries
with wind energy offers benefits as a result of the potential for longer storage durations
compared to electrochemical batteries. Carnot battery operators could potentially realise
positive annual gross profits, depending on the system design, their role within the en-
ergy system, and importantly, their market power and bidding strategy. On the basis of
these results, I conclude that to make Carnot batteries competitive with other storage
technologies on a broader scale, their development potential must be fully leveraged. This
work builds on the preliminary study that was published as part of the proceedings to
the International Conference on Applied Energy 2022 in Bochum, Germany (Nitsch and
Wetzel 2022).
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A B S T R A C T   

Power generation from variable renewable energies is expected to dominate the future energy supply in many 
countries, which will lead to an increased demand for flexibility options. Carnot batteries offer the technical 
prerequisites for meeting this flexibility demand and are relatively easy to scale. This paper investigates the 
future economic potential for Carnot batteries by coupling the energy systems optimization model REMix and the 
agent-based electricity market model AMIRIS. While REMix evaluates the least-cost infrastructure configuration 
of the energy system and the role of Carnot batteries in it, AMIRIS focuses on the corresponding profitability of 
these storage systems. The modelling chain is applied in a case study of a zero-emission energy system in Central 
Europe for the year 2050. To provide guidance for a promising technology development, a parameter scan for 
costs and efficiencies of Carnot batteries is performed for this system. We find that from an energy system design 
perspective the availability of a low-cost storage medium is a key driver for the usage of Carnot batteries. In 
addition, the combination of Carnot batteries with wind energy provides benefits due to the possibility of longer 
storage durations compared to electrochemical battery systems. Carnot battery operators can potentially realize 
positive annual gross profits, based on factors such as the system’s design, their designated role within the energy 
system, and notably, their market power and bidding strategy. We conclude that the development potential of 
Carnot batteries must be leveraged to make them competitive with other storage technologies on a broader scale.   

1. Introduction 

Energy storage plays a critical role in modern energy systems [2], 
especially in those with high shares of wind and solar power [3]. Due to 
the intermittent nature of variable renewable energy (VRE) sources, 
balancing power demand and supply requires either spatial, sectoral, or 
temporal flexibility. Spatial balancing can be achieved through power 
grids, sectoral balancing e. g. through electric heat production and 
cogeneration, while temporal balancing can be achieved through the use 
of energy storage options. There are various types of storage options 
available, each with its advantages and use cases [4–6]. Pumped storage 
potentials across Europe are limited by topography and do not offer 
significant options for further expansion, except for Scandinavia [7]. 
Likewise, cavern adiabatic compressed air energy storage requires saline 
rock formations in order to benefit from a low-cost storage volume [8]. 
Lithium-ion batteries, in contrast, are easily scalable and widely used in 
the transportation sector [9], but they have risks associated with 
increasing costs and availability due to limited annual mining of lithium 
[10]. Sodium-ion batteries may offer an alternative to remove the 

dependency on lithium, but are not yet an established technology. 
Another promising option are vanadium redox-flow batteries, however 
the current state-of-the-art systems require additional scale-up effects 
for both the stack and the vanadium electrolyte in order to become an 
economically viable alternative [11]. 

The choice of storage method is further influenced by the intended 
storage duration. To illustrate, short-term storage can be effectively 
achieved through battery storage, while mid-term storage can be facil
itated by pumped hydro storage. For extended durations, power-to-gas 
and hydrogen storage are favourable solutions [12]. For such station
ary applications, energy density plays a minor role and more emphasis 
can be put on choosing a low-cost storage medium. Carnot battery 
concepts [13] can provide large-scale electrical energy storage capac
ities. Due to their modular nature, a wide range of different technical 
configurations of Carnot batteries is possible [15], but the underlying 
working principles stay the same: Electricity is transformed into heat 
and stored in a storage medium such as molten salt [14]. The stored heat 
is then converted back into electricity when needed using processes such 
as the Brayton or Rankine cycle. 
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Because of these advantages, we aim at analysing the potential role 
of Carnot batteries in future energy systems. In addition to technical 
challenges, such as increasing efficiency and scaling up storage systems, 
it is also essential to consider their economic perspectives. Investments 
in storage technologies require a detailed view of future profitability 
potentials in electricity systems with high VRE shares. A previous study 
indicated a significant role of generic storage systems in the overall 
power system design if storage technologies can achieve storage specific 
costs below 35 €/kWh and a competitive role against gas turbines in the 
range between 35 €/kWh and 75 €/kWh [16]. Similarly, Dumont et al. 
[17] identified the need for a low-cost energy storage medium when 
considering grid-scale systems with storage times between 4 and 8 h and 
outlined competition against lithium-ion batteries in the long run. 
Furthermore, the authors of [18] propose conversion of existing coal 
power plants to Carnot batteries with 5 h storage times and unit costs of 
100–200 €/kWhe, depending on the operation regime. Achieving this 
low-cost storage medium can therefore enable technology competi
tiveness for Carnot batteries against other storage technologies such as 
pumped hydro storage or lithium-ion batteries and be a main driver for 
the integration of electricity from renewable energy sources into the 
overall energy system. For a large-scale integration of Carnot batteries in 
a Danish 100 % renewable energy systems, it is imperative that the 
associated costs are reduced to levels below the range of 60.5 to 66.2 
€/MWhe as suggested by [19]. Other studies focus more on technical 
optimization of Carnot battery storage but less on the integration in 
future energy systems and electricity markets [20–23]. 

While these papers provide some first indication on the potential of 
Carnot batteries in future energy systems, they do not provide the full 
picture. Various energy systems modelling studies have shown that 
flexible sector coupling, such as electric vehicles [24], demand response, 
and thermal energy storage [25], or transmission grid reinforcement 
[26] can have a substantial impact on the competitiveness of power-to- 
power storage technologies. However, flexible sector coupling is not 
considered in earlier studies of the economic potential for Carnot bat
teries [16,17]. Furthermore, the applications and profitability of Carnot 
batteries on electricity markets have not been assessed in this depth. 
Therefore, the present paper provides insight into the potential role of 
Carnot batteries in future sector-coupled energy systems as well as in 
corresponding electricity markets and helps to identify the most prom
ising areas for further research and development. More specifically, our 
research addresses the following research questions:  

1) What targets for techno-economic parameters need to be achieved 
for Carnot batteries in order to enter into the cost-optimal energy mix 
of a system with competing flexibility options?  

2) What are promising technological niches for the future deployment 
of Carnot batteries if cost competitiveness for balancing power sup
ply cannot be reached?  

3) What are the economic potentials for Carnot batteries with regard to 
the business-oriented perspective of storage operators and different 
modes of operation? 

To answer the first research question, the study analyses the cost- 
effectiveness of Carnot batteries compared to other energy storage op
tions. The analysis considers the costs of installation, maintenance, and 
operation, as well as the efficiency and lifespan of the storage systems. 
The second research question focuses on identifying the most promising 
technological niches for the deployment of Carnot batteries. This in
volves evaluating the potential applications and benefits of the tech
nology, as well as the technical requirements and challenges that need to 
be addressed. Finally, the third research question targets the economic 
perspectives for Carnot batteries investigating different modes of oper
ation. These modes of operation refer to how the storage system is uti
lized in the electricity market, and the economic perspectives include 
factors such as investment costs, operation and maintenance costs, and 
revenues from energy arbitrage. An analysis of these factors can provide 

insights into the potential profitability of Carnot batteries and inform 
investment decisions for their deployment in future electricity systems. 

By addressing these research questions, our study effectively bridges 
a significant research gap, providing a comprehensive system analytical 
evaluation of Carnot batteries. Notably, our study extends beyond a 
single-country focus, encompassing a comprehensive techno-economic 
investigation within the context of Central Europe. Our analysis is 
particularly concentrated on the interaction of Carnot batteries with 
other flexibility options and the anticipated revenue they can generate 
in the electricity market. Therefore, we combine a centrally planned 
energy systems optimization perspective with a business-driven elec
tricity market simulation approach. By investigating these aspects, our 
research not only advances the understanding of Carnot battery per
formance on electricity markets but also contributes to the broader 
discourse on the integration of storage technologies into systems with 
high shares of VRE. This paper is a substantial extension of the confer
ence paper [1] presented at the International Conference on Applied 
Energy (ICAE2022) in Bochum, Germany, Aug 8-11, 2022. 

Our paper is structured as follows. In Section 2, we describe the 
general model setup, design of the parameter scan on techno-economic 
assumptions, and the selection process of the different scenarios 
considered in the study. Section 3 presents the results for both the cost- 
optimal energy system design aspect and the market simulation. The 
limitations of the study are discussed in Section 4, while the conclusions 
and outlook for future work are presented in Section 5. 

2. Material and methods 

The analysis is designed around a coupled modelling system, as seen 
in Fig. 1. We deploy the energy system optimization model REMix [27] 
to find cost-optimal designs under different techno-economic assump
tions, and the electricity market model AMIRIS [28] to get a more 
detailed view into the effects of operational decisions made by Carnot 
batteries in the electricity market. The model coupling is implemented 
using iog2x [29] which is based on the workflow manager ioProc [30] 
and guarantees efficient data transfer from REMix to AMIRIS. This in
volves processing REMix results by converting them into the required 
format for the AMIRIS model, while also taking care of AMIRIS execu
tion and model result evaluation. 

2.1. Parametric study with the energy systems optimization model REMix 

To establish a baseline on the overall energy system design and de
cisions on infrastructure, we use the REMix framework for optimizing 
energy system models [27]. The model considers both capacity expan
sion planning and economic dispatch in a high spatial and hourly res
olution in order to find the least-cost optimal energy system design. The 
technology modelling in REMix is described in detail for the power 
generation and storage in [31], for the power grid in [32], for the heat 
sector in [25], for the gas sector in [33], and for electric vehicles in [34]. 
Previous studies have for example focussed on the impact of national 
political targets on the overall design of a 100 % renewable energy 
system [35,36], the role of green hydrogen and methane for a climate 
neutral energy system under different considerations regarding limited 
network expansion [37], or on different modelling approaches [38]. For 
the case study at hand, we build upon a previously published dataset for 
the power system and additional technologies for the consideration of 
sector-integration with the heat and gas sectors [39] which is linked to 
the case study presented in [33]. This model encompasses Germany 
spatially resolved into 10 partially aggregated federal states and 12 
neighbouring countries as individual model regions, as seen in Fig. 2. 
For the temporal resolution 8760 time steps are used in order to 
adequately capture the variability of feed-in from VRE sources. A cost- 
optimal capacity expansion planning for power plants, gas pipelines, 
electrical grids, and storage technologies for the model year 2050 is 
conducted while considering the pre-existing capacities such as 
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pumped-hydro storage plants. In the selected case study, the main 
competitors for Carnot batteries are pumped hydro storage, lithium-ion 
battery storage technologies, and conversion to methane for subsequent 
reconversion to electricity. For Germany the hydrogen produced via 
electrolysis can be further processed via methanation units and used for 
electricity production in gas turbines, while in the neighbouring coun
tries it can only be used to satisfy the exogenous demand for hydrogen. 
This competition is not only between different options for storing elec
trical energy, but also against chemical storage options in the form of 
hydrogen and methane, and provides a better basis of understanding on 
the role of Carnot batteries. In Germany, Carnot batteries are addition
ally competing with extended district heating networks to provide 
flexibility to the electricity system. By integrating thermal storage and a 
wide range of technologies for heat supply, including CHP plants, heat 
pumps, electric boilers and fuel-based boilers, district heating networks 
can react flexibly to the VRE supply. A detailed description of the sce
nario and model setup can be found in [33], the corresponding model 
assumptions are documented in [21]. 

To evaluate the efficiency and cost development required to achieve 
competitiveness from an energy system design perspective, we conduct a 

parametric variation of the techno-economic assumptions on Carnot 
batteries. This parametric study considers a variation of overall round- 
trip efficiency, capital expenditure (CAPEX) for the charging and dis
charging infrastructure, and CAPEX for the storage capacity. The 
charging and discharging capacity and energy storage volume are 
optimized independent from each other in order to derive the optimal 
design range in terms of energy-to-power (E2P) ratio. 

Table 1 compares the techno-economic parameters for the Carnot 
batteries derived by the state-of-the-art reviews by [17,40] to those of 
other storage technologies considered in the case-study. Furthermore, it 
provides the ranges assumed in the parameter scan, which are based on 
the more optimistic projections on future technology development 
stated by [17,40]. In reality, we expect a certain correlation between the 
different components such as higher round-trip efficiencies leading to 
higher CAPEX for charging and discharging, which, for the sake of 
identifying ideal techno-economic configurations, is ignored in this 
study and all possible combinations are considered. The wide range 
reported in both review studies hints at the large uncertainty faced 
during current prototype projects and cost projections for future sys
tems. To comprehensively reflect the uncertainty of technology 

Fig. 1. Model coupling setup.  

Fig. 2. Representation of the spatial scope of the case study based on [39]. While Germany is modelled as 10 aggregations of federal states and with higher sectoral 
detail, especially for the heating sector and the gas infrastructure for hydrogen and methane, its 12 neighbouring countries are modelled with less sectoral detail and 
fewer flexibility options. 

F. Nitsch et al.                                                                                                                                                                                                                                   

F. Nitsch

3 Publications 45



Journal of Energy Storage 85 (2024) 110959

4

development, we derive a set of assumptions for each of the key input 
parameters. Thus, the parameter scan includes three assumptions for the 
round-trip efficiency (55 %, 65 %, 75 %), four for the converter CAPEX 
(90 €/kW, 150 €/kW, 270 €/kW, 400 €/kW), and five for the storage 
CAPEX (20 €/kWh, 35 €/kWh, 55 €/kWh, 70 €/kWh, 90 €/kWh). 

Due to the limited potential of expansion of pumped hydro storage 
and methane cavern storage sites, the highest competition arises from 
battery systems. This also gives a rough upper limit for the allowed 
storage CAPEX as values above would be outcompeted in most cases due 
to both the higher efficiency and lower cost of the power electronics for 
charging and discharging. By considering all possible combinations of 
assumptions for efficiency and investment costs, the parameter scan 
includes a total of 60 REMix runs. This wide range allows the role of 
Carnot batteries to be assessed for scenarios where they can play a sig
nificant system-wide role, as well as for scenarios where the techno- 
economic data limits the deployment of the technology to a niche role. 

2.2. Market analysis with the agent-based electricity market model 
AMIRIS 

Transforming the centralized approach of cost optimal energy sys
tems into operating energy systems, investments in technologies have to 
be made by individual entities. Therefore, these investments must 
demonstrate a favourable economic outlook in practice. In order to 
assess economic potentials for Carnot batteries with regard to the 
business-oriented perspective of storage operators, we employ the open 
agent-based electricity market model AMIRIS [28] to simulate the 
German day-ahead market. AMIRIS is implemented in the open frame
work for distributed agent-based modelling of energy systems FAME 
[42] which allows a powerful, yet flexible model parameterization [43]. 
AMIRIS can be utilized to explore market dynamics that arise from the 
interactions of market actors [44], economic assessments of battery 
storage [45], while also considering regulatory frameworks [46], and 
actors’ behaviour under uncertainty [47]. AMIRIS has been calibrated 

and back-tested for the German day-ahead market [45] and Austrian 
day-ahead market [48], demonstrating a good fit in simulating historical 
electricity prices. All relevant configuration files and data are openly 
available [49]. AMIRIS represents various actors in the electricity mar
ket, including power plant operators, traders, and policy agents. We use 
a dedicated storage agent class who provides temporal flexibility. This 
agent is parameterized with techno-economic parameters such as ca
pacity, power, charging and discharging efficiencies, availabilities, and 
costs. In contrast to the optimization model REMix, two distinct opera
tional strategies for the Carnot battery agent are implemented. These 
strategies are described in detail in Section 2.2.1. A detailed elaboration 
of all other agent types can be found in [50] whereas a schematic 
overview of AMIRIS is found in the Appendix in Fig. 9. 

2.2.1. Storage dispatch strategies 
The bidding strategy of a Carnot battery as a flexibility provider is 

crucial for profitable operation. Various methods have been proposed in 
the literature to determine effective bidding strategies, including sto
chastic programming, game theory, and machine learning. Here, we 
adopt two strategies on the basis of dynamic programming that require 
forecasted information about the market (i.e. forecasted electricity pri
ces) for a defined window. The algorithm evaluates the discrete states- 
of-charge of the Carnot battery to identify optimal charging and dis
charging opportunities. The resulting bids and asks are submitted to the 
electricity market accordingly. Specifically, we compare a system- 
optimal solution that minimizes system costs with a best-case, upper- 
limit scenario for the Carnot battery operator that maximizes profits by 
utilizing the market power of the total installed storage capacity and 
power. Both strategies optimize the operator’s schedule over a 168 h 
window with perfect foresight. 

2.2.1.1. Minimizing system costs. In order to reduce overall operational 
system costs associated with dispatching the power plant park, the 
Minimize system costs strategy corresponds to a flexibility provider that 
operates in a “system-friendly” manner. This approach minimizes the 
sum of the marginal costs of operating the electricity system over the 
forecast horizon. While minimizing system costs may not be a feasible 
business case for individual storage operators in reality, this approach 
helps to explore the potential solution space. 

2.2.1.2. Maximizing profits. The Maximize profits strategy aims to 
maximize the profits of storage operators by utilizing their market 
power in the electricity market, especially for large-scale storage sys
tems. Due to the assumed operator’s perfect foresight and full market 
power, this approach represents the absolute upper limit of profits in the 
analyzed scenario. Typically, the storage operator seeks to charge when 
forecasted prices are low and discharge when forecasted prices are high. 
The algorithm considers the impact of the operator’s own bids and asks 
on the merit order and its price changing effect. This effect is significant 
if the storage characteristics (i.e. power, capacity) are relevant to the 
system’s total size, meaning that the storage can actually impact market 
prices due to its behaviour. 

2.3. Scenarios and sensitivity analysis 

In addition to both the parameter scan for the overall energy system 
design and dispatch strategies for the storage operators, several addi
tional aspects for the energy system design can have a large influence on 
the role of Carnot batteries in the cost-optimal solutions. To this end we 
extend the “Base” case system of the parametric study as presented in 2.1 
by three additional sub-scenarios to study the economic impacts and the 
sensitivity of Carnot battery expansion towards additional design ob
jectives. The first scenario “No Grid” limits the available transmission 
lines to those planned in the ten-year network development plan from 
the year 2016 [51] as well as the e-Highway 2050 study [52]. This 

Table 1 
Techno-economic assumptions for Carnot batteries and the different storage 
technologies in competition with each other. Values are derived from Dumont 
et al. [17], Vecchi et al. [40], and Gils et al. (year 2050) [39].  

Storage system Technical 
lifetime in 
years 

Round-trip 
efficiency 

CAPEX 
storage 

CAPEX 
converter 

Brayton Cycle, 
[17] 

25–30a 60 % - 70 % 55–198 
$/kWh 

395–875 
$/kW 

Rankine Cycle 
(Electric 
heating), [17] 

25–30a 12 % - 55 % ~94 $/kWh ~376 $/kW 

Rankine Cycle 
(Heat pump), 
[17] 

25–30a 30 % - 73 % 68–117 
$/kWh 

272–468 
$/kW 

Brayton PTES, 
[40]  

52 % - 70 % 50–1500 
$/kWh 

2000–4000 
$/kW 

Rankine PTES, 
[40]  

45 % - 65 % 250–1000 
$/kWh 

500–8000 
$/kW 

LAES, [40]  40 % - 60 % 400–800 
$/kWh 

700–3000 
$/kW 

Power to gas 
(methane), 
[39] 

25 / 25 / 30 45 %b 0.2 €/kWh 350 / 800 / 
850 €/kWc 

Lithium-ion 
batteries, [39] 

25 94 % 150 €/kWh 50 €/kW 

Pumped hydro 
storage, [39] 

60 85 % 10 €/kWh 200 / 250 
€/kWd 

Carnot battery 
parameter 
scan, [39] 

25 [55 %, 65 
%, 75 %] 

20–150 
€/kWh 

90–400 €/kW  

a Assumed lifetimes based on [41]. 
b Assumed efficiency for electrolysis 80 %, methanation 90 %, CCGT 63 %. 
c Assumed investment costs for electrolyser, methanation plant and CCGT. 
d Separate cost assumptions for turbines and pumps. 
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reduction in the spatial flexibility of the system is expected to lead to an 
increased demand for temporal flexibility options. Similarly, the second 
scenario “Low Flex” decreases the flexibility on the demand side by 
enforcing a capacity factor of 0.75 for the operation of water electrol
ysis. While technically electrolysis can be operated in a highly flexible 
fashion [53], this assumption emulates a hesitancy for investments into 
electrolysers operated solely based on surplus electricity. The third 
scenario “Low Curtail” addresses limitations in profitability for renew
able energy operators by limiting the possibility for curtailment of en
ergy from renewable sources to 5 % of their annual energy demand. This 
limitation of flexibility likewise increases demand for temporal storage 
options in the overall system design. 

To further test the sensitivity of the results to the techno-economic 
assumptions regarding the main competing storage technologies and 
the composition of the VRE plant fleet for electricity generation, sup
plementary model calculations are carried out with REMix. Based on the 
parameter study, three combinations from the parameter scan in Section 
3.1 are selected to test the related interactions with the techno-economic 
assumptions for Carnot batteries. The results of the sensitivity analysis 
are described and analyzed in the Appendix B. 

3. Results 

The analysis is presented in the order of model application. First, the 
REMix results on the energy systems design in the parametric study are 
described in Section 3.1, followed by the electricity market analysis 
relying on AMIRIS in Section 3.2. 

3.1. Competitiveness of Carnot batteries from an energy system design 
perspective 

In order to find the technical configurations in which Carnot batte
ries start entering the overall system design during a least-cost optimi
zation, the full parameter scan using different techno-economic data is 
computed, see Section 2.1. Fig. 3 shows the share of Carnot battery 
capacity against the overall storage capacity from both Carnot batteries 
and battery storage systems. In addition, the most optimistic systems 
based on [17] are included as reference points. All of the configurations 
reported in the literature are not competitive against the assumed 

improvement in battery systems. However, both the Brayton cycle and 
Rankine cycle systems are close to being viable configurations due to 
their higher round-trip efficiencies. This leads to the conclusion that 
additional efforts in research and development or cost reductions by 
technological advancements are required if no support schemes are 
implemented. If sufficient cost reductions are achieved for either the 
power specific CAPEX or the storage specific CAPEX, both Brayton and 
Rankine systems could become cost competitive options. For lower 
round-trip efficiencies in the range of 55 % the target range for the 
introduction of Carnot batteries ranges between 400 €/kW at 20 €/kWh 
to 90 €/kW at 55 €/kWh. For higher round-trip efficiencies in the range 
of 75 % there is more leeway for higher investment costs between 400 
€/kW at 35 €/kWh to 150 €/kW at 70 €/kWh. Overall, out of the 60 
modelled system configurations, eight reach a share in combined storage 
capacity between 20 % and 50 %, ten a share between 50 % and 90 %, 
and nine a share higher than 90 %. However, the system configurations 
leading to high market shares would require significant progress along 
all three dimensions making a share above 50 % for Carnot batteries 
quite unlikely. Still, even with lower system wide shares Carnot batteries 
can fill a niche role specially if low energy specific investment costs are 
reached. As explained in the following, these niches arise especially in 
regions with a high wind energy share in power generation or limited 
flexibility in sector coupling. 

A closer look into the spatial distribution of storage technologies 
shown in Fig. 4 reveals a close correlation between the installed ca
pacities of wind onshore and Carnot batteries, photovoltaic capacities 
and battery storage systems, as well as offshore wind capacities and 
electrolysers. Especially for electrolysers there is a distinct concentration 
in the northern parts of Germany due to the availability of storage 
caverns for hydrogen and methane. As a consequence of the different 
approaches towards modelling sector integration in Germany and the 
remaining countries in Europe there is no significant investments in 
either Carnot batteries nor battery systems under most techno- 
economical parameter combinations in Germany. This can be 
explained by the high demand side flexibility provided from water 
electrolysis and, if necessary, methanation for electricity production in 
gas turbines. On the other hand, the exogenous demand for hydrogen 
and methane requiring at least some investments into electrolysers and 
therefore decreasing the marginal cost of using the technology as a 

Fig. 3. Share between provided electricity from Carnot batteries and battery storage systems for the full parameter scan. Contours of the different shares are based on 
a linear interpolation of all points in the three-dimensional space. Red points indicate the different combinations in techno-economic assumptions, while black points 
indicate the most optimistic state-of-the-art system configurations identified by [17]. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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flexibility option. In the case of considerable optimistic technological 
progress for Carnot batteries (i.e. 65 % round trip efficiency, 150 €/kW, 
20 €/kWh), there is some investment into Carnot batteries in Germany. 
This is the reason, why we focus on these cost assumptions to be further 
analyzed in the market assessment. The spatial distribution of Carnot 
batteries in Germany is presented in Appendix C. 

In addition to the spatial correlation, we can consider the temporal 
charging and discharging pattern to further substantiate the connection 
between renewable technologies and storage technologies. Fig. 5 shows 
a clear diurnal charging pattern for battery storage systems, which 
matches the feed-in profile from photovoltaics and indicates most of the 
energy is charged during the middle of the day and discharged in the 
evening hours. Some additional charging and discharging at the begin
ning of the day allows reducing the typical electricity peak during the 
morning hours. In contrast, the charging of Carnot batteries has a wider 
band during the midday hours and is not charged every day. Storage 
discharging is also mainly in the evening hours, which is driven by both 
the exogenously provided electricity demand profile and the lack of 
photovoltaic generation. With respect to the storage level the clear roles 
of lithium-ion battery storage as a daily peak load provider and the 
Carnot batteries as an energy storage for multiple days can clearly be 
identified. 

3.2. Electricity market analysis 

In contrast to the energy systems optimization, which is performed 

from a central planning perspective for Central Europe, the market 
simulation is limited to the German market due to model constraints at 
time of the research design. Imports and exports to neighbouring market 
zones are taken as exogenous time-series from the respective REMix 
model runs. The Carnot battery specifications regarding power and ca
pacity differ substantially in the investigated three scenarios (see Section 
2.3), their configuration is displayed in Fig. 6. The installed power of 
Carnot batteries are 3.7 GW in the Base scenario, 15.8 GW in the Low 
Flex scenario, and up to 35.8 GW in the No Grid scenario. E2P ratios 
range from 7.4 (No Grid), to 8.2 (Low Flex). In all three scenarios, the 
Carnot battery’s technical specifications and status as singular operator 
contribute to significant market influence and market power. When 
interpreting the following results, these characteristics are important to 
be kept in mind. 

The profitability analysis is performed by comparing gross profits 
(difference between revenues from and costs for traded electricity, 
neglecting any other expenses) for all three scenarios and the two 
dispatch strategies, i. e. minimizing system costs and maximizing profits. 
Fig. 7 illustrates gross profits relative to the best-case scenario Low Flex 
applying the Maximize Profits strategy. This strategy consistently out
performs the Minimizing System Costs strategy in all regarded scenarios, 
attributable to the Carnot battery operator’s effective utilization of its 
substantial market power. In all cases, positive annual gross profits can 
be achieved. These results represent the most upper limits of revenue 
potential, emphasizing the unique advantage conferred by the Carnot 
battery’s status as the main flexibility provider. This is especially 

Fig. 4. Spatial distribution of annual energy generation from renewable technologies (a – c), annual energy provided from storage systems (d, e), and annual 
hydrogen production from water electrolysis (f). The spatial correlation indicates synergies between onshore wind and Carnot batteries as well as photovoltaics and 
battery storage. Values are derived from the techno-economical configuration of 65 % round-trip efficiency, 20 €/kWh storage specific CAPEX and 270 €/kW power 
specific CAPEX. 
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prevalent in the Low Flex and No Grid scenarios. Notably, all strategies 
profit from employing a rolling window of perfect foresight for arbitrage 
options. 

Even though the Carnot battery capacity in the No Grid scenario is 
more than doupled compared to the Low Flex scenario, it cannot 
outperform the gross profits from the latter. We observe diminishing 
spreads in electricity prices as a consequence of arbitrage. Therefore, the 
increased trading capacities of the Carnot battery in the No Grid scenario 
cannot generate additional revenue potentials. 

Table 2 provides additional comparative evaluation of the Maximize 
Profits and Minimize System Costs strategies. In this analysis, values 
exceeding 100 % indicate a greater impact when employing the 

Maximize Profits strategy. The Maximize Profits strategy also significantly 
influences mean prices, driving them up by at least 345 % in the Base 
scenario and as much as almost 400 % in the Low Flex scenario. Full 
cycles tend to be lower compared when aiming at maximizing profits. 
Total system costs (sum of all operational costs) are more than doubled 
(Base and Low Flex) or even tripled (No Grid) scenario. Regarding 
accumulated discharged and charged energy, the results reveal higher 
values in the Base scenario, contrasting with smaller values in the Low 
Flex and No Grid scenarios. 

4. Discussion 

The results show that with our model setup and scenarios analyzed, 
Carnot batteries have a limited role in the modelled optimal future en
ergy systems for Central Europe, even with optimistic cost assumptions. 
This results from the extensive provision of flexibility through sector 
coupling technologies, such as flexible hydrogen production or 
advanced district heating, and from the use of battery storage, which 
proves to be more cost-effective for many locations. However, further 
development, especially based on Brayton cycles and Rankine cycles in 
combination with heat pumps, can make Carnot batteries a promising 
alternative for electricity storage. Though, the future role of Carnot 
batteries will likewise depend on the future development of battery 
storage systems and electrolysers. Both technologies can have a signif
icant impact on the overall landscape of flexibility options. This balance 
may be shifted if additional factors, such as material availability or 
increasing prices for raw materials are considered. Therefore, additional 
research on the life cycle impacts of different storage technologies will 
be an important field of research going forward. 

The REMix parameterization used here considers the power grid only 
in aggregate form as transmission capacities between model regions 
(Fig. 8). As a result, information about grid congestion within these 
regions is lost. Consequently, flexibility needs at the local level are 
partially underestimated, and so are the potentials of Carnot batteries at 
locations of high generation surpluses. The extent to which local wind 
power curtailments can be cost-effectively avoided by Carnot batteries 

Fig. 5. Hourly feed-in from renewable technologies (top), hourly charging and discharging (middle) for batteries and Carnot batteries (middle), and storage levels 
(bottom) throughout the year for Carnot batteries and lithium-ion batteries. Hourly values are derived from the techno-economical configuration of 65 % round-trip 
efficiency, 20 €/kWh storage specific CAPEX and 270 €/kW power specific CAPEX. 

Fig. 6. Installed Carnot battery capacities and their Energy to Power ratio (red 
framed crosses). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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thus remains to be addressed in more spatially detailed analyses. 
The electricity market analysis of our study focuses on the economic 

analysis of Carnot batteries on the German market in future scenarios. 
[54] previously explored the economic viability of pumped heat electric 
storage on historical 2016 day-ahead prices concluding that high in
vestment costs posed challenges for profitability. [55] simulated a 
Carnot battery on the scale of multiple households achieving similar 
results. In contrast, our results indicate positive gross profits, although 
with optimistic learning rates regarding CAPEX. Additionally, our work 
expands its scope beyond residential applications and considers Carnot 
batteries at a larger scale, with variations in power and capacity con
figurations. [56] explored the optimal sizing of Carnot batteries in 
combination with concentrated solar power plants, focusing on histor
ical day-ahead prices in the Spanish electricity market and identifying 
E2P ratios between 5 and 10 as optimal for intraday storage purposes. 
Our study also suggests E2P ratios between 7.4 and 8.2 resulting in 
similar characteristics. Furthermore, in line with [57], who emphasized 
the significance of E2P ratios greater than 7 and steep electricity price 
increases for Carnot battery applications, our findings support the 
importance of the scaling of the Carnot battery for achieving profit
ability. In [19], the authors investigate a 100 % renewable energy sys
tem proposed for a future Danish energy system in 2045. The findings 
reveal that Carnot batteries have the potential to facilitate 32 annual 
storage cycles, in combination with significantly elevated E2P ratios. 
Consistent with our own results, the authors underscore the importance 
of decreasing storage costs to thresholds below 60.5 €/MWhel and 38 
€/MWhel, contingent upon the specific sub-scenario considered. When 
interpreting the presented results on economic perspectives the 

following limitations have to be considered. First, the technical as
sumptions and cost basis of the presented Carnot batteries follow very 
optimistic learning rates. The assumed storage power and energy cost 
assumptions of 150 EUR/kW and 20 EUR/kWh, respectively, combined 
with a round-trip efficiency of 65 % must be kept in mind when inter
preting the market analysis results. The benefit from a more integrated 
system such as thermal integration of Carnot batteries with industry 
processes or district heating systems as well as retrofitting power plants 
to storage systems, or competition with other flexibility options are 
outside the scope of this study and may shift the conclusions on the 
overall energy system design and the economic profitability. Second, the 
scope of the electricity market analysis is limited to arbitrage trading on 
the German day-ahead market. This not only neglects additional reve
nue potentials like providing system services such as frequency resto
ration reserve, but also possible competition from neighbouring market 
zones and other flexibility providers. Third, we want to emphasize that 
the profitability of the Maximize profits strategy marks the most upper 
limit of possible revenues since the storage trader benefits from its total 
market power and makes full use of it. 

5. Conclusions 

We present a comprehensive analysis of Carnot batteries and assess 
their future role in energy systems with high shares of renewable en
ergies. A model coupling of the energy system optimization model 
REMix with the electricity market simulation model AMIRIS allows an 
investigation on both system and market perspective. From a general 
energy system design perspective, we can conclude that Carnot batteries 

Fig. 7. Relative gross profit per MWinstalled compared to best performing combination (Low Flex with Maximize Profits strategy).  

Table 2 
Evaluation of the performance of the Maximize Profits strategy in comparison to the Minimize System Costs strategy, where a value greater than 100 % indicates a more 
pronounced impact when applying the Maximize Profits strategy.   

Total System Cost Mean Price Full Cycles Accumulated Discharged Energy Accumulated 
Charged Energy 

Base 235 % 345 % 85 % 85 % 84 % 
No Grid 309 % 378 % 81 % 81 % 81 % 
Low Flex 262 % 395 % 80 % 80 % 80 %  
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may be a promising option for mid-term energy storage if technology 
development makes significant progress. In terms of system parameters 
this translates into the need for achieving a low-cost storage medium in 
the range of 20–35 €/kWh. Improving the round-trip efficiency seems to 
be a viable secondary target, however, needs to be traded-off against 
increases in the capital expenditures for charging and discharging, 
which may increase accordingly. If this is achieved, Carnot batteries 
would be more viable for high energy to power ratios than lithium-ion 
battery storage systems. The results from the REMix model further 
indicate synergies between Carnot batteries in conjunction with elec
tricity generation from wind turbines but also to a certain degree with 
photovoltaic and lithium-ion battery systems. However, this synergy 
depends on the overall need for energy storage which can be impacted 
by high shares of electrolysis. The results also confirm that the use of 
flexible sector coupling, realized through storage for heat and hydrogen, 
reduces the demand for electricity storage. This has a noticeable impact 
on the market potential for Carnot batteries. Regarding the profitability 
analysis, we simulate the German day-ahead market using AMIRIS 
identifying positive gross profits among different scenarios. We 
conclude that the gross profit of Carnot battery storage systems is highly 
impacted by their considerable size and their favourable market posi
tion. Our results indicate that profitability is strongly related to market 
power of the storage operator which is particularly pronounced when 
the profit maximization strategy is applied. Therefore, further research 
may focus on a more accurate simulation of the competition of flexibility 
options and on finding robust strategies for the storage operator 
considering its impact of market power. Additional revenue streams 
such as ancillary markets could also be integrated in upcoming studies. 
Additionally, we propose that future investigations should extend the 
scope to other regions worldwide, recognizing the potential variability 
in the energy landscape and market dynamics, thereby contributing to a 
more comprehensive understanding of Carnot battery applications on a 
global scale. 
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Appendix A. Overview of the model workflows

Fig. 8. Schematic overview of the REMix energy system model, from [58].   
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Fig. 9. Schematic overview of the electricity market model AMIRIS, see also [28].  

Appendix B. Sensitivity analysis for the energy system design 

As described in Section 2.3, further model calculations were carried out with REMix to examine how deviating assumptions on the composition of 
electricity generation and storage technology development affect the role of Carnot batteries in the cost-optimal system. This is realized by varying the 
cost assumptions for lithium-ion battery storage, P2G2P, photovoltaics and wind power plants. The additional assumptions used are based on values 
collected by the Danish Energy Agency [59] and the ranges of investment costs in 2050 mentioned therein. The resulting assumptions for battery 
storage costs are summarized in Table 3 and the assumptions for wind energy, photovoltaics and P2G2P in Table 4. The sensitivity analyses are carried 
out for the following three cases from the parameter study of technoeconomic assumptions on Carnot battery systems.  

(1) 55 % round-trip efficiency, 35 €/kWh energy-specific costs and 150 €/kW power-specific costs  
(2) 75 % round-trip efficiency, 35 €/kWh energy-specific costs and 400 €/kW power-specific costs  
(3) 75 % round-trip efficiency, 75 €/kWh energy-specific costs and 150 €/kW power-specific cost   

Table 3 
Lithium-ion battery cost assumptions in the sensitivity analysis. The Base case values represent the assumptions used in the parametric study with the results presented 
in Section 3.1.   

base battery++ battery+ battery0 battery- battery– 

Energy storage expansion cost (€/kWh) 75 46 78.5 111 143.5 176 
Output capacity expansion cost (€/kW) 60 40 92.5 145 197.5 250   

Table 4 
Cost assumptions for wind energy, photovoltaics, electrolysis and methanation in the sensitivity analysis. If a field specifies no values the Base values are used. For all 
technologies fixed operational costs are scaled accordingly.   

base p2g2p+ p2g2p- pv + wind- pv + wind+ pv-wind+

Electrolyzer expansion cost (€/kW) 350 150 500    
Methanizer expansion cost (€/kW) 800 450     
Photovoltaic expansion cost (€/kW) 518   250 250  
Onshore wind expansion cost (€/kW) 1173    800 800 
Offshore wind expansion cost (€/kW) 1800    1640 1640   
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Fig. 10. Discharged energy across Europe (battery scenarios).  

Varying the costs for lithium-ion batteries results in the expected effects, see Fig. 10. Thus, with higher battery costs in all three cases examined, 
there is almost complete substitution of lithium-ion batteries by Carnot batteries. The total capacity of the battery storage systems remains 
approximately constant. The effects are uniform for the three sets of assumptions analyzed for Carnot batteries. Assuming lower costs for lithium-ion 
storage systems, on the other hand, Carnot batteries are completely pushed out of the system and the total capacity of the storage systems is doubled or 
tripled. As no Carnot batteries are used anymore, the difference between the three model runs disappears.

Fig. 11. Annual electricity generation across Europe (battery scenarios).  

The variation in battery costs has only a minor impact on the power generation structure (Fig. 11). These are most evident in the case of lower 
battery costs, which lead to CSP and partly also onshore wind being replaced by PV. Higher battery costs, on the other hand, lead to a slight increase in 
total electricity production, as the use of Carnot batteries is associated with higher losses. 
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Fig. 12. Discharged energy across Germany (battery scenarios, without methanizer).  

The described effect of the cost variations on the entire study area is essentially also confirmed for Germany. However, the importance of electricity 
storage is lower there due to the greater availability of other flexibility. This means that an increase in lithium-ion battery costs only has a very 
insignificant effect on the use of electricity storage (Fig. 12), although in case of a significant cost increase (battery–), lithium-ion batteries are replaced 
by Carnot batteries. A reduction in the cost of lithium-ion batteries, on the other hand, would mean that they would find a place in the German system 
and significantly increase the importance of electricity storage.

Fig. 13. Annual electricity generation in Germany (battery scenarios).  

The analysis of electricity generation in Germany shows that the variation in lithium-ion battery storage costs only changes this very slightly 
(Fig. 13). The most relevant aspect is the slight decrease in total generation due to the reduction in renewable energy curtailment and storage losses in 
case of significantly cheaper chemical batteries (battery++). 
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Fig. 14. Discharged energy across Europe (VRE scenarios).  

The considered variations in the cost assumptions for the production and reconversion of synthetic methane only have a very weak effect on the 
results (Fig. 14). As the methanization plants are essentially used to cover gas demand in industry, cost changes have hardly any influence. This also 
applies to the other storage technologies analyzed. A different picture emerges when varying the costs of VRE technologies. Reduced PV costs 
significantly increase the contribution of this technology to electricity generation and push offshore wind in particular out of the system (Fig. 15). This 
results in a significantly higher storage requirement, which is covered disproportionately by Carnot batteries. Discharge from lithium-ion batteries 
also doubles. If both wind and PV costs are assumed to be lower, this has a particular impact on wind power generation, where offshore wind is 
replaced by onshore wind. This also results in a change in storage requirements. Although this hardly increases for the sum of lithium-ion and Carnot 
batteries, the latter can significantly increase their share. If a cost reduction is only assumed for wind, this again makes onshore wind generation in 
particular more attractive. This displaces offshore wind and PV in equal measure and also reduces the need for storage. However, lithium-ion batteries 
are also more affected here than Carnot batteries.

Fig. 15. Annual electricity generation across Europe (VRE scenarios).   
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Fig. 16. Discharged energy across Germany (VRE scenarios, without methanizer).  

A focused look at Germany reveals some further effects (Fig. 16). For example, the very low contribution of lithium-ion batteries in the Base case is 
significantly increased by higher costs for gas generation and reconversion, and Carnot batteries also enter the system to a very small extent. In the 
opposite case of lower costs, however, there is no longer any room for batteries. Lower PV costs significantly increase the use of pumped hydro storage, 
but battery storage is no longer part of the system. In the case of reduced wind power costs, batteries are again not part of the optimal solution, and the 
use of pumped storage is also reduced. At first glance, the result for the case of reduced costs for wind and photovoltaics is surprising. This leads to an 
even greater increase in the use of electricity storage than a cost reduction for photovoltaics alone. In addition, not only is the use of lithium-ion 
batteries increased here, but Carnot batteries are also used. This results from the increased use of photovoltaics and onshore wind, which are sup
plemented by different storage systems. In contrast, the use of offshore wind and flexible CHP plants is reduced (Fig. 17).

Fig. 17. Annual electricity generation in Germany (VRE scenarios).  

Appendix C. Spatial distribution of Carnot batteries in Germany 

In the case of Germany, the techno-economic targets for Carnot batteries need to be quite ambitious in order to arrive at relevant capacities. This 
effect is more prominent due to the sectoral representation with a detailed heating and gas sector. Both sectors allow for flexible demand via heat 
pumps, electric boilers and electrolysis, which in turn reduce the overall storage demand. In addition, due to the optimistic assumptions in the chosen 
techno-economic configuration lithium-ion batteries are almost completely pushed out of the system. As a result, in the Base case (Fig. 18a) Carnot 
batteries are only expanded in the Southern regions of Germany while with less flexible demand for electrolysis (Fig. 18b) and prevention of grid 
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expansion (Fig. 18c) the overall demand for storage technologies increases and Carnot batteries are expanded in more model regions.

Fig. 18. Spatial distribution of annually provided energy from Carnot batteries for the three scenarios base (a), low flexibility electrolysis (b) and no additional grid 
expansion (c). Values are derived from the techno-economical configuration of 65 % round-trip efficiency, 20 €/kWh storage specific CAPEX and 150 €/kW power 
specific CAPEX. 
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Executive Summary: The energy transition leads to several new developments, such as
changing power plant portfolios, increasing flexibility demand, and thus novel electricity
price dynamics. These effects can be studied using ABM, which simulates the bidding
decisions of market participants and helps uncover emergent market phenomena. For
accurate bidding decisions, these simulated actors, much like real-world market partici-
pants, require precise electricity price forecasts. In this context, techniques for forecasting
future electricity prices must be versatile enough to handle diverse market scenarios and
technology mixes without the need for scenario-specific retraining. This is a significant
difference from traditional forecasting in real-world electricity markets, which typically
involves minor changes in the underlying energy system. Despite the long history of mar-
ket forecasting, it remains unclear which methods are best suited to predict electricity
prices in simulations with varying scenarios and technology combinations. To address this
gap, I assess the applicability of different forecasting methods for price time series gen-
erated by simulations of future electricity markets. Specifically, I evaluate the accuracy
of two modern ML architectures, N-BEATS and Temporal Fusion Transformers, in sce-
narios with substantial increases in RE and FO capacity. As anticipated, ML techniques
outperform naive benchmarks, particularly when future covariates, such as residual load,
are incorporated. In these cases, the MAE consistently stays below 1.40 EUR/MWh, en-
abling precise dispatch optimisation of FOs. Beyond this forecasting accuracy, Temporal
Fusion Transformers can handle disparate input data configurations making them highly
adaptable to data availability constraints. The findings suggest that ML can reliably
forecast electricity prices in future energy scenarios, even with significant changes in RE
and flexibility capacity. Importantly, retraining may not be strictly necessary in various
scenarios, making these methods particularly valuable for energy transition simulations.
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A B S T R A C T

Policy packages, such as the “European Green Deal”, call for a substantial restructuring of the power plant park. 
This, in combination with more flexible demand, will result in novel electricity price dynamics. These can be 
studied using, e.g., agent-based models which simulate bidding decisions of market actors, thereby uncovering 
emergent market phenomena. For their bidding decisions, simulated actors – just like real-world actors – require 
accurate market price forecasts. Techniques to obtain such forecasts need to be applicable to vastly different 
future electricity market scenarios, ideally without the need of scenario-specific retraining. This is a major dif
ference compared to real-world electricity market forecasting, which is based on minimal variations in the un
derlying energy system. Despite the long track record in this field, it is not sufficiently clear which methods are 
suitable for forecasting simulated future electricity markets in greatly varying scenarios and technology mixes. 
To address this gap, we assess the applicability of different forecasting techniques to price time series generated 
by simulations of the future electricity market. We then evaluate the forecast accuracy of two recent machine 
learning architectures, namely N-BEATS and Temporal Fusion Transformers, based on parameter combinations 
with significant expansions of renewable energy and flexibility option capacity. As expected, the results 
demonstrate that machine learning exhibits superior accuracy compared to naïve benchmarks. Particularly, 
when future covariates, such as residual load, are employed, the mean absolute error consistently remains below 
1.40 EUR/MWh. This may be attributed to reduced inner complexity of simulated electricity prices compared to 
real-world market dynamics. Our findings demonstrate that machine learning can provide reliable forecasts of 
future electricity prices and that retraining may not be necessary even with widely varying shares of renewable 
energy and flexibility capacity. These forecasting methods could therefore be effectively employed in electricity 
market simulations in the context of the energy transition.

1. Introduction

In order to make well-informed decisions and to develop effective 
legislation, investors and policy makers require a comprehensive un
derstanding of the electricity market, including its future developments. 
This is particularly important in the context of significant changes being 
introduced by the ongoing energy transition. New legislation, exempli
fied by the “European Green Deal” (European Commission, 2021), de
fines a transformation of the energy system that will diverge from the 
status quo in a number of significant ways. These changes include a 
transition towards high shares of variable renewable energy (RE) 

sources and a substantial increase in flexibility options such as battery 
storages and demand-side flexibility technologies. These developments 
are already influencing the current market environment and will also 
have an increasing impact on future electricity markets, resulting in 
novel price dynamics (Haugen et al., 2024).

Scenarios of the energy transition can be simulated by applying, e.g., 
agent-based modeling (ABM), which is a promising approach in this 
field of study (Pfenninger et al., 2014). ABM enables researchers to 
identify and analyze the market dynamics that result from the decisions 
of individual market actors. In order to formulate these decisions and 
optimize their operational schedules, agents require forecasts of 
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Machine learning; NN, Neural network; PV, Photovoltaics; RE, Renewable energy; RMSE, Root mean squared error; TFT, Temporal fusion transformers.
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electricity prices. This problem falls within the domain of time series 
forecasting, a well-established area of research with a rich history. A 
considerable body of research and the increasing computational power 
have led to the development of a wide range of approaches, from simple 
techniques to highly sophisticated machine learning (ML) methods 
(Petropoulos et al., 2022). However, existing studies have largely 
focused on past and present energy systems, and there is a clear need for 
research that explicitly integrates the significant changes associated 
with the energy transition.

What is therefore required is a robust and comprehensive approach 
to forecasting electricity prices that can be applied across diverse energy 
transition scenarios. This solution must ensure accuracy and consis
tency, while maintaining a reasonable level of preparation and execu
tion time. For this purpose, we investigate and combine two areas of 
research, electricity market simulation and time series forecasting, with 
a particular focus on ML. This integration is intended to facilitate the 
generation of robust results even in scenarios characterized by a sig
nificant increase in RE sources and novel price dynamics.

1.1. Related works

A comprehensive review on electricity price forecasting was carried 
out in Weron (2014) describing the special nature of electricity as a 
commodity. Especially in the recent past, an extensive number of re
views has been published (Jiang and Hu, 2018; Jedrzejewski et al., 
2022; Tschora et al., 2022; Heidarpanah et al., 2023; Xiong and Qing, 
2023; Jiang et al., 2023; Lehna et al., 2022). Probabilistic electricity 
price forecasting is extensively reviewed in Nowotarski and Weron 
(2018). The recent work of Beltrán et al. (2022) proposes a framework 
for day-ahead electricity price forecasts using statistical methods and 
neural networks (NN) enforcing the human-machine collaboration. In 
Beran et al. (2021), hybrid models, specifically combined fundamental 
and econometric models, are found to be best suitable for day-ahead to 
week-ahead electricity prices, the relevant range for most operational 
decisions and strategy optimization. Transfer learning is tested in Gun
duz et al. (2023) demonstrating an improved performance compared to 
a single-market procedure. Besides standard statistical methods (e.g., 
autoregressive moving-average models), NN and especially deep 
learning are gaining more popularity due to higher availability of 
computational power (Akhtar et al., 2023).

As the shares of RE in the electricity mix increases, the electricity 
price is increasingly influenced by fluctuations in solar irradiation and 
wind speed (Alkhayat and Mehmood, 2021; Meng et al., 2022). This 
highlights the need for adaptations in forecasting approaches to account 
for these variables (Nyangon and Akintunde, 2024). Expected load and 
RE generation are highly relevant for accurate electricity price forecasts 
(Billé et al., 2023; Bai, 2024; Da Silva and Meneses, 2023; Alhendi et al., 
2023; Bashir et al., 2022). Regarding solar irradiation time series, the 
application of neural networks is prominent by applying long short-term 
memory (LSTM) networks (Cheng et al., 2021), hybrid deep NN comb
ing multivariate inputs (Huang et al., 2021). Further, the solar power 
generation potential is also of high interest to market participants and 
modelers (Ledmaoui et al., 2023). For this, also LSTM networks are 
applied to forecast the expected generation by integrating domain 
knowledge explicitly for photovoltaics (PV) (Qu et al., 2021). Fore
casting approaches are developed to be used even when no sufficient 
meteorological data is available by using data from other surrounding 
PV stations (Zhen et al., 2021). Looking at the area of wind forecasts, we 
also find a wide range of approaches (Arslan Tuncar et al., 2024), such as 
combining statistical methods with NN (Camelo et al., 2018) or 
temporal-based transformer (Mo et al., 2024). Nazir et al. (2020) give an 
extensive overview of different wind forecasting methods with 
increasingly popular NN integrations. Sewdien et al. (2020) identified 
critical parameters in NN for wind generation forecasting concluding 
that longer forecast periods require larger and more layers in the NN. 
Focusing on the trading aspect of wind generation, Fan et al. (2009)

apply a two-stage NN, whereas Cruz et al. (2011) confirm an influence of 
wind generation forecasts on price forecasts when analyzing the situa
tion in Spain. Fraunholz et al. (2021) combine forecasts based on ML 
within an ABM demonstrating that the NN approach outperforms linear 
regression and naïve benchmarks in a European case study from 2020 to 
2050. In Shimomura et al. (2024), explainable artificial intelligence is 
employed to evaluate the impact of RE sources on electricity prices in 
Japan. In Castilho Braz et al. (2024), the Brazilian electricity markets are 
the subject of a detailed analysis, with forecasts of price trends for both 
the day-ahead and Intraday markets. Walter and Wagner (2024) present 
a generative time series simulation for day-ahead electricity prices on an 
empirical study on the EPEX spot market in Europe in the years 
2020–2023. In order to forecast electricity prices in the Hungarian 
market, an extensive data set comprising more than 40 years of mete
orological data has been applied in Mayer et al. (2023).

The majority of these studies share a common characteristic: they 
present extensive training, testing, and validation of their models on rich 
historical data, but with little variation in the underlying electricity 
system. This represents a significant limitation in the analysis of energy 
transition scenarios, given that electricity price dynamics will be 
fundamentally different in future electricity markets with high shares of 
variable RE.

1.2. Novelty

In order to address the shortcomings of existing research, which is 
closely associated with past and current energy system dynamics, we 
propose a novel assessment of various forecasting techniques. The 
approach is based on the combination of advanced ML with an ABM 
capable of generating electricity price training data sets for a range of 
potential future electricity systems. This setup allows us to investigate 
novel electricity price dynamics. Notably, RE technologies are progres
sively replacing conventional power plants, with fuel-based technolo
gies projected to be gradually phased out in the coming years. The rising 
prevalence of RE is expected to have considerable influence on elec
tricity prices, given that RE are characterized by almost negligible 
marginal costs and that conventional power plants are losing their role 
in price formation. Moreover, the expanded integration of flexibility 
options, such as battery storage, will significantly impact the energy 
system. Consequently, we employ the state-of-the art ABM electricity 
market simulation AMIRIS (Schimeczek et al., 2023a). Specifically, 
AMIRIS is parameterized to simulate a range of potential future elec
tricity market scenarios which are then transformed into extensive 
training and testing data sets. While we acknowledge that simulated 
data cannot fully replicate all nuances present in measured data, it is 
recognized that it offers a valuable and innovative additional perspec
tive. For example, Frey et al. (2020) have already identified the emer
gence of new price dynamics resulting from transformative shifts 
observed in such electricity market simulations. The objective of our 
research is, therefore, to gain a more comprehensive understanding of 
the accuracy and performance of varying electricity price forecasting 
methods in evolving renewable-based electricity markets.

1.3. Paper structure

The paper is structured as follows. In Section 2, we present an 
overview of agent-based energy market simulation and describe the 
open electricity market model AMIRIS in. In Section 3, we provide 
background information on electricity markets. Subsequently, five 
forecasting methods are described, ranging from naïve benchmarks to 
advanced ML methods. The necessary training and testing data is 
generated by AMIRIS. In Section 4, we assess the implemented ap
proaches in terms of their quantitative forecasting accuracy. In Section 
5, we discuss the practical applications and constraints of the afore
mentioned methods, with particular consideration given to the 
perspective of electricity market simulation models. Finally, in Section 
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6, we give a summary of the findings and outline remaining open 
questions.

2. Material and methods

In this Section, we argue why ABM is a powerful method to inves
tigate future electricity markets. Subsequently, we present the ABM 
AMIRIS, which is applied in this study, and we provide an overview of 
the model design and architecture. Finally, we argue the suitability of 
AMIRIS for generating training and testing data for the ML networks.

2.1. Agent-based energy market simulations

The liberalization and the growing complexity of energy markets 
over the last decades brought new challenges to energy systems mod
elers (Pfenninger et al., 2014). The growing field of ABM can help re
searchers to find answers to pressing questions of today’s and 
tomorrow’s complex energy systems (Klein et al., 2019). Especially 
when simulating electricity markets, ABM have proven to be a well 
suitable method (Farmer et al., 2015; Ringler et al., 2016; 
Deissenroth-Uhrig et al., 2017; Barazza and Strachan, 2020). Firstly, by 
incorporating the perspective of individual actors, researchers gain 
insight into possible emergent effects stemming from individual agents’ 
actions causing macro-level phenomena (Frey et al., 2020). Secondly, 
employing heterogenous agents in an ABM simulation allows for the 
representation of diverse actor characteristics, including their objec
tives, risk profiles, information levels, and interactions with their envi
ronment (Kraan et al., 2018). Thirdly, the practical applicability of ABM 
in addressing real-world energy transition challenges, while maintain
ing computational feasibility, stands as a significant advantage over 
game theoretical approaches, which may become intractable when 
parameterized for tackling substantial real-world problems (Hansen 
et al., 2019). It is highly important to accurately represent agents and 
their environment in an ABM. Besides detailed actors’ studies (Reeg, 
2019), the agent’s interactions have to be modelled with a high level of 
detail. The central element of these economic models is the simulated 
day-ahead electricity market where a market clearing is carried out 
periodically. In order to participate in the market, an agent has to submit 
its bids and asks to the market. To this end, the agent is equipped with 
decision making mechanisms that account for different qualities of 
strategic decisions (Guerci et al., 2010; Li, 2012). Since agents typically 
act on expected prices, accurate electricity price forecasts are critical for 
the simulation and performance of such agents.

In the realm of energy systems analysis, models must acknowledge 
the complex interplay of social, technological, economic and environ
mental dimensions (Bale et al., 2015). ABM are well-suited in examining 
the interactions and behaviors of diverse actors, accounting for market 
imperfections (Weidlich and Veit, 2008; Ragwitz et al., 2007). Notably, 
there are several (open) ABM, such as AMIRIS (Schimeczek et al., 
2023a), ASSUME (Harder et al., 2023), BSAM (Kontochristopoulos et al., 
2021), EMLab-Generation (Chappin et al., 2017), MASCEM (Vale et al., 
2011), and PowerACE (Sensfuß, 2008).

2.2. Electricity market modelling using AMIRIS

We deploy the open ABM AMIRIS which is the “Agent-based Market 
model for the Investigation of Renewable and Integrated energy Sys
tems” (Schimeczek et al., 2023a). AMIRIS has been developed since 
2008 and was published open source1 in late 2021 (Nienhaus et al., 
2021). It is a powerful simulation tool based on the framework FAME 
(Schimeczek et al., 2023b; Nitsch et al., 2023a) and it is used for the 
analysis of energy policy instruments and market integration of RE and 
flexibility options. The heart of the model is the simulation of the 

day-ahead electricity market revealing market dynamics and agent in
teractions (Nitsch et al., 2021a) while considering different policy 
frameworks (Frey et al., 2020). In Klein et al. (2019), a detailed com
parison of AMIRIS with two other ABM contrasting a state-of-the art 
optimization model is carried out. AMIRIS has been back-tested for the 
day-ahead electricity markets of Germany (Maurer et al., 2024) and 
Austria (Nitsch et al., 2021b) which resulted in a good fit of simulated 
and historical electricity prices. Fig. 6 in the Appendix provides an 
overview of the agents represented in AMIRIS (i.e. power plant opera
tors, traders, flexibility marketers, markets, and regulators) and their 
interactions via information, energy, and money flows. Users have to 
define and provide the input data, keeping feature selection and the 
identification of relevant time series in mind (Müller, 2021). In the 
context of AMIRIS this translates to power plant park structure, RE 
generation time series, demand data, and operational cost data. Flexi
bility options apply one of two distinct strategies when participating in 
the day-ahead electricity market: maximizing their own profits or 
minimizing system dispatch costs (Nitsch et al., 2024). These strategies 
represent a business-centered optimum or a system-friendly approach to 
dispatch the storage. Further revenue streams for flexibility options, 
such as Intraday markets, are currently under development.

In our analysis, we will use data derived from AMIRIS to test different 
forecasting approaches. This offers many key advantages: i) we generate 
training and testing data matching our needs to feed the NN, ii) we are in 
full control over the level of complexity in each scenario by defining 
agents and their properties individually, iii) we are able to assess the 
impact of changing power systems on price dynamics and test the suit
ability of different forecasting methods, iv) we demonstrate the use-case 
of applying different ML architectures in an electricity market simula
tion model, and v) we extract the key learnings of integrating the pre
sented ML approaches in order to provide benefits for other electricity 
market simulation model in the field. The detailed procedure of the 
scenario definition is described in Section 3.2.

3. Theory and calculation

We present the theory behind wholesale electricity markets in Sec
tion 3.1. This includes a brief summary of changing price dynamics 
introduced by growing RE shares and impacts by large flexibility option 
capacity which will likely be installed in the (near) future. Based on the 
theory, Section 3.2 outlines our scenario definitions while Section 3.3
describes the models tested to forecast electricity prices.

3.1. Fundamental aspects of electricity markets

Wholesale electricity prices are the market result of matching supply 
of producers (i.e. power plant operators) and demand of consumers in a 
dedicated market zone. Besides trading at the power exchange, con
sumers and producers can also agree on individual over-the-counter 
trades. Although, these trades are usually non-transparent and bi- 
lateral, we assume them to be mostly aligned with wholesale prices, 
since larger price spreads would resemble arbitrage opportunities. 
Beyond that, there are also dedicated markets which are designed for 
ancillary services, e.g., frequency restoration reserves, usually with pay- 
as-bid schemes (Aussel et al., 2017). In reality, these markets do have 
implications on the wholesale markets since they impact the available 
capacity, however, they are currently not in the focus of the AMIRIS 
simulation. Consequently, similar to futures and forwards markets, they 
are not included in our day-ahead electricity price forecasting process 
but may be considered in extensions to our work. The main instrument 
to determine electricity prices is the day-ahead spot market where a 
market clearing is carried out (Martin et al., 2014). Bids and asks are 
sorted resulting in a merit-order. In Central Europe, a uniform pricing 
mechanism is established in the day-ahead electricity markets (Zakeri 
et al., 2023). Our model is therefore also based on this form of pricing. 
For the clearing, a congestion-free nature of the market and 1 https://gitlab.com/dlr-ve/esy/amiris (accessed on 30 October 2024)
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decentralized dispatch are assumed.
In accordance with economic theory, market participants define 

their bids according to their marginal cost. This mainly includes oper
ational costs, fuel costs, and emission certificate costs. In reality, non- 
convex costs (Makkonen and Lahdelma, 2006) can lead to uplifts, i.e. 
markups to marginal costs accounting for ramp-up costs (Liberopoulos 
and Andrianesis, 2016), and downlifts, i.e. markdowns accounting for 
ramp-down costs (Pape et al., 2016). AMIRIS can also consider such 
markups or markdowns.

3.2. Energy transition scenarios

We define two main sets of scenarios. Firstly, we vary the storage 
capacity within four distinct electricity market configurations, reflecting 
different degrees of market influence by these flexibility options. Sec
ondly, we examine the expansion of RE in terms of PV and wind onshore 
installations. This approach is designed to yield insights into forecasting 
accuracy in scenarios with different combinations of RE shares. It is 
essential to note that both sets of scenarios should be viewed as 
parameter variations rather than being interpreted as definitive, so
phisticated scenarios, roadmaps, or guidelines for shaping future elec
tricity markets.

Regarding the variation of flexibility option capacity, such as battery 
storage systems (Divya and Østergaard, 2009), we define four distinct 
scenarios in Table 1. “No Flex” describes an artificial electricity system 
where the power plant park solely consists of controllable conventional 
power plants and fluctuating renewable power plants. Due to the 
idealized way of modelling renewable power generation by applying 
exogenously defined time series, we expect a highly correlated situation 
between residual load (i.e. load which has to be met by dispatchable and 
typically conventional power plants) and the day-ahead electricity price. 
This is also the reason why we do not consider a conventional-only 
scenario.

When we introduce flexibility options, see “Little Flex”, we expect to 
observe a more complex pattern due to the impacts of flexibility options. 
Initially, we will keep their share relatively small and increase it in “Mid 
Flex” up to “High Flex” so that we can evaluate the capabilities of the 
forecasting algorithms. Simple forecasting methods most likely will not 
perform well in the latter two settings, because the operational decisions 
by flexibility options decouple the idealistic residual load and price 
relationship. The remainder of the system consists of a load agent ful
filling its electricity demand, a day-ahead electricity market agent per
forming an hourly market-clearing, as well as supply traders offering 
their generation capacity at their marginal costs. The installed power 
plant capacity is approximately aligned with the German market in 2019 
(Nienhaus et al., 2023) whereas load and RE generation potential are 
derived from 2018 and 2019 (SMARD, 2020). In all four scenarios, the 
RE capacity is identical and based on historical values. This implies that 
potential future scenarios with higher RE shares and potentially 
different price dynamics are currently not considered.

While the scenarios presented so far only consider different shares of 
flexibility options, we also compile scenarios of RE expansion which 
provide additional insights of forecasting performance. For this purpose, 
the AMIRIS scenario generator scengen (Nitsch et al., 2023b) was used to 
generate more than 100 scenarios which are processed to training and 
testing data sets. In each scenario, PV and wind onshore capacity is 

randomly chosen within a predefined range. All other parameters 
roughly correspond to the German electricity system in 2019 (Nienhaus 
et al., 2023). All input data undergoes a thorough check for outliers and 
is subsequently normalized to facilitate the ML process.

3.3. Investigated forecasting methods

In total, we compare five forecasting methods with varying levels of 
complexity, two comprehensive ML architectures and three bench
marking methods. N-BEATS (Oreshkin et al., 2019) is a NN for time 
series forecasting by applying deep learning. It is well tested on data sets 
used in forecasting competitions and is said to be applicable on a wide 
range of domains. Temporal fusion transformers (TFT) (Lim et al., 2021) 
allow to integrate past and also future covariates in their training. This is 
a significant advantage over many other methods promising better 
forecasting performance. Seasonal and trend characteristics can be 
embedded by temporal features within the input data and the model’s 
ability to encode such information directly. In our application, inte
grating covariates into the training process is expected to enhance 
forecasting performance, see also Fig. 1. Past and future covariates 
describe time series that are available for the past and future, respec
tively. Examples of such time series include time and calendar infor
mation. Additionally, historical covariates, which are only available for 
past time steps, may be included in the model. These could include, for 
example, actual renewable energy generation. A detailed preliminary 
study on feature selection was carried out in Nitsch and Schimeczek 
(2023). The impact of varying train-test splits, ranging from 75 % to 
25 % and 25–75 %, was evaluated.

In order to quantify the accuracy, a set of commonly used day-ahead 
electricity price forecasting methods is employed as a benchmark 
(Hyndman and Athanasopoulos, 2018). Namely, we apply the naïve 
benchmark 

p̂T+h∣T = pT (1) 

where the forecasted day-ahead electricity price p̂ at the time T+h is set 
equal to the day-ahead electricity price p at time T (Hyndman and 
Athanasopoulos, 2018). A slight modification involves setting 

p̂T+h∣T = pT+h− 24 (2) 

where the forecasted day-ahead electricity price is derived from the day- 
ahead electricity price p at time T + h − 24, taking into consideration 
the daily price patterns (Hyndman and Athanasopoulos, 2018). Addi
tionally, we deploy an Exponential Smoothing (Winters, 1960; Holt, 
2004) as 

p̂T+h∣T = αpT + α(1 − α)pT− 1 + α(1 − α)2pT− 2 +… (3) 

with the smoothing operator α, a parameter with values in the range 
[0, 1], which is a simple yet well-proven time series forecasting method 
applying exponentially decreasing weights over time.

Hyper-parameters were optimized using the state-of-the-art frame
work Optuna (Akiba et al., 2019). The model code and documentation 
can be found in the open repository focapy (Nitsch, 2023). For error 
metrics, we calculated mean absolute errors (MAE) as 

Table 1 
Overview of scenarios distinguished by different flexibility option capacity.

Scenario No Flex Little Flex Mid Flex High Flex

Parameter

Electricity demand 527 TWh/a
Conventional capacity 77 GW
Renewable capacity 120 GW
Flexibility options 0 GW 4 GW 20 GW 80 GW Fig. 1. Past and future covariates as time series inputs to TFT.
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MAE =
1
T
∑T

t=1
|at − p̂t | (4) 

where a and p̂ represent the actual and forecasted prices, respectively, 
with a total length of T. We chose an absolute error metric, such as MAE, 
given the potential for target values (electricity prices) to be (close to) 
zero or even negative, making the use of mean absolute percentage er
rors (MAPE) problematic. Additionally, we calculated root-mean- 
squared errors (RMSE) as 

RMSE = √{
1
T
∑T

t=1
(at − p̂t)

2
} (5) 

4. Results

We begin by examining the results of the AMIRIS scenarios with 
different shares of flexibility options followed by the results of fore
casting accuracy in scenarios of RE expansion.

4.1. Different shares of flexibility options

Prior to presenting the results of the forecasting methods in Section 
4.1.2, we analyze the simulation runs of the four scenarios. These results 
offer valuable background information that aids in interpreting the 
forecasting accuracy.

4.1.1. Impact on market dynamics
Fig. 2 shows day-ahead electricity prices as simulated by AMIRIS 

over a 168-hour period, with each line representing one of the four 
scenarios (essentially varying the amount of flexibility options avail
able). Increasing storage capacity generally has a dampening effect on 
electricity prices. In particular, price peaks can be flattened by dis
charging storage, while valleys can be raised by charging storage. It is 
important to note that the storage operator aims to maximize its profits, 
while taking into account its impact on electricity prices when opti
mizing its bidding schedule. As a result, there are certain time periods 
when all four curves are aligned, indicating that during these hours the 
storage operator either has no significant impact on the resulting elec
tricity prices, or is simply inactive.

The statistics in Table 2 provide an understanding of the variability 
of electricity prices under different assumptions of storage installations, 
highlighting the impact of flexibility on pricing dynamics. In “No Flex”, 

there is a relatively wide dispersion of prices, as indicated by the stan
dard deviation of 15.27 EUR/MWh. The minimum price2 is − 63.51 
EUR/MWh, while the maximum is 116.83 EUR/MW. Moving to “Little 
Flex”, the mean price increases slightly to 38.49 EUR/MWh, accompa
nied by a lower standard deviation of 13.75 EUR/MWh, indicating a 
narrower spread of prices compared to “No Flex”. In “Mid Flex”, the 
mean price rises further to 38.80 EUR/MWh, with a continued decrease 
in the standard deviation to 12.07 EUR/MWh, suggesting the previously 
described price dampening effect. Finally, in “High Flex”, the mean price 
reaches 38.96 EUR/MWh, accompanied by the lowest standard devia
tion of 11.17 EUR/MWh among all scenarios. The results from the year 
2018 demonstrate similar overall trends as found for the year 2019. 
However, differences arise in the weighted mean electricity prices 
amounting to 43.50 EUR/MWh in 2018 and 38.50 EUR/MWh in 2019.

4.1.2. Electricity price forecasting accuracy
The two ML methods N-BEATS and TFT are trained on 2018 and 

tested on 2019. For the evaluation of the forecasting accuracy, a full year 
is chunked in roughly 500 samples, each with 168 hours of past covar
iate data and 24 hours to forecast. Forecasted values are then tested 
against actual values from the simulation. Table 3 lists MAE of all 
forecasting methods in the four scenarios.

The MAE provide insights into the forecasting capabilities of each 
method within different shares of flexibility options. Notably, the TFT 
trained with future covariates (expected load and RE generation) shows 
the lowest MAE values, suggesting its superior accuracy in forecasting 
electricity prices across a spectrum of scenarios. The benchmark 
methods are performing worse in every scenario, but are much cheaper 
to apply, since they do not require to train a model. Further, the pre
sented results clearly demonstrate a consistent trend of improved ac
curacy across the scenarios of “No Flex” to “High Flex”. We conclude that 
this effect is likely due to the price flattening effect of increasing market 
impact of flexibility options, see also Fig. 2.

Fig. 3 displays an exemplary forecast made by the TFT model in “Mid 
Flex”. Overall, the forecast aligns well with the actual price dynamics. 
Nevertheless, there is a slight deviation as the model fails to accurately 
forecast the first valley underestimating actual values. This can likely be 
attributed to price dynamics caused by charging actions of flexibility 
options. Forecasting errors also exhibit a temporal dependency that 
correlates with the load pattern. Consequently, accuracy tends to be best 
at night, with errors peaking during the day (Nitsch and Schimeczek, 
2023). In the context of the German case study presented, local weather 
effects, including short-term fluctuations in renewable energy genera
tion, generally have a limited impact on the day-ahead market zone and 
are therefore not of great influence to this particular forecasting 
procedure.

4.2. Forecasting accuracy in future energy scenarios

As elaborated in the Introduction in Section 1, the energy transition 
will bring very different market dynamics compared to historical ob
servations. Besides the expanding flexibility potential, as presented in 
Section 4.1, we expect considerable impacts by the expansion of RE 
leading to novel price dynamics of electricity markets. Therefore, we 
investigate the effects on forecasting accuracy in such scenarios. For this 
we have created unique training and testing data, as described in Section 
3.2. Due to high computational costs of ML training, we have limited this 
analysis to TFT, the best performing method so far. Fig. 4 shows the 
results of different train-test splits in two model configurations (without 
future covariates and with future covariates). All six models are trained 
and evaluated independently. The left column shows the available 
training data to the TFT model and their weighted mean average prices 

Fig. 2. Price dampening effect of different flexibility capacity in the four sce
narios on simulated electricity prices over a one-week period in 
November 2019.

2 Periods of high inflexible generation and low demand can lead to negative 
prices in electricity markets.
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of the scenario marked with ‘x’. Values in between are interpolated by a 
cubic method. It is evident that as RE capacity increases, electricity 
prices tend to decrease – a trend consistently observed across all three 
rows representing different numbers of scenarios and train-test splits (10 
scenarios, 30 scenarios, and 90 scenarios). The middle and right column 
show the forecasting accuracy evaluated as MAE over all errors of the 
forecasted electricity prices against the actual electricity prices as 
calculated by AMIRIS. In the middle column, the TFT relies solely on 
past covariates, while in the right column, the TFT also incorporates 
future covariates, such as calendar information, expected load, and RE 
generation.

Notably, we observe a robust results with MAE values ranging from 
2.25 to 3.25 EUR/MWh when at least 30 scenarios are employed as 
training data (middle and bottom rows). However, when restricting 
training data to only 10 scenarios (top row), forecasting accuracy de
teriorates significantly, with MAE doubling, when assessing scenarios 
that fall well outside the range of known training data. This strongly 
suggests that the selection of training data is important for the perfor
mance of the model. Moreover, the TFT model equipped with future 
covariates (right column) consistently outperforms the version relying 
solely on past covariates (middle). Errors are reduced by approximately 
an order of magnitude, which holds promise for applications in energy 
system models, particularly ABM. Moreover, in the bottom row, where 

the train-test split is 75 % and 25 %, the results are similar compared to 
the middle row, where the split is reversed at 25 % and 75 %.

Additionally, we can observe that MAE generally exhibits a down
ward trend as onshore wind capacity increases, except for the segment of 
high wind power capacity, which lacked sufficient training data, as 
indicated in the top row of plots in Fig. 4. A similar trend is also evident 
when considering different error metrics like RMSE.

The histograms in Fig. 5 illustrate the distribution of errors for 
training with 30 and 90 scenarios. It can be observed that an increased 
number of training scenarios leads to a superior fit when MAE is 
employed as the error metric. However, the addition of future covariates 
– a common practice in such forecasting problems (Ozyegen et al., 2022) 
– improves the accuracy in our analysis even more than the quantity of 
available training data. Specifically, with such covariate data, MAE 
remain consistently below 1.40 EUR/MWh.

5. Discussion

As suggested in Haugen et al. (2024), the formation of electricity 
prices in energy market models represents a significant factor influ
encing the analysis of actors’ behaviour, ranging from the operation of 
flexibility options to investment decisions. The use of simulated and 
synthetic data as a complement to historical data is an attractive 
approach, particularly given its current deployment in the context of 
creating energy generation and load profiles (Mayer et al., 2023). 
Consequently, the presented methodology in this paper contributes 
valuable insights to the currently limited field of such day-ahead elec
tricity price forecasting in high RE penetration scenarios. However, 
given the inherent complexity and non-linearity of energy markets 
(Castilho Braz et al., 2024), it is essential to consider that our general 
conclusions should not be interpreted as individual predictions on 
market results. Rather, they should be regarded as projections contrib
uting towards a better understanding of potential market dynamics in 
systems with high shares of RE. Despite the presentation of a compre
hensive range of potential scenarios, uncertainty remains to scenario 
definition and model formulation. Future research should investigate 

Table 2 
Descriptive statistics on simulated electricity prices in the four scenarios.

Year 2018 2019

Scenario No Flex Little Flex Mid Flex High Flex No Flex Little Flex Mid Flex High Flex

Metric

Std. dev. 15.48 13.56 11.95 11.07 15.27 13.75 12.07 11.17
Minimum − 35.21 − 22.11 − 17.18 0.00 − 63.51 − 52.49 − 37.73 0.00
Maximum 115.96 103.38 95.16 94.78 116.83 102.15 96.33 96.33

Table 3 
Mean absolute error (MAE) in EUR/MWh of forecasts in four different scenarios.

Scenario No 
Flex

Little 
Flex

Mid 
Flex

High 
Flex

Metric

Naïve t1 (1) 9.29 7.78 6.76 6.45
Naïve t24 (2) 8.57 7.54 6.27 5.91
Exponential Smoothing (3) 8.06 6.70 5.73 5.46
N-BEATS (Oreshkin et al., 2019) 7.15 6.24 5.38 5.12
TFT (Lim et al., 2021) 4.11 3.90 3.20 3.26
TFT with future covariates (Lim 
et al., 2021)

3.12 3.45 3.26 2.86

Fig. 3. Exemplary forecasted prices for the next 24 hours (green) by the TFT model in “Mid Flex” with 168 hours of past covariates plotted against actual pri
ces (black).
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the influence of changes in market and policy design, unforeseen events 
with significant impact on energy markets, and the manner in which 
market actors respond to forecast uncertainty. In addition, we wish to 
highlight the following limitations.

In the realm of analyzing various flexibility option shares in Section 
4.1, it is important to acknowledge a potential limitation related to 
model training. A possible enhancement lies in the inclusion of a more 
diverse set of training data to refine the robustness of our models. The 
analysis of RE expansion in Section 4.2 underscores the considerable 
impact of the training data selection on results. Future analyses should 
therefore diligently consider this important aspect. Similarly, within the 
analysis of RE expansion scenarios in Section 4.2, a notable limitation 
lies in the missing variability of weather conditions. Periods of low wind 
and solar generation may substantially impact results, particularly as RE 
capacity increases. The use of NN with future covariates (as demon
strated in Fig. 4) might mitigate this impact since the network is aware 
of the short-term residual load. However, without these future cova
riates, variations in weather years could exert a greater influence on the 
results. To ensure that our results are easily transferable and 

understandable, our presented scenarios assume no variation in pa
rameters aside from wind and PV capacity. As already described in 
Section 3.2, this assumption does not fully capture the real-world dy
namics of the energy transition missing the evolution of flexible demand 
and generation capacity. It is evident that additional markets, which are 
currently under discussion but not yet implemented, such as capacity or 
flexibility markets, would influence market dynamics and necessitate 
further analysis. However, an examination of these points is beyond the 
scope of the present manuscript.

Beyond these specific limitations, broader considerations should be 
mentioned. The computational resources and training data allocation 
significantly affect the time required for training NN. While the initial 
effort to train models and optimize hyperparameters is substantial, 
transitioning to the utilization of pre-trained models with optional fine- 
tuning in production settings could significantly alleviate this workload. 
When experimenting with a wider array of input features, the explain
able feature of TFT could help identify the most influential factors 
governing forecast accuracy. Additionally, the incorporation of TFT’s 
capability to provide probabilistic forecasts holds the potential to 

Fig. 4. Simulation of PV and onshore wind expansion scenarios (marked by white ’x’ markers) using AMIRIS. Values in between are interpolated using a cubic 
method. The left column represents the training data, while the other two columns illustrate forecasting accuracy in terms of Mean Absolute Error (MAE) in EUR/ 
MWh. The middle column shows the accuracy based on past covariates alone, whereas the right column includes additional future covariates to the forecasting 
procedure. Note: Scenarios are considered as parameter variations and shall not be interpreted as definitive and complete future electricity systems, see also Sec
tion 3.2.
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broaden the applications within energy market simulation models.
In terms of our findings, they align with existing literature as follows: 

Lago et al. (2021) conducted an extensive review of day-ahead elec
tricity price forecasting, also concluding that deep neural NN, such as 
TFT, tend to outperform Lasso Estimated AutoRegressive methods, 
albeit with increased computational costs. Fraunholz et al. (2021) found 
that NN outperform regression and naïve benchmarks when applied in 
an ABM. However, the choice of specific architecture significantly in
fluences the results of the ABM, underscoring the need for a careful 
assessment. Trebbien et al. (2023) presented an analysis of day-ahead 
electricity prices from 2017–2020, identifying load, wind, and solar 
generation as key features for an explainable ML model, aligning with 
our findings regarding input data selection. While our study focuses on 
TFT networks in a similar domain, it is worth noting that they are often 
employed in forecasting load (Nazir et al., 2023) or renewable energy 
generation (López Santos et al., 2022). In contrast to the original 
N-BEATS architecture (Oreshkin et al., 2019), which does not allow 
future covariates, the N-BEATSx (Olivares et al., 2023) offers this 
extension.

Numerical test results show MAE of around 3.30 EUR/MWh on his
torical German market data. Azam and Younis (2021) conduct load and 
price forecasting using a novel hybrid deep learning approach demon
strating achieving MAE of around 5.20 USD/MWh on the ISO New En
gland energy market in 2018 and 2019. In Ziel and Weron (2018), 
twelve distinct historical datasets of day-ahead electricity prices are 
evaluated, revealing a MAE in the German market zone of approxi
mately 5 EUR/MWh. Fraunholz et al. (2021) perform a scenario analysis 
of ten interconnected market zones in Europe from 2020 to 2050 with 

MAPE forecasting errors between 0.10 and 0.39.

6. Conclusion

The findings of our study demonstrate a powerful approach that 
combines agent-based electricity market simulation and time series 
forecasting based on machine learning to provide forecasts for energy 
transition scenarios. Past and present market data, which are widely 
used in forecasting studies today, do not account for the novel price 
dynamics of future highly renewable electricity markets. In contrast, we 
explicitly incorporate foreseeable changes in energy systems resulting 
from the ongoing energy transition. In particular, we investigate energy 
transition scenarios with significant expansion of flexibility options and 
renewable energies, which are used to train and test different forecasting 
methods. We then use an open state-of-the-art agent-based electricity 
market model and open data to generate market results in these sce
narios that differ significantly from today’s energy system. We then 
assess the accuracy of different electricity price forecasting methods in 
the context of these widely varying scenarios. In our assessment, 
comprehensive machine learning methods, namely Temporal Fusion 
Transformers, demonstrate superior forecasting accuracy for future 
electricity markets compared to naïve benchmarking methods. Mean 
absolute errors decrease by approximately one order of magnitude when 
future covariates are accessible and understandable to the model. In 
addition to the demonstrated precision, even in environments charac
terized by significant change, the examined methodologies offer several 
key advantages over conventional forecasting techniques. Some ma
chine learning-based methods, including Transformers, are capable of 

Fig. 5. Distribution of mean absolute error (MAE) in EUR/MWh for different training sets and TFT configurations. Note: Different scaling of x-axis for runs with 
future covariates.
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handling disparate input data configurations, thereby facilitating their 
adaptation to evolving settings. Moreover, scaling is readily achievable 
from simple proof-of-concepts to comprehensive modelling suites. In 
order to apply our results to other electricity market simulations, mod
elers need to apply their domain knowledge when defining training data 
and selecting input features. As machine learning-based methods can be 
computationally expensive, adequate resources are required, at least 
during the initial training stage. Our results are relevant not only to 
agent-based electricity market modelling but also to the broader field of 
electricity price forecasting. The presentation of quantitative results on 
forecasting accuracy contributes valuable insights to the general un
derstanding of modeling electricity markets affected by the energy 
transition. Furthermore, they can be employed to supplement existing 
assessments of investment decisions within the industrial sector. From a 
technical perspective, modular, open, and comprehensive software 
packages facilitate the transferability of our approach to other applica
tions and more in-depth analyses. Future research may address broad
ening the scenario space, with specific attention to the incorporation of 
diverse storage agents, varying technological considerations, the influ
ence of potential market powers, and the impact of different agents’ 
operational strategies. It would also be valuable to investigate the un
certainty of future electricity market scenarios in terms of market design 
and agent behaviour. Furthermore, the presented forecasting technique 
could also be applied to additional markets, such as Intraday markets. 
This would facilitate a more comprehensive analysis of the interplay 
between multiple markets.
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Fig. 6. Schematic overview of the agents and their connections in the agent-based electricity market model AMIRIS (Schimeczek et al., 2023a).

Data Availability

All code used to run this analysis is openly available in Schimeczek 
et al. (2023a), Nitsch et al. (2023b), Nitsch (2023). The data is based on 
Nienhaus et al. (2023). 
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Lim, B., Arık, S.Ö., Loeff, N., Pfister, T., 2021. Temporal fusion transformers for 
interpretable multi-horizon time series forecasting. Int. J. Forecast.
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Executive Summary: Growing electricity price volatility has attracted significant in-
vestor interest in FOs, evidenced by over 226 GW of battery storage connection requests
submitted to German transmission system operators in 2024 alone. Conversely, arbitrage
by FOs tends to reduce price spreads as high prices are reduced by discharging and low
prices are increased by charging. Thus, substantial uncertainty persists regarding how
large-scale storage deployment will affect DAMs and individual economic viability under
competitive market conditions. I address this problem by calibrating the AMIRIS model
to a 2030 energy scenario for Germany, as defined in the Ariadne report2. My key method-
ological contribution extends AMIRIS with ML-based price forecasting capabilities that
enable realistic simulation of competing FOs, thereby addressing a significant limitation
of previous modelling approaches. With this ABM framework, I simultaneously capture
individual FO economics and system-wide market dynamics through endogenous price
formation. My analysis examines how forecasting accuracy influences operational deci-
sions and competitive profitability. I find that imperfect ML forecasts can substantially
reduce FO revenues, while operational strategy choices create significant performance dif-
ferentials. Under accurate forecasting conditions, “risk-taking” strategies generate higher
revenues than “risk-averse” approaches, although at the cost of increased cycling frequency.
System-level analysis reveals a profitability plateau for homogeneous storage deployments
between 4 to 8 GW installed capacity and 32 GWh total energy capacity. With favourable
installation costs, annual returns can reach approximately 20% through DAM arbitrage
alone. However, while heterogeneous storage technologies initially preserve their rev-

2The Ariadne report is widely recognised for its comprehensive analysis of potential pathways for the
German energy transition towards climate neutrality by 2045 (Luderer, Kost, and Sörgel 2021).
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enue shares, individual profitability declines significantly once critical market penetration
thresholds are exceeded. My findings indicate that current battery connection requests
in Germany may exceed economically viable deployment levels in current market frame-
works. The open-source modelling toolchain supports future research extensions which
may focus on additional revenue streams such as ancillary services and cross-market op-
timisation strategies.
Author Contributions: I am the lead author of this paper. The conceptual work was
predominantly carried out by me, with input from my co-authors, Christoph Schimeczek
and Valentin Bertsch. I was also responsible for software development, including im-
plementing the AMIRIS extension package AMIRIS-PriceForecast. Together with
Christoph Schimeczek, I developed the agent class PriceForecasterApi, which inter-
faces with the external forecasting model AMIRIS-PriceForecast via an application
programming interface (API). I handled data curation, model execution, results valida-
tion, numerical analysis, and sensitivity analysis. All result visualisations were created
by me and refined through discussions with my co-authors. Christoph Schimeczek and I
were responsible for acquiring funding. I wrote the original draft, while both co-authors
reviewed and edited it.
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Highlights

 In 2024, German TSOs received 226 GW in battery storage connection requests

 Agent-based electricity market simulation assesses competing flexibility options (FO)

 Risk affinity impacts both revenues, but also number of full charge cycles

 Homogeneous FO are most profitable with energy-to-power ratios between 4 to 8

 Heterogeneous competition reduces FO revenues once total capacity reaches saturation

Abstract

Rising price spreads on the electricity market have sparked the interest of investors in flexibility 

options. German transmission system operators received over 226 GW of battery storage 

connection requests in 2024. However, some uncertainty remains regarding the impact of large-

scale storage deployment on electricity markets and their economic performance under 

competition. To address this, we use the open agent-based electricity market model AMIRIS, 

calibrated to a 2030 scenario based on the Ariadne report. We extend AMIRIS with a state-of-the-

art machine-learning-based routine to provide agents with electricity price forecasts during 

runtime. These forecasts enable AMIRIS to model competing flexibility options. We evaluate the 

forecast accuracy and analyze its influence on the operation and profitability of competing flexibility 

options. Our results show that imperfect forecasts created by, e.g., machine learning algorithms, 

may reduce the revenues of flexibility options and that operational strategies significantly affect 

the revenues. Given sufficiently accurate forecasts, “risk-affine” strategies yield higher revenues, 

but also yield more full charge cycles than “risk-averse” strategies. At the system level, we identify 

a profitability plateau for homogeneous storage systems with installed power between 4 to 8 GW 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 75



Nitsch et al.  Manuscript

2/30

and total capacity of 32 GWh. Depending on installation costs, annual return on investment can 

reach around 20% through day-ahead market arbitrage. While heterogeneous storage 

technologies initially maintain their revenue shares, individual profitability declines significantly 

beyond critical capacity levels. These findings suggest that the volume of current German 

connection requests may exceed economically sustainable deployment levels under current 

market structures. Future research can build on our open modelling tool chain to integrate 

additional revenue streams, such as cross-market participation or system services remuneration.

Keywords: agent-based modelling, energy systems analysis, flexibility options, electricity 

market, energy transition, AMIRIS

Abbreviations

ABM Agent-based modeling

BSS Battery storage systems

DAM Day-ahead market

E2P Energy-to-power ratio

FO Flexibility option

ML Machine learning

RE Renewable energy

RTE Round-trip efficiency

TSO Transmission system operator

1 Introduction

The integration of renewable energy (RE) technologies introduces substantial fluctuations in 

electricity generation. Flexibility options (FO) have emerged as attractive solutions to balance this 

variability [1]. These options encompass a range of technological concepts and applications, with 

battery storage systems (BSS) representing a particularly promising approach [2, 3]. For instance, 

German transmission system operators received an unprecedented number of battery connection 

requests totaling more than 226 GW in 2024 alone [4]. Even if only a fraction of this is realized, it 

is a clear indication of the growing importance of BSS as an essential component to the energy 

transition. Investments in such FO require adequate planning and comprehensive economic 

analysis to ensure their viability and effectiveness [5]. This has to be done from the single-units 

perspective, but also considering their potential system impact. As large-scale electricity storage 

deployment accelerates, it will inevitably transform spot market dynamics, creating both 

challenges and opportunities for market participants [6]. According to fundamental market 
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mechanics, buying electricity when prices are low tends to increase prices because there is more 

demand to cover. Similarly, high prices are expected to drop when many sell orders are received. 

As a consequence, large FO capacity will likely have an impact on electricity price formation. This 

can ultimately lead to potential cannibalization effects, where FOs are hampered in exploiting 

electricity price spreads due to their high market penetration. This is an important aspect to 

consider when evaluating the profitability of FOs. Therefore, applied models used to analyze these 

dynamics must be capable of accurately simulating such interactions.

1.1 Related works

Existing literature covers a broad range of FO assessments. Many studies focus on different levels 

of application ranging from behind-the-meter to front-of-the-meter. While the first group 

investigates FO applied by individual consumers and businesses [7], the latter are large-scale 

units which may also contribute to several ancillary services, such as frequency restoration 

reserve [8], black start capabilities [9], or congestion management [10]. In this paper, we focus on 

the economical and operational part of large-scale FOs. We limit our analysis on the day-ahead 

market (DAM) with uniform pricing, such as in place in the current German market design [11].

Detailed projections of future levelized cost of different FOs provide relevant information both in 

business and academic contexts [12]. Therein, BSS appear to be one of the most promising 

solutions when compared with eight other FO technologies. The costs of storing electricity, 

however, is still strongly linked to the storage operation and the setup of the whole system [13]. 

Other research examines, which technical specifications, such as power, capacity, efficiency, are 

ideal for refinancing FOs [14–16]. However, they rarely explicitly simulate the market impact of 

FOs or the competition among FOs.

Besides costs, FO investors also look out for attractive market signals, such as arbitrage potentials 

which incentivize the investment in FOs. Most existing studies rely on historical electricity market 

data to assess the operation and economic performance of FOs. These approaches fail to capture 

future scenarios which are significantly shaped by the energy transition, including changes in the 

power plant mix and evolving market dynamics [17]. Price formation is more and more influenced 

by heterogeneous market actors, particularly the growing share of RE technologies with low 

marginal costs and conventional peak power plants with reduced operation hours. As these price 

dynamics shift, so does the economic potential of FOs which engage in electricity market arbitrage 

[18]. This issue is becoming increasingly important as both energy systems and FOs continue to 

evolve rapidly [19]. 
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As the share of wind and photovoltaic generation increases, wholesale electricity prices tend to 

drop, especially during periods of high production, thus reducing revenue potential for all market 

participants in these hours of high RE generation. This phenomenon of declining market values 

of RE has been extensively analyzed in the literature [20, 21] and is also considered in recent RE 

investment analysis [22]. FOs are often assumed to play an essential part in mitigating such 

cannibalization of RE [23], thus making higher shares of RE in energy systems feasible [24]. 

Another aspect of large-scale deployment of FO are so-called “avalanche effects” [25] where 

multiple actors react on the same (price-) signal, thus creating adverse effects. This effect is found 

in, e.g., heat pump operation [26], electric vehicle charging [27], and household load management 

[28]. Therefore, assessments of FO have to especially consider both individual actors’ perspective 

as well as the effects induced to the whole system. 

The cannibalization of FOs itself is a relatively new challenge and has not received as much 

attention in current research [6]. Therefore, the price impacts of FOs should be endogenously 

captured in the applied models, thus providing more accurate simulation of energy transition 

scenarios and allowing the consideration of cannibalization effects [29]. [30] use an equilibrium 

model to assess long-term profitability of FOs. The authors find that in a French scenario, 

increased FO penetration reduces revenue potential, but increased uncertainty due to higher RE 

penetration compensates for this effect. A Greek case study also found reduced FO market values 

with rising competition which can, depending on the scenario assumptions be compensated by 

increased fluctuation by RE [31]. In contrast, a study on community electricity storage revealed 

substantial losses caused by FO cannibalization when competing with sector coupling and 

demand response [32]. However, this research optimizes community electricity storage settings, 

not accounting any FO system impacts or application. Reserves markets which are already 

dominated by FOs do no longer yield any significant revenue, and thus do not contribute to FO 

refinancing [33]. In a case study of the Portuguese energy system, FO competition leads to 

substitution effects among different FOs, however, the applied optimization model does not 

provide individual profitability assessments of FOs, but describes a central-planner approach  [34]. 

A case study applying proprietary energy system optimization software investigating a Finish 

island also reveals cannibalization among three distinct FO technologies [35].

From a methodological perspective, the competition between FOs can also be addressed using 

game theoretical models. Such a case study examined homogeneous FO investors and found 

that rising market competition led to reduced profits [36]. [37] used deep reinforcement learning 

to simulate FOs in electricity markets. Although they provide an architecture enabling the 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 78



Nitsch et al.  Manuscript

5/30

simulation of competing FOs, their method does not account for price impact by FO actions and 

the case study provided focuses on a historical time span. 

Still, several critical gaps remain in our understanding of FOs under high RE penetration.

1. FO competition: Many existing studies treat electricity market prices as exogenous model 

input and thus neglect FOs affecting market dynamics. While some studies examine FO 

cannibalization effects, they predominantly use central-planner optimization approaches 

or analyze homogeneous FOs. Heterogeneous FO competition capturing the interactions 

between different types of FO operators should be addressed.

2. Technical specifications: The optimal technical specifications identified in isolated 

optimization may not hold when competitive effects and market feedback are 

endogenously modeled. It is therefore important to assess optimal power, capacity, and 

efficiency parameters also from the perspective of the investors.

3. Price forecasting impact on profitability: Since real-world FO dispatch planning relies on 

electricity price forecasting, it is important to also address this aspect in the applied model. 

Current literature lacks analysis of how electricity price forecasting quality affects FO 

activity, particularly in competitive scenarios where avalanche effects may occur.

1.2 Novelty

To date, a comprehensive analysis is missing that addresses these interconnected challenges 

simultaneously. Such an analysis should cover not only individual FO operation, but also the 

emerging electricity market dynamics in scenarios with high RE and FO penetration. The impact 

of electricity price forecasting quality and technical FO parameters on the revenues should be 

assessed as well for such scenarios with high FO competition. Our work addresses these three 

specific gaps by providing a market-driven, multi-scenario assessment of FOs using an agent-

based modeling (ABM) approach that overcomes the computational limitations of game-

theoretical models while avoiding central-planner assumptions of optimization models. We extend 

and apply an ABM to analyze heterogeneous FOs and their economic performance in future 

electricity market scenarios characterized by high RE penetration. The research includes 

economic potential assessment for different cost assumptions and technical specifications, 

enabling more robust investment decision-making under competitive conditions. Furthermore, we 

ensure full reproducibility through an open modeling tool chain.
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This integrated approach allows us to investigate how competition, technical specifications, and 

forecasting quality interact with FO performance while also accounting for changes introduced by 

the energy transition. Specifically, this research seeks to answer the following questions.

1. How are FOs affected by increasing competition on electricity spot markets?

2. Which technical parameters provide sufficient revenue potential for FOs?

3. What role does the quality of electricity price forecasting play in determining profitability 

of FOs in competitive markets?

This paper is structured as follows. In Section 2, we present our material and methods, including 

the applied ABM. In Section 3, we describe the findings derived from our electricity market 

simulations. In Section 4, we discuss the results and identify important limitations. In Section 5, 

we give a summary of the findings and provide an outlook on potential future research avenues.

2 Material and methods

In our analysis, we extend and apply the open electricity market model AMIRIS [38] to simulate 

the DAM over one year in hourly resolution, see Section 2.1. Electricity price forecasts are 

provided by a dedicated ML (machine learning) algorithm, thus enabling the simulation of 

competing FOs. The model parameterization is based on an Ariadne scenario [39], see 

Section 2.2, for which we systematically vary technical parameters of FOs using the scenario 

generator AMIRIS-Scengen [40]. We provide a fully automated, open modeling toolchain, see also 

Figure 1, to ensure transparency and reproducibility.
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Figure 1: Modelling setup enabling agent-based electricity market analysis of competing flexibility options.

2.1 Electricity market modelling using AMIRIS

AMIRIS is the Agent-based Market model for the Investigation of Renewable and Integrated 

energy Systems [38]. The electricity market model has been developed since 2008 and was 

published open source1 in late 2021 [41]. It is a powerful simulation based on the flexible 

framework FAME [42, 43]. The heart of AMIRIS is the simulation of the DAM revealing market 

dynamics and agent interactions [14] while considering different policy frameworks [44] and effects 

due to coupling of neighboring market zones [45]. AMIRIS has been back-tested for the German 

[46] and Austrian [47] DAM, which resulted in a good fit of simulated and historical electricity 

prices. Figure 12 in the Appendix provides an overview of the agents represented in AMIRIS (i.e. 

power plant operators, traders, flexibility operators, market operators and regulators) and their 

interactions via flows of information, energy, and money. Similar to other energy system models, 

users define and provide relevant input data [48]. In the context of AMIRIS this translates to power 

plant park structure, RE generation timeseries, demand data, and operational cost data. Central 

modelling outputs of AMIRIS are DAM electricity prices, as well as costs and revenues of market 

participants. FOs can choose between a “risk-taking” or more “risk-averse” bidding strategy when 

performing arbitrage at the DAM[15]. The consideration of further revenue streams for FOs, such 

as intraday markets, is not yet available.

1 gitlab.com/dlr-ve/esy/amiris (accessed on 20th June 2025)
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Realistic analysis of FO competition requires modeling how operators make dispatch decisions 

under uncertainty, which fundamentally differs from optimization approaches that assume perfect 

market information. In DAM, FO profitability depends not only on actual price dynamics but on 

operators’ ability to anticipate and respond to these patterns. When multiple FOs compete, 

superior forecasting capabilities can lead to competitive advantages by better timing 

charge/discharge cycles. In contrast to energy optimization models where a central planner 

optimizes all units simultaneously, ABMs like AMIRIS require individual agents to make decisions 

based on imperfect information. This creates a critical need for electricity price forecasts provided 

to FO operators. This was previously addressed through simplified “naïve” forecasts eligible only 

for a single FO [49]. To address Gap 3 and thus enable FO competition (Gap 1), we substantially 

extended AMIRIS with a sophisticated forecasting system. Our key methodological contribution is 

the development of AMIRIS-PriceForecast [50], a dedicated machine-learning based forecasting 

module which runs in co-simulation with AMIRIS. As these algorithms have proven to deliver 

robust forecasts, even in future energy transition scenarios [51], we apply ML to derive accurate 

time series forecasts during AMIRIS runtime. This represents a significant advancement over both 

central-planner optimization models that assume perfect foresight and previous ABM studies that 

used oversimplified forecasting assumptions.

The forecasting workflow, see also Figure 2, operates as follows: FO agents request price 

forecasts from a centralized forecasting agent (PriceForecasterApi) delivering the same forecast 

to each client. To reduce the number of calls to the external AMIRIS-PriceForecast, 

PriceForecasterApi retrieves cached forecasts meeting predefined accuracy criteria. When the 

accuracy of previous forecasts is insufficient or forecasts for uncovered time periods are needed, 

AMIRIS-PriceForecast loads a pre-trained model and generates time series predictions based on 

the specific forecast request. The coupling between the two components AMIRIS (Java based) 

and AMIRIS-PriceForecast (Python based) is accomplished using a standardized interface based 

on FastAPI2. The modular architecture and open-source implementation also ensures that 

researchers can extend the available forecasting algorithms to keep pace with advances in time 

series forecasting.

2 github.com/fastapi/fastapi (accessed on 20th June 2025)
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Figure 2: Workflow of electricity price forecasting in AMIRIS and AMIRIS-PriceForecast.

2.2 Energy transition scenario

Our study focuses on the German DAM zone. The data is based on the Ariadne scenario report 

[39], which is widely recognized for its comprehensive analysis of potential pathways for the 

German energy transition toward climate neutrality by 2045. The Ariadne project3, funded by the 

German Federal Ministry of Education and Research, employs multiple integrated modeling 

approaches to assess the feasibility, costs, and sectoral implications of different transformation 

pathways, making it a particularly robust foundation for energy system analysis. The economic 

and demographic assumptions underlying the Ariadne scenario report are based on the so-called 

“Middle of the Road” scenario among the Shared Socioeconomic Pathways as defined in [52]. 

The scenarios contain detailed assumptions about RE expansion, sector coupling mechanisms, 

hydrogen deployment strategies, and the systematic phase-out of fossil fuels across all economic 

3 ariadneprojekt.de (accessed on 24th May 2025)
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sectors. Specifically, we utilize the “mix” subscenario, which assumes the use of a mixed energy 

carrier portfolio (electricity, hydrogen, and synthetic green fuels) in final energy consumption, see 

also Table 1. This subscenario reflects a diversified approach to decarbonization where different 

sectors employ the most suitable clean energy carriers based on technical and economic 

considerations. We selected the year 2030 as our temporal focus, as many of the storage 

connection requests under consideration aim to be realized within this timeframe. Flexibilization 

of demand is already inherently integrated in the load profiles, reflecting the scenario’s 

consideration of demand-side management and behavioral adaptations. Thus, we add additional 

flexibility to the system which should represent the recent connection requests received by the 

German transmission system operators, thereby capturing the dynamic evolution of grid 

infrastructure requirements. Figure 3 provides an overview of the scenario projections on 

electricity supply and demand, illustrating the fundamental shifts in generation mix and 

consumption patterns anticipated for 2030.

Table 1: Scenario parameters derived from Luderer et al. [39].

Parameter Value Unit
Nuclear 0 GW
Lignite 0 GW
Hard coal 0 GW
Natural gas 30.0 GW
Hydrogen 15.3 GW
Biomass 15.7 GW
Run-of-river 12.6 GW
PV 218.4 GW
Wind onshore 127.2 GW
Wind offshore 25.0 GW

Capacities

Other non-renewable 0.9 GW
CO2 certificate costs 200.0 EUR/t
Load 615.8 TWh/a
Greenhouse gas reduction compared to 1990 65 %
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Figure 3: Electricity generation and consumption for Germany according to the Ariadne scenario; 
adapted with permission from Luderer et al. [39].

3 Results

The results are organized in two main sections. Section 3.1 presents the methodological 

advancements developed to close gap 3, demonstrating the performance of our enhanced 

analytical framework. Section 3.2 examines the profitability of FOs in the future energy system 

scenario, providing insights to gap 1 and 2.

3.1 Methodological advances

To analyze FOs in future electricity markets, we first evaluate the methodological improvements 

to AMIRIS. For this, we assess the accuracy of electricity price forecasts generated by the AMIRIS 

extension AMIRIS-PriceForecast. Typically, the FOs require at least 24 hours of electricity price 

forecasts to optimize their bidding schedule. Our approach employs a Temporal Fusion 

Transformer algorithm [53] for electricity price prediction. This architecture has demonstrated 

strong performance in forecasting electricity prices within future energy system scenarios [51]. 

The forecasting model integrated into AMIRIS-PriceForecast is iteratively called during AMIRIS 

runtime, generating DAM electricity price forecasts 𝑝𝑡0 to 𝑝𝑡23 based on previous electricity prices 

𝑝𝑡―24 to 𝑝𝑡―1 and the residual load 𝑟𝑙𝑡―24 to 𝑟𝑙𝑡23.

Figure 4 illustrates cumulative storage revenues achieved using different forecasting approaches, 

revealing the direct impact of forecast accuracy on FO performance. Perfect foresight represents 

the theoretical maximum revenue potential, while the baseline, a “naïve” TimeShift method using 
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the previous 24 hours as a forecast [54], captures less than 40% of this potential. Our analysis of 

various hyperparameter configurations demonstrates that model architecture significantly 

influences revenue outcomes. The optimal ML based prediction incorporates future covariates, 

achieving nearly 80% of potential revenues. This finding aligns with recent research showing 

substantial error reduction when integrating future covariates in time series forecasting [55]. While 

this enhanced performance requires significantly higher computational training4 costs, four to five 

times greater than alternative models, the training effort can be considered uncritical since the 

trained model is applicable to a wide range of simulation scenarios [51]. Each prediction call 

accounts for approximately 0.1 seconds including negligible overhead by the model coupling via 

FastAPI.

Figure 4: Impact of forecasting model on cumulative storage revenue and required training effort.

To examine how forecasting quality affects FO operation, we analyze a 1 MW, 5 MWh price-taking 

BSS with a round-trip efficiency (RTE) of 80% under two forecasting modes: perfect foresight, 

representing ex-post optimal operation, and model-endogenous ML based price forecasts. Each 

forecasting mode is combined with two operational strategies: risk-taking, which exploits all 

profitable price spreads, and risk-averse, which acts only on significant expected spreads. 

4 Model training was performed on a system equipped with an Intel® Core™ i7-11850H processor 

(2.50 GHz) and 32 GB of RAM.
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Figure 5 illustrates the operational differences during a representative week. Perfect foresight 

enables optimal operation under the risk-taking strategy (Figure 5a), capturing all profitable 

arbitrage opportunities. The risk-averse strategy with perfect foresight (Figure 5b) results in 

reduced activity as some smaller price spreads remain unexploited, leading to missed charging 

and discharging opportunities (compare situations 5aI/5bI, or 5aII/5bII). ML based forecasting 

introduces prediction errors that create suboptimal storage patterns. Following the risk-taking 

strategy (Figure 5c), forecasting errors generate additional, often unprofitable charging and 

discharging events (compare situations 5aI/5cI). The risk-averse strategy with ML based 

forecasting (Figure 5d) leads to extended idle periods where profitable opportunities are missed 

due to forecast uncertainty (compare situations 5bI/5dI). As with perfect foresight, the risk-averse 

operation results in less activity compared to the risk-taking approach (compare 

situations 5cII/5dII).

Figure 5: State of charge (blue area) and electricity price (black line) during a single week revealing the impact of 
storage strategy and electricity price forecast type.

While  Figure 5 provides a detailed view of a single week, Figure 6 reveals systematic patterns 

across all combinations by presenting an annual perspective in hourly resolution. Storage 

charging (red areas) occurs primarily during nighttime and midday low-price periods, while 

discharging (blue areas) results from peak prices during morning and evening. ML forecasting 

errors create noticeably noisier activity patterns, which are particularly evident in the risk-taking 

strategy (Figure 6b). The revenue analysis demonstrates substantial impacts from both strategy 
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choice and forecasting accuracy. Using perfect foresight as the baseline (risk-taking strategy, 

Figure 6a), the risk-averse strategy achieves approximately 79% of maximum revenues (Figure 

6b). ML based forecasting reduces performance to 73% for risk-taking (Figure 6c) and 62% for 

risk-averse strategies (Figure 6d), see also Figure 13 in the Appendix. Cycling behavior also varies 

significantly across scenarios. Perfect foresight with risk-taking strategy results in 359 full charge 

cycles5 over the simulation year (nearly one per day). In contrast, the risk-averse approach 

reduces this number to 227 cycles. The risk-taking strategy joined with ML forecasting produces 

381 cycles (indicating increased cycling due to forecast errors). This increased number of cycles 

could further impact profitability if cycling costs were considered. 207 cycles result when the risk-

averse strategy is combined with ML forecasts, strengthening the earlier finding that forecast 

errors can lead to missed opportunities depending on the operational strategy employed.

Figure 6: Storage activity, blue areas indicate charging, whereas red areas indicate discharging, during a full model 
year revealing impact by storage strategy and electricity price forecast type.

3.2 Profitability of flexibility options

This section aims to identify optimal technical parameters for FOs, thus addressing Gap 2, and 

then examining how competitive dynamics affect profitability, which addresses Gap 1. To compare 

the profitability of differently scaled FOs, particularly BSS, we compute the return on investment 

(ROI), similar to the definition in [56]. ROI, see Equation (1), is calculated as the ratio of net 

5 One full charge cycle indicates a complete charge and discharge of the storage, whether it occurs 

all at once or is accumulated over multiple partial cycles.
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cashflow 𝐶𝐹𝑡 for year 𝑡 from earnings 𝑒𝑡 minus costs 𝑐𝑡 from (dis-)charging, see Equation (3), to 

the total installation costs 𝐶𝑜𝑠𝑡0, see Equation (4). The installation costs include the power-based 

converter costs 𝑐𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and the energy-based storage cost 𝑐𝑠𝑡𝑜𝑟𝑎𝑔𝑒. The result is expressed as a 

percentage where high values express superior profitability. This metric provides a quick payback-

oriented perspective for initial investment screening. As ROI does not cover annualized capital 

costs, we solve Equation (2) for the Internal Rate of Return (IRR), as also used in [57] assuming 

an estimated operational lifetime and constant cashflow to provide an additional financial 

performance metric.

𝑅𝑂𝐼 =  
𝐶𝐹𝑡=1

𝐶𝑜𝑠𝑡0
× 100 (1)

𝑁𝑃𝑉 = 𝐶𝐹𝑡=1 ×
𝑛

𝑡=1

1
(1 + 𝐼𝑅𝑅)𝑡 ― 𝐶𝑜𝑠𝑡0 = 0 (2)

𝐶𝐹𝑡 = 𝑒𝑡 ― 𝑐𝑡 (3)

𝐶𝑜𝑠𝑡0 = 𝑝𝑜𝑤𝑒𝑟  ×  𝑐𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 +  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ×  𝑐𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (4)

Figure 7 presents ROI for homogeneous large-scale BSS in the 2030 scenario with fixed power 

at 8 GW and varying storage capacity (8 GWh to 64 GWh) under different cost assumptions. 

Figure 8 shows ROI when the capacity is fixed at 32 GWh and the storage power is varied from 

1 GW to 12 GW. In all cases, converter costs range from 50 EUR/kW to 200 EUR/kW [58] while 

the storage costs range from 100 EUR/kWh to 400 EUR/kWh [59], and RTE is at 80%. The 

analysis reveals that annual ROI can exceed 18% under favorable cost conditions, with optimal 

performance occurring at 32 GWh total capacity and 4 to 8 GW installed power. Systems with low 

energy-to-power (E2P) ratios, e.g., 8 GW/8 GWh, or very high E2P ratios, e.g., 1 GW/32 GWh, 

show significantly lower ROI, indicating the importance of technical specifications adjusted to the 

energy system scenario. This can be explained by novel electricity price dynamics. Figure 15 in 

the Appendix provides a comprehensive scan of different storage systems and their resulting 

activity and price impact. We note that systems with low E2P ratios can charge and discharge 

rapidly, but cannot benefit from longer-duration price changes whereas systems with larger E2P 

generally profit from these periods. In these cases, however, storage costs represent the major 

share of total installation cost, thus causing maximum profitability at an intermediate E2P 

configurations.  In contrast, specific system combinations, i.e., high-capacity and/or high-power 
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systems, impact market prices by elevating low prices during charging and suppressing high 

prices during discharging, thereby cannibalizing their collective revenue potential. A crucial 

distinction of our methodology is the endogenous modelling of electricity market prices, explicitly 

capturing how individual FO behavior influences market dynamics. This contrasts with studies 

such as [60], that treat prices as exogenous inputs, enabling us to identify saturation points where 

collective FO impacts reduce overall profitability. The impact of the ML training volume on ROI 

calculation is described in Figure 14 in the Appendix6.

Figure 7: Return on investment (ROI) for homogeneous battery storage systems with fixed power (8 GW) and varying 
capacity.

Figure 8: Return on investment (ROI) for homogeneous battery storage systems with fixed capacity (32 GWh) and 
varying power.

To complement our profitability analysis based on ROI, we calculate the IRR for one of the best 

performing technical configuration, 6 GW/32 GWh. The IRR accounts for the time value of money 

6 Figure 14 in the Appendix shows the effect of training length on ROI for BSS. When increasing 

training epochs from 1 to 50, we observe that the applied Temporal Fusion Transformer does not 

significantly improve if trained for more than 10 epochs. Compared to the analysis in Figure 4, we 

have increased the training data available to the model by a factor of five, thus resulting in 

30 training scenarios with 8760 time steps each. Together with the used hyperparameter settings6, 

this allows the model to converge quickly.
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and financing considerations that the ROI does not capture, providing an additional metric for such 

a long-term investment. We examine IRR across operational lifetimes ranging from 10 to 20 years, 

applying the same cost assumptions used in the ROI analysis (converter costs: 50-200 EUR/kW; 

storage costs: 100-400 EUR/kWh). Figure 9 presents the resulting IRR values, where positive 

results indicate profitable investments assuming constant annual cash flows from DAM arbitrage 

throughout the operational period. In general, longer operational lifetimes and lower capital costs 

yield higher IRR values. Under moderate cost assumptions, BSS require minimum operational 

periods of 10 years to achieve profitability, with IRR values reaching approximately 20% for 

systems operating over 20-year lifetimes and with optimistic cost assumptions. The IRR analysis 

reinforces that the 6 GW/32 GWh configuration represents a robust investment opportunity as 

long as cost assumptions are favorable.

Figure 9: Internal rate of return (IRR) for homogeneous battery storage systems under different assumed lifetimes.

To provide more granular insights for the impact of BSS technical parameters on profits, we 

conduct detailed analysis varying E2P ratios and RTE. Maintaining fixed installed capacity at 6 

GWh, we examine temporal characteristics ranging from short-term storage, E2P ratio of 1, to 

more medium-term storage, E2P ratio of 8, with RTE values spanning from 60% to 95% to 

represent different storage technologies. They all operate under the “risk-taking” strategy with ML 

based price forecasts. Figure 10 illustrates annual storage revenue excluding investment costs. 

The E2P ratio emerges as the dominant factor in revenue maximization, with best performance 

occurring between ratios of 3.5-7.5 for the analyzed energy scenario. This reflects electricity price 

dynamics in the Ariadne scenario, where high RE shares lead to extended periods of very low 

prices when demand is fully met by renewable generation, followed by periods requiring expensive 

conventional peak generation. FOs with intermediate E2P ratios most effectively exploit these 

price spreads. Higher RTEs consistently improve revenue potential. It is worth to note that RTE 

can also be interpreted as operational cost where low efficiency translates to high cycling costs. 

Surprisingly, short-term storage systems with E2P ratios below 1.5 generate losses rather than 

profits. Since capacity is fixed at 6 GWh, low E2P ratios correspond to high-powered systems 
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which significantly impact electricity prices, undermining performance under “high-risk" strategies. 

This is in contrast to other studies, such as [14, 60], that identify high-power storage as optimal. 

This fact can be explained as these studies do not account for FO price impacts. Importantly, our 

results do not suggest high-powered FOs cannot be profitable in the studied scenario, but rather 

that they require enhanced operational strategies accounting for their market price influence. This 

sensitivity analysis also reveals that revenue per installed MWh, as well as ROI follows the same 

structure to the shown total revenue, while revenue per installed MW increases with higher E2P 

ratios. 

 

Figure 10: Variation of E2P ratio and RTE for different battery storage system and their annual revenue.
Markings T1–T3 represent specific combinations used in subsequent analysis.

We then select three distinct combinations, T1, T2, and T3, from the presented analysis, each 

achieving roughly equivalent total revenue but representing different technical niches. T1 

represents a highly efficient FO, with an RTE of 90% specialized for more short-term operations 

with its E2P ratio of 3. T2, with an E2P of 7 and an RTE of 80%, targets medium-term applications. 

T3, with an E2P of 5, falls in between the other two in terms of the E2P ratio, but is defined by a 

lower RTE of 70%. We investigate economic performance for these three technologies operating 

individually and in competitive scenarios. Figure 11 shows annual total revenue, as well as 

revenue per installed MW and revenue per installed MWh. In the competition case with 2 GWh 

each, the total revenue across all storages remains similar to the individual cases. T1 accounts 

for 37% of total revenue, while T2 and T3 achieve 32% and 31% respectively. This suggests that, 

in a competitive case, T1 can increase its revenue share by exploiting its short-term flexibility 

niche, which remains unaffected by the more medium-term orientated T2 and T3. When total 

capacity triples to 6 GWh, market dynamics shift substantially affecting all technologies. T2 takes 

the largest share at 36%. However, all three technologies, T1, T2, and T3, earn reduced specific 

annual revenues compared to the 2 GWh scenario. This reflects cannibalization effects between 
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FOs, as total revenue increases by only a factor of 2.1 despite tripled capacity. These effects are 

clearly visible when looking at revenue per installed MW and revenue per installed MWh. In 

general, competition between FOs has limited impact on individual technologies when total 

capacity remains relatively small, allowing T1 to improve its position. However, once total capacity 

increases significantly, revenue potential decreases sharply, with T1 experiencing the greatest 

relative losses compared to its competitors T2 and T3. This analysis demonstrates the critical 

importance of market saturation effects in determining FO profitability under competitive 

conditions.

Figure 11: Annual revenue for each technology across individual scenarios (“T1 Only”, “T2 Only”, “T3 Only”) and two 
“Competition” scenarios. Storage capacity varies between 2 GWh and 6 GWh, as indicated by the labels on each bar.

4 Discussion

The following elaboration on limitations provide the necessary context for interpreting the findings 

presented, while establishing a foundation for future research to build upon this analytical 

framework. Our study focuses exclusively on DAM revenues without considering additional 

revenue streams for the FOs or comprehensive cross market optimization strategies [61]. In our 

analysis, the DAM serves primarily as a benchmark rather than providing a complete profitability 

assessment, this approach may underestimate total FO revenue potential. However, as FO 

capacity increases, additional revenue streams like intraday and reserves markets may also be 

impacted by cannibalization effects once dominated by FOs [33, 62]. The ongoing transition of the 

European Day-Ahead Market (DAM) to 15-minute intervals may create additional arbitrage 

opportunities, however, since it is not yet implemented, there is currently no data or experience 

available for the German market zone.

Our findings both complement and challenge existing research. [30] identify increasing revenue 

potential for systems with an E2P ratio of 1 in French scenarios using equilibrium modeling with 
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price-taker assumptions, suggesting that RE variability compensates for price dampening effects 

from multiple FOs. However, our endogenous price modeling reveals that high-powered systems, 

i.e., low E2P ratios, can face significant profitability challenges due to market price impacts, 

contradicting studies that ignore these feedback effects. While [62] also employ ML for electricity 

price prediction followed by dynamic programming for pumped hydro storage dispatch 

optimization, they neglect system-wide impacts of storage operation. Our integrated approach 

captures these crucial feedback mechanisms, revealing how individual FO decisions collectively 

influence market dynamics and profitability. Other literature suggests BSS costs remain too high 

for widespread deployment, with profitable operation limited to approximately 4% of peak demand 

[63]. In our study investigating the German market zone in a 2030 scenario, this constraint would 

translate to about 4.7 GWh total capacity. Our analysis reveals scenarios where FOs are profitable 

beyond this point, indicating that cost reductions and favorable market conditions could enable 

larger-scale deployment. However, we clearly observe cannibalization effects in scenarios with 

FO capacities well below the recent levels of storage grid connection requests sent to the German 

TSOs.

Our presented workflow couples ML with electricity market modelling, and confirms that 

incorporating future covariates significantly improves prediction accuracy, thus increasing storage 

revenue potential, consistent with findings by [51]. The selection of input data and 

hyperparameters proves essential for forecast accuracy [64], while the choice of the actual 

forecasting method clearly impacts simulated electricity prices, storage activity, and resulting 

profits [65]. These insights underscore the critical importance of high-quality price forecasting for 

optimal FO operation, though comprehensive analysis of forecasting quality and its impact on 

competitive FO performance remains an area for future enhancements.

As with other studies on energy systems analysis [66], significant challenges stem from 

uncertainty regarding future system design and scenario parameters. Our analysis employs a full 

simulation year capturing hourly to seasonal variability while neglecting inter-annual weather 

variations, limiting the robustness of our profitability assessments. Furthermore, no variations of 

other parameters that impact the electricity prices were performed here, e.g., emission allowance 

prices, fuel prices, electricity demand, hydrogen demand, the power plant park, or market designs. 

For a comprehensive investment assessment, appropriate variations of these parameters should 

be considered. Regarding the market design, some studies suggest that RE and FO-dominated 

markets can function within energy-only market designs [67], others argue that wholesale 

revenues alone may inadequately incentivize necessary FO capacity expansion [68]. It is 

important to keep future studies up to date with market design developments. The dynamic nature 
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of energy system transformation necessitates continuous model development [69]. To address 

this requirement, we have put strong efforts in research software development by adhering to 

FAIR principles (Barker et al. 2022). Our open modelling workflow enables further expansion and 

adaptation by the research community, promoting reproducibility and facilitating extensions.

5 Conclusion

This paper advances the understanding of flexibility option profitability in future energy systems 

through a novel methodological approach that addresses critical gaps in existing literature. By 

coupling machine learning based electricity price forecasting with agent-based electricity market 

simulation, we provide a new assessment technique of flexibility option profitability that 

endogenously captures market price impacts and competitive dynamics. Our analysis, based on 

the Ariadne scenario targeting the German market zone, reveals several key insights for flexibility 

option deployment and investment opportunities. We demonstrate that the most profitable energy-

to-power ratios for homogeneous battery storage systems fall between 4-8, differing from ratios 

identified in studies that treat electricity prices as exogenous inputs. This finding highlights how 

market price feedback fundamentally affects technical specifications, making operational 

strategies which account for price impacts necessary, especially for high-powered systems. The 

investigation of heterogeneous flexibility option competition reveals critical saturation effects 

where increased deployment leads to revenue cannibalization. When total flexibility option 

capacity triples from 2 GWh to 6 GWh, total market revenue increases by only a factor of 2.1, 

demonstrating diminishing returns that could significantly impact investment viability. Risk affinity 

when optimizing operational schedules influences revenue generation and charge cycle 

frequency, thereby affecting both profitability and storage lifetime considerations.

Beyond addressing the methodological limitations outlined previously, future research should 

prioritize two critical areas to enhance model comprehensiveness. First, incorporating intraday 

market representation would enable comprehensive cross-market revenue assessment for 

flexibility options. Current focus on day-ahead markets provides valuable baseline insights but 

may underestimate total profitability by neglecting shorter-term trading opportunities where 

flexibility providers can capitalize on real-time supply-demand imbalances. This extension would 

be particularly relevant as intraday markets grow in importance within high renewable energy 

systems, where forecast errors and variability create additional arbitrage opportunities. Second, 

expanding the analysis of competitive dynamics between heterogeneous flexibility options 

represents an important research avenue. Extended analysis incorporating diverse operational 

strategies, energy system variations, and inter-annual weather time series would yield deeper 
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understanding of future market dynamics. This would contribute to how different flexibility 

technologies, including battery storage systems, pumped hydro storage, demand response, and 

sector coupling, interact, compete, and potentially create synergistic effects under varying market 

conditions.
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Figure 12: AMIRIS electricity market model.

Figure 13: Storage revenue change based on applied strategy and forecast type.

 

  

Figure 14: Impact of training length on return of investment for a 6 GW, 32 GWh battery storage system.
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Figure 15: State of charge (blue area) and electricity price (black line) during a single week revealing behavior and impact of different storage systems.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Preprin
t n

ot p
eer re

vie
wed

F. Nitsch

3 Publications 98



Nitsch et al.  Manuscript

25/30

References

[1] C. Zöphel, S. Schreiber, T. Müller, and D. Möst, "Which Flexibility Options Facilitate the 
Integration of Intermittent Renewable Energy Sources in Electricity Systems?," Curr 
Sustainable Renewable Energy Rep, vol. 5, no. 1, pp. 37–44, 2018, doi: 10.1007/s40518-
018-0092-x.

[2] S. Nyamathulla and C. Dhanamjayulu, "A review of battery energy storage systems and 
advanced battery management system for different applications: Challenges and 
recommendations," Journal of Energy Storage, vol. 86, p. 111179, 2024, doi: 
10.1016/j.est.2024.111179.

[3] S. Lieskoski, O. Koskinen, J. Tuuf, and M. Björklund-Sänkiaho, "A review of the current 
status of energy storage in Finland and future development prospects," Journal of Energy 
Storage, vol. 93, p. 112327, 2024, doi: 10.1016/j.est.2024.112327.

[4] S. Enkhardt, Übertragungsnetzbetreibern liegen zum Jahreswechsel 650 
Anschlussanfragen für große Batteriespeicher mit 226 Gigawatt vor. [Online]. Available: 
https://www.pv-magazine.de/2025/01/13/uebertragungsnetzbetreibern-liegen-zum-
jahreswechsel-650-anschlussanfragen-fuer-grosse-batteriespeicher-mit-226-gigawatt-vor/

[5] N. E. Koltsaklis and J. Knápek, "Assessing flexibility options in electricity market clearing," 
Renewable and Sustainable Energy Reviews, vol. 173, p. 113084, 2023, doi: 
10.1016/j.rser.2022.113084.

[6] M. E. Ölmez, I. Ari, and G. Tuzkaya, "A comprehensive review of the impacts of energy 
storage on power markets," Journal of Energy Storage, vol. 91, p. 111935, 2024, doi: 
10.1016/j.est.2024.111935.

[7] S. Quoilin, K. Kavvadias, A. Mercier, I. Pappone, and A. Zucker, "Quantifying self-
consumption linked to solar home battery systems: Statistical analysis and economic 
assessment," Applied Energy, vol. 182, pp. 58–67, 2016, doi: 
10.1016/j.apenergy.2016.08.077.

[8] C. Zhao, P. B. Andersen, C. Træholt, and S. Hashemi, "Grid-connected battery energy 
storage system: a review on application and integration," Renewable and Sustainable 
Energy Reviews, vol. 182, p. 113400, 2023, doi: 10.1016/j.rser.2023.113400.

[9] Y. Zhao et al., "Energy storage for black start services: A review," Int J Miner Metall Mater, 
vol. 29, no. 4, pp. 691–704, 2022, doi: 10.1007/s12613-022-2445-0.

[10] C. Straub, J. Maeght, C. Pache, P. Panciatici, and R. Rajagopal, "Congestion management 
within a multi-service scheduling coordination scheme for large battery storage systems," in 
2019 IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1–6.

[11] J. Viehmann, "State of the German Short-Term Power Market," Z Energiewirtsch, vol. 41, 
no. 2, pp. 87–103, 2017, doi: 10.1007/s12398-017-0196-9.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 99



Nitsch et al.  Manuscript

26/30

[12] O. Schmidt, S. Melchior, A. Hawkes, and I. Staffell, "Projecting the Future Levelized Cost of 
Electricity Storage Technologies," Joule, vol. 3, no. 1, pp. 81–100, 2019, doi: 
10.1016/j.joule.2018.12.008.

[13] R. Haas, C. Kemfert, H. Auer, A. Ajanovic, M. Sayer, and A. Hiesl, "On the economics of 
storage for electricity: Current state and future market design prospects," Wiley 
Interdisciplinary Reviews: Energy and Environment, vol. 11, no. 3, 2022, doi: 
10.1002/wene.431.

[14] F. Nitsch, M. Deissenroth-Uhrig, C. Schimeczek, and V. Bertsch, "Economic evaluation of 
battery storage systems bidding on day-ahead and automatic frequency restoration 
reserves markets," Applied Energy, vol. 298, p. 117267, 2021, doi: 
10.1016/j.apenergy.2021.117267.

[15] F. Nitsch, M. Wetzel, H. C. Gils, and K. Nienhaus, "The future role of Carnot batteries in 
Central Europe: Combining energy system and market perspective," Journal of Energy 
Storage, vol. 85, p. 110959, 2024, doi: 10.1016/j.est.2024.110959.

[16] M. B. C. Salles, T. N. Gadotti, M. J. Aziz, and W. W. Hogan, "Potential revenue and 
breakeven of energy storage systems in PJM energy markets," Environmental science and 
pollution research international, vol. 28, no. 10, pp. 12357–12368, 2021, doi: 
10.1007/s11356-018-3395-y.

[17] M. Haugen et al., "Power market models for the clean energy transition: State of the art and 
future research needs," Applied Energy, vol. 357, p. 122495, 2024, doi: 
10.1016/j.apenergy.2023.122495.

[18] J. Geske and R. Green, "Optimal Storage, Investment and Management under Uncertainty: 
It is Costly to Avoid Outages!," The Energy Journal, vol. 41, no. 2, pp. 1–28, 2020, doi: 
10.5547/01956574.41.2.jges.

[19] J. Figgener et al., "The development of battery storage systems in Germany: A market 
review (status 2023)," 2023. [Online]. Available: http://arxiv.org/pdf/2203.06762v3

[20] A. D. Lamont, "Assessing the long-term system value of intermittent electric generation 
technologies," Energy Economics, vol. 30, no. 3, pp. 1208–1231, 2008, doi: 
10.1016/j.eneco.2007.02.007.

[21] Lion Hirth, "The market value of variable renewables: The effect of solar wind power 
variability on their relative price," Energy Economics, vol. 38, no. 0, pp. 218–236, 2013, doi: 
10.1016/j.eneco.2013.02.004.

[22] L. Reichenberg, T. Ekholm, and T. Boomsma, "Revenue and risk of variable renewable 
electricity investment: The cannibalization effect under high market penetration," Energy, 
vol. 284, p. 128419, 2023, doi: 10.1016/j.energy.2023.128419.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 100



Nitsch et al.  Manuscript

27/30

[23] J. López Prol, K. W. Steininger, and D. Zilberman, "The cannibalization effect of wind and 
solar in the California wholesale electricity market," Energy Economics, vol. 85, p. 104552, 
2020, doi: 10.1016/j.eneco.2019.104552.

[24] J. López Prol and W.-P. Schill, "The Economics of Variable Renewable Energy and 
Electricity Storage," Annu. Rev. Resour. Econ., vol. 13, no. 1, pp. 443–467, 2021, doi: 
10.1146/annurev-resource-101620-081246.

[25] M. Kühnbach, J. Stute, and A.-L. Klingler, "Impacts of avalanche effects of price-optimized 
electric vehicle charging - Does demand response make it worse?," Energy Strategy 
Reviews, vol. 34, p. 100608, 2021, doi: 10.1016/j.esr.2020.100608.

[26] E. Sperber, C. Schimeczek, U. Frey, K. K. Cao, and V. Bertsch, "Aligning heat pump 
operation with market signals: A win-win scenario for the electricity market and its actors?," 
Energy Reports, vol. 13, pp. 491–513, 2025, doi: 10.1016/j.egyr.2024.12.028.

[27] A. Ensslen, P. Ringler, L. Dörr, P. Jochem, F. Zimmermann, and W. Fichtner, "Incentivizing 
smart charging: Modeling charging tariffs for electric vehicles in German and French 
electricity markets," Energy Research & Social Science, vol. 42, pp. 112–126, 2018, doi: 
10.1016/j.erss.2018.02.013.

[28] Sebastian Gottwalt, Wolfgang Ketter, Carsten Block, John Collins, and Christof Weinhardt, 
"Demand side management - A simulation of household behavior under variable prices," 
Energy Policy, vol. 39, no. 12, pp. 8163–8174, 2011, doi: 10.1016/j.enpol.2011.10.016.

[29] J. Bistline et al., "Energy storage in long-term system models: a review of considerations, 
best practices, and research needs," Prog. Energy, vol. 2, no. 3, p. 32001, 2020, doi: 
10.1088/2516-1083/ab9894.

[30] R. Dumitrescu, R. Silvente, and P. Tankov, "Price impact and long-term profitability of 
energy storage," Oct. 2024. [Online]. Available: http://arxiv.org/pdf/2410.12495v1

[31] V. G. Lakiotis, C. K. Simoglou, and A. G. Bakirtzis, "A methodological approach for 
assessing the value of energy storage in the power system operation by mid-term 
simulation," Journal of Energy Storage, vol. 49, p. 104066, 2022, doi: 
10.1016/j.est.2022.104066.

[32] F. Scheller, R. Burkhardt, R. Schwarzeit, R. McKenna, and T. Bruckner, "Competition 
between simultaneous demand-side flexibility options: the case of community electricity 
storage systems," Applied Energy, vol. 269, p. 114969, 2020, doi: 
10.1016/j.apenergy.2020.114969.

[33] L. Deman, A. S. Siddiqui, C. Clastres, and Q. Boucher, "Day-ahead and Reserve Prices in a 
Renewable-based Power System: Adapting Electricity-market Design for Energy Storage," 
The Energy Journal, vol. 46, no. 2, pp. 67–98, 2025, doi: 10.1177/01956574241309557.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 101



Nitsch et al.  Manuscript

28/30

[34] J. Sousa, J. Lagarto, and M. Fonseca, "The role of storage and flexibility in the energy 
transition: Substitution effect of resources with application to the Portuguese electricity 
system," Renewable Energy, vol. 228, p. 120694, 2024, doi: 
10.1016/j.renene.2024.120694.

[35] V. Sihvonen et al., "Combined utilization of electricity and thermal storages in a highly 
renewable energy system within an island society," Journal of Energy Storage, vol. 89, p. 
111864, 2024, doi: 10.1016/j.est.2024.111864.

[36] D. Zhao, M. Jafari, A. Botterud, and A. Sakti, "Strategic energy storage investments: A case 
study of the CAISO electricity market," Applied Energy, vol. 325, p. 119909, 2022, doi: 
10.1016/j.apenergy.2022.119909.

[37] N. Harder, A. Weidlich, and P. Staudt, "Finding individual strategies for storage units in 
electricity market models using deep reinforcement learning," Energy Inform, vol. 6, S1, 
2023, doi: 10.1186/s42162-023-00293-0.

[38] C. Schimeczek et al., "AMIRIS: Agent-based Market model for the Investigation of 
Renewable and Integrated energy Systems," JOSS, vol. 8, no. 84, p. 5041, 2023, doi: 
10.21105/joss.05041.

[39] G. Luderer, C. Kost, and D. Sörgel, "Deutschland auf dem Weg zur Klimaneutralität 2045 - 
Szenarien und Pfade im Modellvergleich," 2021.

[40] F. Nitsch, U. Frey, and C. Schimeczek, AMIRIS-Scengen - A Scenario Generator for the 
Open Electricity Market Model AMIRIS: Zenodo, 2024.

[41] K. Nienhaus et al., "AMIRIS. Agent-based Market model for the Investigation of Renewable 
and Integrated energy Systems.: https://gitlab.com/dlr-ve/esy/amiris/amiris," GitLab, 2021.

[42] C. Schimeczek et al., "FAME-Core: An open Framework for distributed Agent-based 
Modelling of Energy systems," JOSS, vol. 8, no. 84, p. 5087, 2023, doi: 
10.21105/joss.05087.

[43] F. Nitsch, C. Schimeczek, U. Frey, and B. Fuchs, "FAME-Io: Configuration tools for complex 
agent-based simulations," JOSS, vol. 8, no. 84, p. 4958, 2023, doi: 10.21105/joss.04958.

[44] U. J. Frey, M. Klein, K. Nienhaus, and C. Schimeczek, "Self-Reinforcing Electricity Price 
Dynamics under the Variable Market Premium Scheme," Energies, vol. 13, no. 20, 2020, 
doi: 10.3390/en13205350.

[45] F. Nitsch and A. A. El Ghazi, "Energy systems analysis considering cross-border electricity 
trading: Coupling day-ahead markets in an agent-based electricity market model," 2023, 
doi: 10.5281/zenodo.10544676.

[46] F. Maurer, F. Nitsch, J. Kochems, C. Schimeczek, V. Sander, and S. Lehnhoff, "Know Your 
Tools - A Comparison of Two Open Agent-Based Energy Market Models," in 2024 20th 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 102



Nitsch et al.  Manuscript

29/30

International Conference on the European Energy Market (EEM), Istanbul, Turkiye, 2024, 
pp. 1–8.

[47] F. Nitsch, C. Schimeczek, and S. Wehrle, "Back-testing the agent-based model AMIRIS for 
the Austrian day-ahead electricity market," 2021. [Online]. Available: https://zenodo.org/
record/5726738

[48] I. M. Müller, "Feature selection for energy system modeling: Identification of relevant time 
series information," Energy and AI, vol. 4, p. 100057, 2021.

[49] F. Nitsch and C. Schimeczek, "Comparison of electricity price forecasting methods for use 
in agent-based energy system models," Vienna, 2023. [Online]. Available: https://elib.dlr.de/
194021/

[50] F. Nitsch and C. Schimeczek, "AMIRIS-PriceForecast," 2025, doi: 
10.5281/zenodo.14907870.

[51] F. Nitsch, C. Schimeczek, and V. Bertsch, "Applying machine learning to electricity price 
forecasting in simulated energy market scenarios," Energy Reports, vol. 12, pp. 5268–5279, 
2024, doi: 10.1016/j.egyr.2024.11.013.

[52] H. Lee et al., "IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of 
Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, 
Switzerland," 2023.

[53] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, "Temporal fusion transformers for interpretable 
multi-horizon time series forecasting," International Journal of Forecasting, 2021.

[54] R. J. Hyndman and G. Athanasopoulos, "Forecasting: principles and practice," Melbourne, 
2018.

[55] R. Theiler, L. von Krannichfeldt, G. Sansavini, M. F. Howland, and O. Fink, "Integrating the 
Expected Future in Load Forecasts with Contextually Enhanced Transformer Models," 
2024.

[56] M. Naumann, R. C. Karl, C. N. Truong, A. Jossen, and H. C. Hesse, "Lithium-ion Battery 
Cost Analysis in PV-household Application," Energy Procedia, vol. 73, pp. 37–47, 2015, doi: 
10.1016/j.egypro.2015.07.555.

[57] Y. Yang et al., "Life cycle economic viability analysis of battery storage in electricity market," 
Journal of Energy Storage, vol. 70, p. 107800, 2023, doi: 10.1016/j.est.2023.107800.

[58] NREL, "Annual Technology Baseline: Utility-Scale Battery Storage," 2025. [Online]. 
Available: https://atb.nrel.gov/electricity/2024/utility-scale_battery_storage

[59] W. Cole and A. Karmakar, "Cost Projections for Utility-Scale Battery Storage: 2023 Update," 
2023.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 103



Nitsch et al.  Manuscript

30/30

[60] Petr Spodniak, Valentin Bertsch, and Mel Devine, "The Profitability of Energy Storage in 
European Electricity Markets," The Energy Journal, vol. 42, no. 5, 2021, doi: 
10.5547/01956574.42.5.pspo.

[61] E. Kraft, M. Russo, D. Keles, and V. Bertsch, "Stochastic optimization of trading strategies 
in sequential electricity markets," European Journal of Operational Research, vol. 308, no. 
1, pp. 400–421, 2023, doi: 10.1016/j.ejor.2022.10.040.

[62] S. Karhinen and H. Huuki, "Private and social benefits of a pumped hydro energy storage 
with increasing amount of wind power," Energy Economics, vol. 81, pp. 942–959, 2019, doi: 
10.1016/j.eneco.2019.05.024.

[63] D. S. Mallapragada, N. A. Sepulveda, and J. D. Jenkins, "Long-run system value of battery 
energy storage in future grids with increasing wind and solar generation," Applied Energy, 
vol. 275, p. 115390, 2020, doi: 10.1016/j.apenergy.2020.115390.

[64] D. Keles, J. Scelle, F. Paraschiv, and W. Fichtner, "Extended forecast methods for day-
ahead electricity spot prices applying artificial neural networks," Applied Energy, vol. 162, 
pp. 218–230, 2016, doi: 10.1016/j.apenergy.2015.09.087.

[65] C. Fraunholz, E. Kraft, D. Keles, and W. Fichtner, "Advanced price forecasting in agent-
based electricity market simulation," Applied Energy, vol. 290, p. 116688, 2021, doi: 
10.1016/j.apenergy.2021.116688.

[66] S. Pfenninger, A. Hawkes, and J. Keirstead, "Energy systems modeling for twenty-first 
century energy challenges," Renewable and Sustainable Energy Reviews, vol. 33, pp. 74–
86, 2014, doi: 10.1016/j.rser.2014.02.003.

[67] W. Antweiler and F. Muesgens, "The new merit order: The viability of energy-only electricity 
markets with only intermittent renewable energy sources and grid-scale storage," Energy 
Economics, vol. 145, p. 108439, 2025, doi: 10.1016/j.eneco.2025.108439.

[68] F. Roques and D. Finon, "Adapting electricity markets to decarbonisation and security of 
supply objectives: Toward a hybrid regime?," Energy Policy, vol. 105, pp. 584–596, 2017, 
doi: 10.1016/j.enpol.2017.02.035.

[69] D. Keles, P. Jochem, R. McKenna, M. Ruppert, and W. Fichtner, "Meeting the Modeling 
Needs of Future Energy Systems," Energy Technology, 5(7), pp. 1007–1025, 2017, doi: 
10.1002/ente.201600607.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5320926

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

F. Nitsch

3 Publications 104



F. Nitsch

3.5 Synthesis

The presented publications form a coherent body of research that systematically inves-
tigates the economic feasibility of FOs from multiple complementary perspectives. This
research progresses from an initial exploration of individual technologies to comprehen-
sive analyses that include system-wide competition effects. Each publication addresses
the limitations identified in previous work, while pursuing the overarching research tar-
gets defined in Section 1.2. The publications are divided into “main papers” (Sections 3.1
to 3.4), “supplementary papers” (Appendix A), and “supplementary non-peer-reviewed
papers” (Appendix B). Table 3.1 shows the individual contributions of each paper to
the research targets. This section also places the presented publications in context and
demonstrates their systematic contribution to a unified research narrative.

Table 3.1: Contribution of publications to research targets.

Main paper Supplementary Paper
Peer-review None

Target I II III IV A1 A2 A3 A4 A5 B1 B2
1.1 Strategies3 x x x
1.2 Parameters4 x x x x
1.3 Competition5 x x
2.1 Features6 (x) x x x x x x x
2.2 Open science7 x x x x x x x x x

3Identify reliable operational strategies for FOs in future electricity market scenarios.
4Evaluate how technical specifications influence FO refinancing potential.
5Quantify the impact of FO competion on their profitability.
6Expand ABM to capture individual FO economics and impact on system dynamics.
7Develop modular open-source software packages.
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3.5.1 Individual technology analysis

In Paper I, I introduced a representation of the aFRR in AMIRIS, allowing a battery
storage operator to generate multi-market revenues beyond DAM arbitrage. This work
investigates the influence of storage parameters on the revenue potential for a future en-
ergy system. I found that revenues for FO operators across the two simulated markets
are highest for short-term orientated systems. However, explicit feedback from FO op-
eration on the overall energy system was not considered, a major limitation addressed
in subsequent papers. Back-testing was performed for the German market zone in 2019
achieving good agreement with historical market data. This paper allowed for identifying
the most promising technical specifications that provide the highest revenue, directly con-
tributing to research target 1.2. It also advances target 2.1 by extending AMIRIS with
a mechanism to include revenues from the aFRR market.

Paper II focuses on high-temperature heat storage, namely Carnot batteries, rather
than battery storage systems. To extend the analysis to endogenously modelled system-
scale storage systems, I linked the ESOM REMix (Wetzel et al. 2024) with AMIRIS.
The optimised power plant park from REMix is used as scenario parameterisation for
AMIRIS to investigate the economic potential of a Carnot battery storage. For this
model coupling, I developed the open workflow iog2x (Nitsch, Schimeczek, Wetzel, et al.
2023), a tool based on the open workflow manager ioproc (Fuchs et al. 2020). Like
the first main paper, this work adds insights to research targets 2.1 and 2.2. However,
this research focuses on energy system with much higher RE shares and concentrates on
Carnot battery storage systems providing flexibility. By revealing how the operational
strategy and technical specifications of Carnot battery storage impact revenue potential,
this paper advances research targets 1.1 and 1.2 respectively.

3.5.2 Methodological innovation for competition analysis

While these first two main papers (Section 3.5.1) provide valuable information on the
operation of two dedicated FO technologies, battery storage and Carnot battery storage,
they share important limitations. Both model only a single FO in the system, a small-
scale single battery storage (Paper I), or a large-scale Carnot battery storage (Paper II).
Additionally, I did not explicitly model competition among FOs, thus neglecting potential
cannibalisation effects that can limit the profitability of such systems. Endogenous com-
petition between agents is challenging to model in ESA, see elaboration to Figure 2.6, but
provides a critical factor for better assessing the FO performance in future energy systems.
Therefore, I worked to represent such competing behaviour on DAMs by enhancing the
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internal price forecasting mechanism in AMIRIS. Specifically, I first conducted method-
ological advances in the field of time series forecasting (Paper III), and then applied the
newly developed methodology in a highly relevant case study for Germany in 2030 (Paper
IV).

Paper III addresses novel electricity market dynamics introduced by changing power
plant portfolios in future ESA scenarios. It advances the field of time series forecasting,
which is essential for investigating potential cannibalising effects in ABM ESA models. In
particular, the electricity price forecasts used by FOs for dispatch planning are improved
to reflect future energy systems dominated by REs. I developed the scenario generator
AMIRIS-Scengen (Nitsch, Frey, and Schimeczek 2023) to generate a wide range of fu-
ture electricity market scenarios. These serve as synthetic training data for the newly
developed ML package focapy (Nitsch 2023b). My results demonstrate that ML-based
electricity price forecasts are highly capable of being used in energy transition scenarios
with changing DAM price dynamics. Therefore, this paper contributes to research tar-
get 1.3 by enabling simulation of FO competition. It also brings new features and open
software to ESA (research targets 2.1 and 2.2) with AMIRIS-Scengen and focapy,
powerful tools enabling comprehensive analysis of current and future energy systems.

3.5.3 Integrated dynamics, flexibility competition and saturation

effects in future electricity markets

Finally, Paper IV combines the previous works. It applies the enhanced electricity price
forecasting from Paper III and combines it with the approach to assess economic potential
used in the first two papers (Section 3.5.1). To achieve this, I extended AMIRIS with
a new forecasting agent PriceForecasterApi (Nitsch 2025b) and linked it to the new
external forecasting model AMIRIS-PriceForecast (Nitsch and Schimeczek 2025a).
Then I assessed the economic potential of various FOs under different storage strategies
(research target 1.1), technical parameters such as power and capacity (research tar-
get 1.2), while also accounting for competition effects by other FOs (research target 1.3).
The results demonstrate that competitive FOs can be modelled using ABM. I quantified
the cannibalisation among various homogeneous and heterogeneous FOs while explicitly
considering their price impacts on the DAM. This represents a substantial advancement
compared to the existing literature, as it not only contributes to improved ESA modelling
capabilities, but also addresses pressing energy transition challenges by investigating FO
market potential. Through open software packages, I also provide valuable extensions to
the field in line with research targets 2.1 and 2.2.
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3.5.4 Supplementary research contributions

In addition to these four main papers, my work resulted in seven supplementary research
papers, five of them peer-reviewed publications and four of them lead authored by myself.

The first supplementary paper in Section A.1 is a journal article (Schimeczek, Nien-
haus, et al. 2023) on AMIRIS, which is the central ESA model applied and extended in
this thesis. The publication includes not only a manuscript describing the main features
and scope of AMIRIS, but also peer review of the source code. The comprehensive func-
tionality of the model combined with high software development standards contributes
directly to research targets 2.1 and 2.2.

Similarly, the second supplementary paper (Nitsch, Schimeczek, Frey, et al. 2023)
in Section A.2 features FAME-Io, an essential package of the simulation framework
FAME (Schimeczek, Nitsch, et al. 2020), which is the foundation of AMIRIS. FAME-Io

can be used to parameterise ABM in the ESA domain. It compiles binary input files for
FAME-based simulation models and converts binary output files to human-readable CSV
files. As the previous publication on AMIRIS, this publication includes peer-reviewed
source code. Modular design, state-of-the-art software development principles, high test
coverage, and extensive documentation contribute significantly to research targets 2.1 and
2.2.

The third supplementary paper (F. Maurer et al. 2024) in Section A.3 compares
AMIRIS and ASSUME (Harder et al. 2025). It provides detailed evaluation of these
two state-of-the-art ABMs and back-testing on historical German DAM data. The lat-
ter is available as part of the AMIRIS-Examples data package (Nienhaus et al. 2025).
Both, model benchmarking and open input data, add to research target 2.2.

A methodological addition to AMIRIS is the fourth supplementary paper (Nitsch
and El Ghazi 2023) described in Section A.4. It implements a market coupling agent
that allows users of AMIRIS to extend the spatial scope beyond a single market zone.
Power transmission to neighbouring market zones can also be interpreted as flexibility
to the system, thus contributing to the integration of large shares of intermittent RE
generation (Nitsch, Scholz, et al. 2023). This publication and its open source code are
attributed to research targets, namely 2.1 and 2.2.

The fifth and last peer-reviewed supplementary paper (Nitsch and Wetzel 2022) in
Section A.5 is a preliminary study to the second main paper (Nitsch, Wetzel, et al.
2024). It includes an analysis of the economic potential of power-to-heat-to-power storage
systems, which was then extended to a full paper. Similarly to the second main paper,
this article contributes to research targets 1.1, 1.2 and 2.1.
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Finally, there are two supplementary papers which have not been peer-reviewed. The
first in Section B.1 consists of back-testing AMIRIS to the Austrian DAM in 2019 (Nitsch,
Schimeczek, and Wehrle 2021). This publication contributes to research target 2.2 by
providing an open data configuration for AMIRIS, thus promoting a better understanding
of the accuracy of this ESA model. The second paper (Frey, Nitsch, et al. 2024) in
Section B.2 presents a unique approach to enrich ESA models, in particular FAME-Io and
AMIRIS, with metadata. This benefits model coupling and ensures better comparability
between different models, both at human and machine levels. Therefore, the developments
achieved in this publication contribute to the open science principles described in research
target 2.2.

Figure 3.1 shows all publications related to this thesis and their accompanying research
contributions to the ESA domain, particularly ABM of electricity markets. Research
contributions include dedicated models and packages, new agent classes in AMIRIS, open
data sources, and model workflows. The presentation follows the previously introduced
separation into “main papers” (Sections 3.1 to 3.4), “supplementary papers” (Appendix A),
and “supplementary non-peer-reviewed papers” (Appendix B). Solid outlines indicate first-
author papers, while dashed outlines indicate co-authored papers.

Figure 3.1: Publications and their research contributions.
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4 Discussion and conclusions
This chapter puts my findings in context with recent literature in Section 4.1. The limi-
tations of the applied modelling approaches and their potential impact on the results are
discussed in Section 4.2. Section 4.3 concludes the thesis by summarising the contribu-
tions to the individual research targets while Section 4.4 outlines potential future research
avenues.

4.1 Contextualisation to existing literature

This section positions my research findings within the broader academic literature, demon-
strating how my work contributes to existing knowledge while acknowledging areas of
convergence and divergence with current research.

The literature consistently demonstrates that refinancing flexibility option (FO)
through arbitrage on day-ahead markets (DAMs) is challenging under current market
conditions. Specifically, research indicates that arbitrage across European DAMs is insuf-
ficient for economic viability, requiring either substantial cost reductions or multi-market
participation (Hu, Armada, and Jesús Sánchez 2022). Coordinated bidding across bal-
ancing reserves, intraday markets, and DAMs, on the other hand, substantially increases
profitability (Miskiw, Kraft, and Fleten 2025). Another study found that optimal market
participation depends on specific technical specifications, with pumped hydro storage ben-
efiting most in multi-markets, battery storage in intraday markets, and hydro reservoirs in
DAM (Löhndorf and Wozabal 2023). While single-market operation can achieve profitabil-
ity, overall revenue is maximised through multi-market arbitrage (Agrela, Rezende, and
Soares 2022), with some studies reporting up to five-fold increases in net present value
for multi-market battery storage applications (Sorourifar, Zavala, and Dowling 2020).
Research emphasises that trading in sequential electricity markets requires sophisticated
strategies that account for associated risks (Kraft et al. 2023), validating the emphasis on
FO strategies applied in this thesis.

The literature regarding optimal FO configurations matches the evolution of findings
across this thesis. Paper I supports the common finding that low energy-to-power (E2P)
ratios are most profitable for battery storage systems (Schmidt and Staffell 2023). How-
ever, Paper IV reveals that medium-term E2P ratios become more profitable when the
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collective impacts of multiple FOs are considered endogenously, suggesting that isolated
analysis may underestimate the value of longer-duration storage. This shift in results
can be explained by substantially higher renewable energy (RE) capacity shares assumed
in Germany’s 2030 scenario of Paper IV compared to Paper I. Germany’s current power
plant capacity already surpasses the RE levels modeled in Paper I, creating fundamentally
different price dynamics and revenue opportunities between the two studies. Furthermore,
the hourly DAM clearing interval prevents short-duration storage from fully exploiting
intra-hour price spreads, potentially favoring mid-range E2P systems. Incorporating addi-
tional short-term markets could alter these results and represents an important direction
for future research.

The literature confirms the critical importance of electricity price forecasting quality,
with studies demonstrating that input data selection and hyperparameter choices signifi-
cantly impact forecast accuracy (Keles et al. 2016). These findings are directly supported
by the comprehensive evaluation presented in Paper III. Research on other agent-based
models (ABMs) like PowerACE (Weiskopf et al. 2024) confirms that forecast quality
substantially affects energy systems analysis (ESA) simulation results (Fraunholz et al.
2021). Other studies document revenue increases directly attributable to improved fore-
cast quality (Amor, Möbius, and Müsgens 2024). Pre-trained models, which can be used
without scenario-specific training (Ekambaram et al. 2024), could help overcome some
of the forecasting challenges identified in this research. These promising methodological
developments might improve the capabilities demonstrated in Paper III.

The literature acknowledges the diversity of electricity market modelling approaches,
each with distinct strengths and limitations (Ringkjøb, Haugan, and Solbrekke 2018).
This thesis leverages one of the key strengths of ABM (Klein, Frey, and Reeg 2019)
by endogenously linking different modelling domains. This capability is demonstrated
through the integration of machine learning (ML)-based forecasts in Paper IV.

Existing research also emphasises the critical importance of accurately modelling elec-
tricity markets and price variability, particularly when evaluating FOs engaged in ar-
bitrage (Ward, R. Green, and Staffell 2019). However, the literature acknowledges the
fundamental challenge that far-future scenario validation is impossible, as the energy
transition requires immediate action (Ringkjøb, Haugan, and Solbrekke 2018). Wholesale
market design changes may significantly alter revenue potential for market actors (Silva-
Rodriguez et al. 2022). Furthermore, increasing RE production may amplify electricity
price volatility in Germany through 2030 (Liebensteiner, Ocker, and Abuzayed 2025),
creating both opportunities and challenges for FO deployment. Model comparison ap-
proaches, such as in Paper A3 or for other electricity market models (Ruhnau, Bucksteeg,
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et al. 2022), emphasise the importance of rigorous backtesting and adherence to open sci-
ence standards. Consistent with established considerations in ESA (Pfenninger, Hawkes,
and Keirstead 2014), the results should be interpreted not as predictions but as scenario
analyses providing insights into general sensitivities and trends, as acknowledged in the
following limitations section.

4.2 Limitations

The following limitations must be acknowledged when interpreting the results of this
thesis and their broader applicability.

As with many ESA, this research focuses on rapidly evolving energy systems where
fundamental assumptions may be challenged by unforeseen developments. Several key
uncertainties could significantly impact the findings. The pace of RE deployment, par-
ticularly photovoltaic installations, continues to exceed projections, potentially altering
the market dynamics and price patterns that form the basis for FO revenue calcula-
tions (Creutzig et al. 2017). Unexpected cost reductions in existing technologies could
reshape the competitive landscape. Similarly, external shocks as the 2022 energy crisis
can fundamentally alter energy market dynamics in ways that historical data, but also
most scenarios cannot anticipate (Ruhnau, Stiewe, et al. 2023). Such disruptions can
create both opportunities and challenges for FO deployment that are not captured in the
modeled scenarios. Further, the presented scenarios mostly focus on the near-future, such
as 2030. The dynamics of net-zero energy systems (Azevedo et al. 2021), which are tar-
geted for 2040 and beyond, may be very different and require further detailed study, such
as endogenous modelling of power plant investment (Willeke, Kochems, and Nienhaus
2025).

My work does not explicitly account for the impacts of climate change on energy sys-
tem operation. Climate change affects both RE generation profiles and electricity load
patterns, such as by novel RE generation time series or through shifting heating and cool-
ing demand. Additionally, climate-related infrastructure disruptions could fundamentally
alter the value proposition for flexibility services, potentially making decentralised FOs
attractive and essential for system resilience. These evolving climate impacts represent
an important limitation in long-term FO economic assessments.

My findings do not fully capture the flexibility potential from sector coupling appli-
cations across households, industry, heating, and transport sectors. There is a significant
uncertainty to which extent these cross-sectoral FOs can be mobilised in order to provide
flexibility on a system-level (Gaafar et al. 2024). This aspect could certainly reshape the
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competitive dynamics modeled in this research and ultimately impact the profitability of
individual FOs. Although the methodological approaches developed can be applied to
multiple market zones, this work focuses primarily on the German energy system. The
energy transition progresses at different rates in neighbouring market zones, which can
create novel cross-border effects that are not captured in the analysis. Market coupling
mechanisms provide some representation of these interactions, but the detailed modelling
of heterogeneous transition pathways across interconnected European markets remains
beyond the scope of this research.

The analysis presents a limited picture of FO revenue potential due to its primary
focus on DAM simulation. Except for Paper I, which incorporated a representation of an
automatic Frequency Restoration Reserves (aFRR) market, the research does not employ
a multi-market approach that would capture a wider spectrum of revenue opportunities
available to FOs. Existing literature suggests that overall revenue increases when multi-
market arbitrage across markets is pursued (Agrela, Rezende, and Soares 2022). How-
ever, consistent with the cannibalisation findings presented in Paper IV, these additional
revenue streams would likely face similar profitability limits as FO market penetration
increases and competition intensifies (Deman et al. 2025). It is also worth noting that the
electricity market modeling in AMIRIS does not fully capture the possibilities of strategic
bidding, such as portfolio effects or complex bids. With increasing shares of FOs, this
could become an important aspect for future studies (Signer et al. 2025).

Ongoing discussions about electricity market design adaptations could also substan-
tially impact FO economics. Besides the ongoing harmonisation from hourly to 15-minute
DAM clearing intervals (European Parliament and Council of the European Union 2019),
discussions are about market zone splitting (Mörtenkötter et al. 2025) or transition to
nodal pricing (Knörr, Bichler, and Dobos 2025), new RE remuneration schemes (Schlecht,
C. Maurer, and Hirth 2024), dynamic grid tariffs (Stute and Klobasa 2024), or complete
reworks of market design, such as capacity markets (Ölmez, Ari, and Tuzkaya 2024). Each
of these modifications could fundamentally affect the revenue situation for FOs. Modellers
should also be aware of the biases inherent in any of the presented ESA model, which is
especially important when using the ML-based electricity price forecasts.

4.3 Conclusions

The goal of this thesis was to contribute to a better understanding of FOs in energy
systems with high shares of RE. Through systematic application of ABM to investigate
electricity markets, this research provides significant contributions to the identified
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research targets while advancing both methodological capabilities and practical insights
for the energy transition.

Research target 1.1 Identify operational strategies for FOs that perform
reliably in future electricity market scenarios with increasingly high RE shares
The analysis of operational strategies reveals that FO performance in RE-dominated sys-
tems depends critically on both individual strategy selection and the broader system
context with significant implications for system-wide deployment. Paper II establishes an
understanding of operational strategy impacts by comparing profit maximisation versus
system cost minimisation approaches for a single large-scale FO accounting for its own
price impacts. As anticipated, profit maximisation generally outperforms system cost
minimisation in terms of economic revenue potential when the storage system is the sole
large-scale FO in the system. However, the research also reveals a dependency on the
storage system’s role within the energy system. The analysis demonstrates that the stor-
age system achieves higher revenue per installed MW when alternative ways of providing
flexibility, such as grid extension, are unavailable. This finding can be interpreted as
an early indication of cannibalisation effects, where the presence of competing flexibility
sources reduces individual FO profitability. The strategic implications suggest that FO
operational strategies must account not only for their own technical capabilities but also
for the availability and deployment of alternative system flexibility resources.

Paper IV advances the understanding of operational strategies by analysing their per-
formance under competitive conditions with multiple FOs. The research demonstrates
that storage strategy selection has substantial impacts on both overall revenue genera-
tion and operational characteristics such as charging cycles. Quantitatively, risk-averse
strategies achieve approximately 20% lower profits compared to risk-taking strategies.
The competitive analysis focuses primarily on risk-taking strategies to investigate can-
nibalisation effects. A fundamental challenge emerges when FOs collectively influence
market prices yet possess only limited awareness of their own price impacts when opti-
mising their individual strategy. This poses a problem, particularly for short-duration
storage systems (low E2P ratios) that can lead to significant cumulative market effects.
These short-duration systems would benefit substantially from more sophisticated opera-
tional strategies that explicitly account for their collective price impacts during dispatch
decisions.

The findings reveal that reliable FO operational strategies for high RE scenarios
must incorporate several key elements, and that a trade-off must be struck between
maximising revenues and minimising risk. This includes enhanced price impact awareness
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that account for their own market influence, and approaches that respond to changing
competitive conditions as FO market penetration increases. Furthermore, the research
suggests that operation of FOs cannot be considered independently of technical spec-
ifications and market structure. The interaction between strategy selection, technical
parameters (particularly E2P ratios), and competitive environment creates challenges
that traditional approaches accounting for only single or few FOs cannot adequately
address. The evolution from individual optimisation (Paper II) to competitive analysis
(Paper IV) demonstrates that operational strategies that appear optimal in an isolated
analysis may prove suboptimal when deployed at scale.

Research target 1.2 Evaluate how technical specifications (e.g., capacity &
power) of FOs influence refinancing potential under varying cost assumptions
The progression across papers demonstrates that optimal technical configurations depend
critically on market context and competition levels. Paper I establishes foundational in-
sights for a single FO system operating in a multi-market setting. The analysis reveals
that small E2P ratios perform optimally for DAM arbitrage with aFRR market participa-
tion, as these configurations best exploit short-term price volatility across both markets.
The research quantifies that round-trip-efficiency (RTE) improvements of 1% translate to
approximately 2.5% additional revenue, highlighting the high impact of technical perfor-
mance on economic outcomes. However, this analysis focuses solely on revenue generation
without comprehensive cost assessment, limiting insights into actual refinancing potential.

Paper II shifts focus to system-scale storage technologies, specifically Carnot batteries,
revealing that storage costs represent the most critical factor for revenue generation. The
analysis identifies that energy specific investment costs should be below 35 EUR/kWh
for economic viability. This marks an ambitious target that highlights the challenge of
making large-scale high-temperature storage economically competitive. RTE improve-
ments emerge as a valid secondary optimisation target, consistent with Paper I findings.
Importantly, the revenue situation proves sensitive to scenario assumptions, particularly
regarding competing flexibility, such as grid expansion, which directly affects the Carnot
battery’s market position and revenue potential.

Paper IV provides the most comprehensive insights by analysing technical specifica-
tions within a competitive market scenario that also account for endogenous price impacts.
This study reveals different results to those found in earlier studies. In contrast to Paper
I’s conclusion favoring low E2P ratios, the competitive analysis demonstrates that higher
E2P ratios tend to be more profitable. This reversal occurs because longer-duration stor-
age can participate actively across more hours of operation, providing greater market
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flexibility. The competition analysis reveals that the number of profitable arbitrage hours
remains similar across different scenario configurations, but higher E2P ratios enable stor-
age systems to capture value across extended periods. However, the research identifies a
profitability plateau as long-term storage systems are surpassed by medium-term configu-
rations. This suggests that E2P ratios have to be aligned with the existing electricity price
dynamics in order to effectively provide operational flexibility. Consistent with findings
in Paper II, storage cost reductions generally provide greater profitability improvements
than converter cost reductions, emphasising that energy storage capacity costs are a crit-
ical parameter to FO economic viability. The competitive analysis further reveals that
either long system lifetimes of at least 10 years or significant cost reductions are necessary
for profitability when FOs compete with other market participants.

Collectively, these findings demonstrate that optimal FO technical specifications are
not static parameters but depend critically on market structure, competition levels, and
system-wide deployment scenarios. The evolution from favoring short-duration storage
systems in individual analysis to medium-duration systems in competitive environments
illustrates the importance of considering market context in technology development and
investment decisions. The consistent emphasis on storage cost reduction across multiple
studies provides clear guidance for research and development priorities in FO technologies.

Research target 1.3 Quantify the impact of increasing market penetration
of competing FOs on their profitability in DAM
The evolution towards understanding competition effects represents a central achieve-
ment of this thesis. Paper I analysed variants of a single small-scale price-taking storage
system, providing valuable insights into revenue potential while explicitly acknowledging
the limitation of not accounting for competition among FOs. Paper II advanced this
research by examining a single grid-scale storage system that accounts for its own price
impacts, yet still did not capture interactions among multiple FOs, thus this critical gap
remained. Recognising this limitation, Paper III advanced time series forecasting ca-
pabilities for ABM in energy transition scenarios. This work established the technical
foundation necessary to investigate competition among FOs by enabling accurate price
forecasts in RE-dominated markets with fundamentally different dynamics than histori-
cal years. The methodological innovations in this regard are then continued in Paper IV,
where extensions to AMIRIS, particularly the design and implementation of AMIRIS-

PriceForecast, enable simulation of competing FOs. This is achieved by endogenously
modelling price feedbacks from multiple FOs which affect their revenue potential. This
capability allows, for the first time, the analysis of both homogeneous and heterogeneous
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FOs technologies competing in future energy transition scenarios.
The results reveal significant cannibalisation effects that have strong implications

for FO deployment strategies. Once a certain market penetration threshold is reached,
dependent on the specific power and capacity specifications of the FO technologies, both
collective and individual revenues decline significantly. This finding directly challenges
current trends and interest for large-scale FO deployments which often neglect their
collective feedback on DAM prices. My results thus contribute critical insights for policy
and investment decisions. Most significantly, my analysis suggests that connection
requests for grid-scale storage of more than 200 GW submitted to German transmission
system operators (Enkhardt 2025) are very likely far beyond what can be refinanced
from DAM arbitrage alone. This conclusion has immediate practical relevance for energy
system planning and highlights the importance of considering competition effects in FO
deployment strategies.

Research target 2.1 Expand ABM to simultaneously capture both indi-
vidual FO economics and their collective impact on system dynamics
This thesis achieves a fundamental advancement in ABM capabilities by systematically
developing the methodological foundations necessary to model both individual FO eco-
nomics and their collective system-level impacts. The progression across papers demon-
strates a clear evolution from isolated individual analysis to comprehensive multi-agent
competition modelling. Paper I introduced a aFRR market representation as an external
optimisation model which uses AMIRIS simulation results. Agents bid with their oppor-
tunity costs across multiple markets, thereby facilitating multi-market revenue simulation.
However, this initial implementation has some critical limitations, such as missing feed-
back from the external aFRR model to the DAM, and the focus on a single small-scale
storage device.

Paper II addressed the feedback limitation through integrated FO implementation
that captures system-scale storage impacts on market dynamics. By enabling FOs to
account for their own price impacts, the agent aims to maximise profits or minimise to-
tal system cost. This establishes a closed feedback loop that simultaneously analyses
individual economics and system-level storage impacts which is a crucial advance to-
wards realistic FO modelling. The automated model coupling linking energy systems
optimisation model (ESOM) and ABM further enhances this contribution, addressing the
complementary limitations where AMIRIS cannot define cost-optimal power plant parks
while REMix cannot fully capture market dynamics. However, the challenge of modelling
multiple competing FOs remained unresolved (see Section 2.2.1.2). Paper III provides the
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methodological breakthrough that enables endogenous competition simulation. FOs re-
quire sophisticated price forecasts for schedule optimisation, but traditional approaches
fail when multiple FOs act on identical signals. The packages focapy and AMIRIS-

Scengen present powerful tools for this analysis. By quantifying errors of ML-based
electricity price forecasts specifically in future energy system scenarios, this work proves
that ML can provide enhanced and accurate electricity price forecasts. This implementa-
tion therefore represents a fundamental methodological cornerstone that finally prepares
AMIRIS to model competing FOs.

Paper IV applies all these methodological advances by implementing ML-based
price forecasting for FO agents within AMIRIS. This integration achieves the primary
objective of analysing FO competition modelling while capturing their impact on DAM.
This enables realistic analysis of future energy transition scenarios with increasing FO
market penetration. Further emphasis was placed in the general software publications of
AMIRIS (see Paper A1) and FAME-Io (see Paper A2). Through this systematic pro-
gression, the thesis successfully transforms AMIRIS from a model capable of analysing
only isolated individual FOs to a comprehensive platform that simultaneously captures
individual economics and collective system dynamics. This advancement enables, for the
first time, realistic ABM assessment of FO deployment accounting for both technical
performance and market competition effects.

Research target 2.2 Develop modular open-source software packages to
enhance reproducibility and facilitate comparative assessment of FOs
This thesis makes substantial open science contributions to the ESA modelling community
through consistent development of modular software packages, enhancement of existing
tools, and provision of data. The progression across the presented papers demonstrates
increasing sophistication in software development practices and community engagement.
In Paper I, a pre-FAME instance of AMIRIS was used. Although, this version is not
directly compatible with the current versions of the model, it contributed important foun-
dational elements, such as backtesting data for the German DAM in 2019, which is now
part of the open AMIRIS-Examples (Nienhaus et al. 2025). Similarly, supplementary
Paper B1 extended this data contribution with Austrian DAM backtesting data for 2019,
enhancing the empirical validation resources available. Paper II marked a significant ad-
vancement in open-source contribution quality as it applies a fully open AMIRIS model
instance. Additionally, the iog2x workflow provides a generic coupling mechanism that
can convert any model producing GDX result files, such as REMix, to be accessible to
AMIRIS. This tool extends beyond the specific use case in the paper to enable broader
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model coupling applications (Sarfarazi, Sasanpour, and Cao 2023; Torralba-Díaz et al.
2024; Kochems et al. 2024).

Paper III holds two major software contributions through two comprehensive pack-
ages. AMIRIS-Scengen provides a flexible scenario generator for AMIRIS that serves
multiple purposes. It allows multi-scenario analysis and also generates training data sets
for ML applications. focapy delivers a complete software package for training and in-
ference in ML time series prediction. It fills a critical gap in the ESA domain, as it
is targeted for users applying and working with time series in ESA models. Paper IV
features comprehensive AMIRIS model extensions. The AMIRIS-PriceForecast ex-
tension makes time series forecasts available during AMIRIS model runtime, therefore
fundamentally improving the model’s forecasting capabilities. It is implemented with a
flexible FastAPI-based interface that enables use both within and outside the AMIRIS

ecosystem. The high performance of these tools enables the demanding simulation of
competition among multiple FOs, opening new research possibilities for the community.

Beyond the main papers, the supplementary contributions demonstrate sustained com-
mitment to research software and community building. Given that modelling FOs is a
critical challenge for many ABM (Schimeczek, Khanra, and Signer 2025), these contribu-
tions address pressing community needs. The model comparison with ASSUME provides
valuable benchmarking insights (see Paper A3), while the market coupling algorithm en-
ables endogenous simulation of multiple market zones in AMIRIS (see Paper A4). I
also followed community engagement efforts (Nitsch, Schimeczek, Nienhaus, et al. 2025),
including multiple conference presentations1, enhanced and peer-reviewed model docu-
mentation (see Paper A1), and establishment of a weekly open forum2. These initiatives
have fostered a growing external community and attracted external code contributions,
demonstrating the practical value and adoption of the developed tools. Furthermore, the
FAME framework provides a powerful and flexible software suite for ABM in the ESA
domain. My specific work in Paper A2 on FAME-Io follows high software development
standards and findable, accessible, interoperable, reusable (FAIR) principles, with recent
enhancements in Paper B2 including metadata capabilities that improve interoperability
and scientific reproducibility. Collectively, these software contributions represent a com-
prehensive selection of tools that not only enable the specific research presented in this
thesis but also provide the community with robust, well-documented, and interoperable
software packages that will facilitate future research.

1https://zenodo.org/communities/amiris/
2https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/Community/Support
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4.4 Outlook

The research presented in this thesis opens up several avenues for future investigation,
both in terms of content and methodological focus. Future work should examine the
impact of FOs at different grid levels, in particular the interaction between transmis-
sion system operators and distribution system operators. The contribution of FOs, e.g.
large-scale battery storage systems, to reducing redispatch costs could also be another
promising research direction. This would include the optimal allocation of battery re-
sources in the electricity grid and their systemic impact, such as system costs and grid
stability. Investigating the regulatory aspects that either enable or constrain the partici-
pation of batteries in system services could also be an important research direction. While
energy-only markets have traditionally dominated European electricity systems, the in-
creasing penetration of RE has intensified discussions on the need for explicit capacity
remuneration mechanisms (Strbac et al. 2021). Changes in market design, in particular
the introduction of a capacity market, demand a thorough investigation of their impact on
FOs, especially on their investment and operation and how these changes are implemented
across different market zones (Bucksteeg, Spiecker, and Weber 2019). The interactions
between such mechanisms and the provision of flexibility require further in-depth analysis.
Finally, expanding the range of scenarios would allow for the exploration of more diverse
energy transition pathways, including different rates of electrification across sectors and
different technology mixes.

From a methodological perspective, several extensions would strengthen the research
presented. The introduction of an intraday market would allow the investigation of addi-
tional revenue streams for FOs allowing for a more complete assessment of profitability.
Advancing the competition modelling between FOs would further benefit the understand-
ing of avalanche effects and how they can be mitigated. Extending the available forecasting
methods to better represent uncertainty and increase the realism of agent decisions would
improve model validity. This could include stochastic optimisation techniques that better
capture the probabilistic nature of uncertainty in electricity price forecasts. Finally, ex-
tending both the spatial and temporal scope could contribute to a broader understanding
of new situations due to climate change and assess the contribution of FOs to system
stability.
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A.1 AMIRIS: Agent-based Market model for the Inves-

tigation of Renewable and Integrated energy Sys-

tems

Authors: Christoph Schimeczek, Kristina Nienhaus, Ulrich Frey, Evelyn Sperber, Seyed-
farzad Sarfarazi, Felix Nitsch, Johannes Kochems, A. Achraf El Ghazi
Corresponding Author: Christoph Schimeczek
Journal: Journal of Open Source Software
Volume: 8 (84)
DOI: 10.21105/joss.05041
Status: Published 17 April 2023
Licence: Open Access, CC BY 4.0
Abstract: AMIRIS is an agent-based model (ABM) to simulate electricity markets. The
focus of this bottom-up model is on the business-oriented decisions of actors in the energy
system. These actors are represented as prototypical agents in the model, each with own
complex decision-making strategies. The bidding decisions are based on the assessment
of electricity market prices and generation forecasts, and diverse actors deciding on dif-
ferent time scales may be modelled. In particular, the agents’ behaviour does not only
reflect marginal prices, but can also consider effects of support instruments like market
premia, uncertainties and limited information, or market power. This allows assessing
which policy or market design is best suited to an economic and effective energy system.
The simulations generate results on the dispatch of power plants and flexibility options,
technology-specific market values, development of system costs or CO2 emissions. One
important output of the model are simulated market prices. AMIRIS is developed in Java
using the FAME-Coreframework (Schimeczek et al., 2023) and is available on GitLab.
One important design goal was to make assumptions and calculations as transparent as
possible in order to improve reproducibility. AMIRIS was successfully tested on different
computer systems, ranging from desktop PCs to high performance clusters.
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Author Contributions: Christoph Schimeczek is the lead author of this paper. The
AMIRIS model is a software programme developed at DLR more than a decade ago. At
the time of writing, there are 13 people who contributed to the model, 8 of whom are
still working on it today. Christoph Schimeczek is the current owner of the software, and
he wrote the original draft with Kristina Nienhaus. All authors, including myself, have
edited and revised the manuscript.

A.2 FAME-Io: Configuration tools for complex agent-

based simulations

Authors: Felix Nitsch, Christoph Schimeczek, Ulrich Frey, Benjamin Fuchs
Corresponding Author: Felix Nitsch
Journal: Journal of Open Source Software
Volume: 8 (84)
DOI: 10.21105/joss.04958
Status: Published 17 April 2023
Licence: Open Access, CC BY 4.0
Abstract: We present FAME-Io, a Python package designed to help users and creators of
agent-based simulation models (ABM) better manage the preparation and processing of
their input and output data sets. The package was built with the needs of researchers in
mind. FAME-Io was specifically developed to interface with the open framework FAME

and is published under the open Apache-2.0 licence. The software offers various logging
capabilities, shell-integrated help and documentation, as well as extensive pre-run integrity
checks and helpful warning messages. It also allows individual data components to be
easily extracted and used in secondary workflows. The code itself is operating system
independent and follows best practices in software development. Test coverage, at the
time of writing, is 92 % and the project uses continuous integration and offers frequent
releases.
Author Contributions: I am the lead author of this paper. The software FAME-Io

was mainly designed and implemented by myself and Christoph Schimeczek. Ulrich Frey
and Benjamin Fuchs, both senior scientists at DLR, helped with modelling sprints and
advising on certain design patterns. I led the conceptualisation of the paper and wrote
the first draft. All four authors reviewed and edited the original draft. The external
review, which included paper and software improvements, was mainly done by myself and
Christoph Schimeczek.
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A.3 Know Your Tools - A Comparison of Two Open

Agent-Based Energy Market Models

Authors: Florian Maurer, Felix Nitsch, Johannes Kochems, Christoph Schimeczek,
Volker Sander, Sebastian Lehnhoff
Corresponding Author: Florian Maurer
Journal: IEEE Xplore - Proceedings of the 20th International Conference on the Euro-
pean Energy Market (EEM) 2024 in Istanbul, Turkiye
Volume: n.a.
DOI: 10.1109/EEM60825.2024.10609021
Status: Published 8 August 2024
Licence: Copyright © 2024, IEEE
Abstract: Due to the transition to renewable energies, electricity markets need to be
made fit for purpose. To enable the comparison of different energy market designs, mod-
elling tools covering market actors and their heterogeneous behaviour are needed. Agent-
based models are ideally suited for this task. Such models can be used to simulate and
analyse changes to market design or market mechanisms and their impact on market
dynamics. In this paper, we conduct an evaluation and comparison of two actively devel-
oped open-source energy market simulation models. The two models, namely AMIRIS

and ASSUME, are both designed to simulate future energy markets using an agent-based
approach. The assessment encompasses modelling features and techniques, model perfor-
mance, as well as a comparison of model results, which can serve as a blueprint for future
comparative studies of simulation models. The main comparison dataset includes data of
Germany in 2019 and simulates the Day-Ahead market and participating actors as indi-
vidual agents. Both models are comparable close to the benchmark dataset with a MAE
between 5.6 and 6.4 EUR/MWh while also modelling the actual dispatch realistically.
Author Contributions: Florian Maurer, a PhD student at the University of Applied
Sciences in Aachen, is lead author of this paper. Florian Maurer, myself, Johannes
Kochems and Christoph Schimeczek designed the model comparison between ASSUME

and AMIRIS. While Florian Maurer implemented the actual model comparison, myself
and Christoph Schimeczek worked on the data collection and preparation. I implemented
the software for automated backtesting of AMIRIS using historical data. Florian Mau-
rer wrote the original draft of the paper, while all co-authors discussed and revised the
manuscript.
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A.4 Energy Systems Analysis Considering Cross-

Border Electricity Trading: Coupling Day-Ahead

Markets in an Agent-Based Electricity Market

Model

Authors: Felix Nitsch, A. Achraf El Ghazi
Corresponding Author: Felix Nitsch
Book: Operations Research Proceedings 2023
Conference: Annual International Conference of the German Operations Research So-
ciety (GOR), Germany, August 29 – September 1, 2023
DOI: 10.5281/zenodo.10561382 [accepted preprint]
Status: In print
Licence: Copyright © 2025, Springer Nature
Abstract: This work introduces a new day-ahead market coupling mechanism as part
of AMIRIS, an agent-based market model for renewable and integrated energy systems.
The mechanism enables researchers to analyse cross-border electricity trading and its
effects on electricity markets. Bids and asks from local traders are processed by a cen-
tral “MarketCoupling” agent. This agent minimises the total system cost of providing
electricity by dispatching cross-border demands based on available transmission capacity.
The proposed algorithm achieves cost-effective market coupling by prioritising transfer
between markets with the highest price differences. The implementation is demonstrated
in a case study of four interconnected markets. The results indicate a re-allocation of
demand from the more expensive markets to the cheaper ones, leading to a minimisation
of total system costs. Computation times are roughly doubled compared to runs without
market coupling, but still remain below 9 minutes per run for a comprehensive European
scenario for a full year when executed on a standard laptop computer. Besides large-scale
cross-border coupling, the algorithm could also be used for much smaller market zones
(i.e. “nodal pricing”). It is available as part of the open-source model AMIRIS.
Author Contributions: I am the lead author of this paper. I was responsible for the
initial concept of the market coupling, which included defining the requirements and co-
ordinating with the AMIRIS product owner Christoph Schimeczek. The implementation,
testing and documentation was done together with A. Achraf El Ghazi, a senior scientist
at DLR. The first draft of the paper was written by me. A. Achraf El Ghazi reviewed
and edited the initial draft.
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A.5 Profitability of Power-to-Heat-to-Power Storages

in Scenarios With High Shares of Renewable En-

ergy

Authors: Felix Nitsch, Manuel Wetzel
Corresponding Author: Felix Nitsch
Journal: Energy Proceedings - Proceedings of the 14th International Conference on
Applied Energy 2022 in Bochum, Germany
Volume: 28
DOI: 10.46855/energy-proceedings-10258
Status: Published 2022
Licence: Open Access, CC BY 4.0
Abstract: Intermittent electricity generation from variable renewable energies will lead to
an increased demand for flexibility options in the future. Power-to-heat-to-power storage
technologies present high potentials for large-scale application. However, investments in
such technologies are still hampered by technical and economic challenges. To address
the latter, the possible revenues in electricity markets need to be analysed. For this,
we simulate the German electricity market in ambitious defossilisation scenarios. We use
different operational strategies for the storage (minimising system costs versus maximising
storage profits) that show a wide range of storage profitability. The operator benefits from
its attributed market power (i.e. assuming perfect foresight in a rolling horizon window)
to generate positive net profits. Further research may focus on market situations with
increased market competition.
Author Contributions: I am the lead author of this paper. The main research work of
this paper was shared between Manuel Wetzel and me. Manuel Wetzel designed, extended
and applied the part on the energy system optimisation model REMix, while I designed,
extended and led the work on the agent-based electricity market model AMIRIS. I also
ensured the coupling of the two models through a dedicated workflow. The original draft
was written by me and edited by Manuel Wetzel.
Note: The peer-reviewed publication in the Journal of Energy Storage, see Section 3.2,
is a comprehensive and extensive continuation of this work.
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B.1 Back-testing the agent-based model AMIRIS for

the Austrian day-ahead electricity market

Authors: Felix Nitsch, Christoph Schimeczek, Sebastian Wehrle
Corresponding Author: Felix Nitsch
Journal: Zenodo
Volume: n.a.
DOI: 10.5281/zenodo.5726737
Status: Published 9 December 2021
Licence: Open Access, CC BY 4.0
Abstract: The energy transition requires significant changes to current energy systems.
Especially electricity markets are in the spotlight of policy-makers, investors, and
researchers. This is due to the emergence of new market participants and innovative
technologies disrupting the dominance of conventional power supply. Thus, we present
the open agent-based electricity market model AMIRIS, which allows investigating
current and future electricity systems. In this work, we apply AMIRIS to simulate
the Austrian day-ahead electricity market prices. We use but freely available data in
hourly resolution for the year 2019 and perform a back-test of the model with historical
prices. The results show a high level of agreement of simulated results and historical data
with regard to statistical characteristics (e.g. average price and price duration curve).
However, AMIRIS tends to overestimate lower prices and underestimate higher prices.
Also, AMIRIS does currently not include strategical bidding components and looking at
the price time series, differences between the simulated and historical values are apparent.
We conclude that the flexibility and the convenient parameterisation of AMIRIS make
it a powerful tool to assess today’s and tomorrow’s research questions in the field
of energy economics. However, for deeper insights on the electricity market, further
research is required to integrate bidding strategies of, e.g. energy storage system operators.
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Author Contributions: I am the lead author of this paper. The research design,
data collection and preparation was carried out by myself and Christoph Schimeczek.
Sebastian Wehrle, a researcher at BOKU University Vienna, provided detailed insights and
data for the Austrian hydropower modelling. I carried out the analysis and comparison of
AMIRIS modelling results with historical data. I prepared the original draft of the article,
while Christoph Schimeczek and Sebastian Wehrle reviewed and edited the manuscript.

B.2 FAIRification of Energy System Models: The Ex-

ample of AMIRIS

Authors: Ulrich Frey, Felix Nitsch, A. Achraf El Ghazi, Christoph Schimeczek
Corresponding Author: Ulrich Frey
Journal: Zenodo
Volume: n.a.
DOI: 10.5281/zenodo.10797150
Status: Published 12 March 2024
Licence: Open Access, CC BY 4.0
Abstract: Two criticisms are often associated with energy system models. First, many
models are so complex that they are not reproducible outside the developer’s group.
Just the parameterisation of the model requires days and special knowledge. Second,
many models cannot be validated by external users, since core data is missing or is
internal. The solution may be a combination of transparency through FAIR data and the
transition from closed model building to open-source. This presentation demonstrates the
process of switching from closed to open source for the agent-based model AMIRIS, the
FAIRification of its data by linking it to the Open Energy Ontology and the enrichment
with metadata, and community building as well as the publication in open journals like
JOSS.
Author Contributions: Ulrich Frey is the lead author of this paper. The design of the
metadata representation in the AMIRIS model and FAME framework was carried out
by Ulrich Frey, myself and Christoph Schimeczek. The implementation of the metadata
annotation in AMIRIS was carried out by all four authors with supervision by Christoph
Schimeczek. The original draft was written by Ulrich Frey and reviewed and edited by
all co-authors.
Note: This work was published as part of the proceedings of the 1st NFDI4Energy
Conference in Hanover.
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