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Abstract

Autonomous robotic locomotion, particularly in the context of humanoid robots, has
been an ongoing research topic for several decades. In this context, the model-
based three-dimensional Divergent Component of Motion (3D-DCM) motion planning
framework demonstrates comprehensive capabilities in planning dynamically consistent
center-of-mass trajectories for agile motions. However, current methods for 3D-DCM
motion planning either assume a constant Centroidal Angular Momentum (CAM)
throughout the planned motion, are only able to roughly estimate its influence, or are
not applicable to long, incrementally built motion plans as required, e.g., for shared-
autonomy walking. This thesis addresses this issue by presenting a sliding-window
approach for CAM-based optimization of the centroidal dynamics within the 3D-DCM
framework. The multi-body dynamics of the robot are thereby simulated for short
segments of the motion plan prior to their actual execution. These simulated preview
windows enable a real-time capable motion plan optimization, even in shared auton-
omy scenarios, where short-term plan extensions are common and input time delays
are undesirable. Furthermore, a conceptual path-search algorithm is proposed that is
envisioned to enable short-term replanning of stepping sequences, for example, to avoid
obstacles given a set of feasible alternative contact areas. The CAM-based optimiza-
tion is validated both in simulation and reality on the Torque-Controlled Humanoid
Robot (TORO) of the German Aerospace Center (DLR).
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Chapter 1

Introduction

1.1 Motivation

Bipedal locomotion, especially in the context of humanoid robots, has been an open
research topic for multiple decades [1, Chapter 48]. In recent years, continuous im-
provements and novel developments on humanoid walking frameworks, as well as
various enhancements in, e.g., computational capabilities or machine learning, have led
to an increase in interest and available funding for humanoid robotic research in both
the scientific community and the private sector. The interplay of currently available
frameworks for motion planning, control methods, and hardware components is already
able to perform challenging tasks like walking on compliant surfaces, climbing stairs, or
counteracting external disturbances [2-5]. Still, the reliable, fast, and robust execution of
highly dynamic motions, such as fast walking or running, remains a challenging task in
the real world due to limited foot sizes, underactuated system dynamics, or constraints
on generatable contact forces and torques.

Apart from physical hardware limitations such as torque and velocity constraints [6],
certain assumptions are made in model-based planning and control of such systems.
These assumptions are often necessary to simplify parts of the employed mathematical
model in order to make its underlying computations real-time capable [1, Chapter 48].
This real-time, or quasi-real-time, execution enables fast reactions to unforeseen events,
such as unplanned interactions with the environment, reduces preparation times during
planning, or ensures on-time execution of safety measures.

In the Divergent Component of Motion (DCM) locomotion framework [7], simpli-
fication is often obtained by neglecting changes in the Centroidal Angular Momen-
tum (CAM), i.e., the torque acting about the Center of Mass (CoM) of the robot [7, 8].
Neglecting this torque—which is induced, e.g., through fast swing-leg motions—without
compensation can lead to extraneous contact forces and torques, potentially leading
to stumbling and falling. Hence, the usual approach is to compensate for all of the
induced centroidal torque by extensive, upper-body motions through the whole-body
controller [9], or not compensate for it and accept deviations in the desired Center of
Pressure (CoP). While recent methods [9, 10] resemble a remedy for this issue, they lack
the necessary flexibility to be generally applicable to arbitrarily extending motion plans,
as encountered, e.g., within shared autonomy walking scenarios.
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1.2 Related Work

The CAM is long known to play a crucial role in human and humanoid locomotion [11].
Leveraging CAM for posture balancing has been proposed multiple times, e.g., within [5,
12]. The authors in [13] perform a kino-dynamic planning procedure, where they simul-
taneously optimize the desired task-space trajectories alongside the centroidal linear
and angular momentum to reduce discrepancies between the planned and executed
motions. However, this method is performed offline and takes multiple minutes to
compute trajectories for the horizon of a few seconds. In contrast to [13], where the
full multi-body CAM is computed, simplified mass models lead to faster computation
times as shown in [14], where a three-mass model is employed to roughly approxi-
mate the CAM within the Divergent Component of Motion (DCM) framework. Other
approaches extend the linear inverted pendulum model to account for the CAM [15],
leverage a preview controller for Zero Moment Point (ZMP) control [16, 17], or use
a model-free iterative learning controller [18]. While the authors in [19] showed that
an iterative learning controller can likewise be used for Virtual Repellent Point (VRP)
optimizations within the DCM framework, e.g., to account for model uncertainties, they
do this with an assumption of constant CAM. An accurate, real-time capable estimation
for the CAM trajectories within the DCM framework is proposed in [9]. The authors
hereby employ an iterative, online learning approach, which leverages the instantaneous
CAM samples that can be computed during live motion execution. Their method fits a
CAM trajectory during execution to the previously recorded CAM samples and, thus,
is able to extrapolate from these observations and update the Enhanced Centroidal
Moment Pivot (eCMP) waypoints for the remaining part of its motion trajectories. On
the downside, this method heavily relies on strictly repetitive motions and requires
some initial observations before the CAM estimation can be performed. Recently, the
authors in [10] proposed an iterative optimization of the eCMP and subsequently, the
VRP trajectory, based on the full multi-body CAM along with an optimization of the
robot’s foot trajectories with respect to the exerted CAM. The proposed method is
thereby accurate, fast in its computation, and not constrained to any specific gaits or
motions. However, it assumes optimization of the 3D-DCM motion plan as a whole,
leading to constraints in its applicability to long-term motion planning or incrementally
built plans, e.g., as needed for applications in shared autonomy walking.

1.3 Contribution

This thesis proposes a sliding-window approach to incrementally optimize the VRP
trajectory of a given 3D-DCM motion plan [2] based on the robot’'s CAM. The CAM
is thereby obtained by computing a short preview window of the robot’s multi-body
dynamics during the planned motion, which enables an accurate ad-hoc estimate of the
actual CAM fluctuations experienced by the system. The obtained CAM quantities are
subsequently used for adaptations to the eCMPs as proposed in [10]. In contrast to a
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Figure 1.1: Extension of the motion planner architecture presented in [4] by the
modules presented in this thesis (highlighted in green).

single optimization conducted in this manner on the entire motion plan, as proposed in
previous work [10], the sliding-window approach facilitates the use of CAM-based VRP
optimization in long planning. Its reactivity and low input delay make the proposed
algorithm particularly well-suited for shared autonomy applications.

The introduced computation of kinematic and dynamic quantities during the planning
procedure is subsequently leveraged alongside an informed graph search to enable short-
term step-replanning, e.g., for obstacle avoidance, given a sensible set of alternative
contacts. This algorithm joins the existing step-adjustment feature for stumble and push-
recovery [20] to enhance the motion planner’s reactivity in reacting to uncorrectable
external events. An overview of the total resulting changes to the underlying motion
planning architecture [4] is visualized in Fig. 1.1.







Chapter 2

Mathematical Foundations

The following sections establish a consistent notation and tooling for the mathematical
framework used in subsequent chapters. The mathematical concepts presented are
largely based on the established literature in [1, 21, 22].

2.1 Notation

The following basic conventions for mathematical notations are employed throughout
this thesis:

Scalars are denoted by lower-case letters, e.g., c € R.
Vectors are denoted by bold lower-case letters, e.g., v € R3.

Matrices are denoted by bold upper-case letters, e.g., A € R3*3. Identity and zero
matrices are denoted by I"*" € R"*" and 0" € R"*", where n,m € IN_.

Reference frames (or simply frames) are denoted as X;, where the subscript cor-
responds to the name of the frame. A frame consists of an origin—a point in 3D
Euclidean space—as well as a triplet of orthonormal basis vectors (x,y, z). If not
explicitly stated otherwise, right-handed Cartesian coordinate systems are used to
represent reference frames. Inertial frames are not distinguished from non-inertial
frames by notation, but through the context surrounding the respective equation.

The notation for points in 3D Euclidean space contains their reference frame as a
superscript and their name as a subscript: “p;. The frame notation is dropped if it
is clear from the surrounding context.

Newton’s notation for differentiation is used for differentiation by time. Leibniz’s
notation is employed for differentiation by any other variable.

The skew-symmetric matrix representation for a vector r € R? is given by:

0 —rz Ty
= r 0 —ry| €ER>® given r= ry| € R3. (2.1)
_ry rx 0 rZ




Chapter 2 Mathematical Foundations

The following physical quantities are defined by the use of the aforementioned conven-
tion on mathematical notation:

¢ Time is represented by the scalar quantity t € R.
* A translational displacement between two points *p;, ¥ p;j is denoted as kti,]- € R3.

¢ The orientation of X, with respect to ¥, is parametrized via a three-dimensional
vector 0,77 € R3 of Euler angles.

e Linear velocities are represented by *v; j» which denotes the velocity of ¥; relativ to
Y; expressed in the coordinate frame Y. If ¥} coincides with ¥;, the abbreviated
notation ¥v; is employed. This frame convention is employed for all the following
quantities.

¢ Linear accelerations are represented by k a;j.
 Angular velocities are denoted by *w; j-
e Angular accelerations are denoted by *@; j-

* Forces are denoted by °f; € R>.

T
¢ Moments are denoted by “h; = {kkiT k liT} € R®, with Fk; € R resembling the
linear part and ¥I; € R® resembling the angular part of the momentum.

e Torques are represented via

T;.
k T 7T 6 . R .
¢ A pose “P; = [kPi kgi"‘ﬁ” } € RR® resembles the combined position and orienta-
tion of a body with respect to a given reference frame.

¢ Twist coordinates are used to represent linear and angular velocities in a single

T
vector. They are denoted by *¢; ; = [kvi, ]-T kw; ]»T] € RS.

* Wrenches are denoted by fw; = [Ff; *r;] T e RS,

The individual components of the vector quantities listed above are referenced by
adding an additional axis reference as a subscript. E.g., the individual entries of the
force vector, i.e., the force in direction of the Cartesian axes (X, y, z), are represented
by the scalars ° Sexample,x » 0 Sexample,y 1 0 Jexample,- € R. Individual rows or columns of a
matrix are referenced according to M;;, where i resembles the referenced row and j
resembles the referenced column. The use of : in this context implies all of the respective
rows/columns.

The frame notation in the above quantities is dropped whenever the respective frame
is clear from the equation’s surrounding context.
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2.2 Frame Transformations

The location of a body in Euclidean space, with respect to a second reference frame,
requires at least six parameters to be fully defined—three of which are used to define its
position and another three are used to define its orientation.

2.2.1 Motion in SO (3)

Literature on robot kinematics exhibits a large variety of possible parameterizations for
rotations "R, € SO (3) of the reference frame %, into the orientation of ,,.
Euler angles parametrize the rotation "R,, € SO (3) via a three-dimensional vector

of angles mgaPT — @ B ﬂT € R3, where each angle parametrizes one of three
consecutive rotations about the Cartesian axes x, y, and z of the reference frame Tl
One hereby distinguishes between two different modes of rotation: extrinsic and intrinsic
rotations. For extrinsic rotations, each individual rotation is applied consecutively, but
with respect to the orthonormal basis of a static reference frame that is invariant to the
applied rotations. Intrinsic rotations, on the other hand, assume consecutive rotations
of a moving reference frame about its own axes. Hence, each of the three individual
rotations can change the basis vectors about which the succeeding rotations are applied.
It holds that any intrinsic rotation sequence is equal to the reversed sequence performed
as extrinsic rotations and vice versa [1, Chapter 2.2.2]. Popular choices among the twelve
possible sequences of rotation are z-y’-x" (x-y-z, extrinsic), z-x"-z" (z-x-z, extrinsic), and
z-y'-z" (z-y-z, extrinsic). Sequences that contain each of the three axes are sometimes
referred to as the Tait-Bryan, Cardan, or Yaw, Pitch, Roll angle convention. Throughout
this thesis, the intrinsic z-y’-x" (x-y-z, extrinsic) rotation convention will be used, as it
places the singularities at = 7. One representative example where this particular
placement of the singularities is useful is the orientation of the robot’s base with respect
to its surroundings. For bipedal walking, it is highly unlikely that the base orientation
reaches B = £ 7 given the reference frame’s x axis is positive toward the front of the
robot, while the z axis is positive in the direction of displacement between the robot’s
base and its head—i.e., its natural upward direction.

Let in the following c,, c¢g and ¢, resemble the abbreviation for the cosine of «, , y
and s,. Further, let s,, sg and s, be the abbreviation for the sine of «,  and 7y respectively.
Then the orientation of a reference frame X, with respect to ,, can be defined in terms
of a rotation matrix acting on the orthonormal basis vectors of X;,,. This rotation matrix
is parametrized by «, B, and 7 as shown in Eq. (2.2).

CCy  CaSy 1+ CySaSB  SaSy — CaCySp
"Ry (2, B,77) = | —CpSy CaCy —SaSpSy CqSu + CaSpSy| € SO(3) (2.2)
S/; —CﬁS,X C,XCﬁ
The angle-axis convention defines rotations in Euclidean space via a single angle 6, and
a unit vector u € IR® about which the orientation by @ is applied, where "8* = 6u € R>.

'Within this thesis, the three fundamental rotations are parametrized as Ry («), Ry (B), and R: (7).
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As the unit sphere S? is fully defined by two parameters, and every 3D unit vector
lies on the unit sphere, each unit vector can itself be fully defined by only two pa-
rameters [21, Chapter 6.1]. Hence, the total number of parameters of the angle-axis
convention is three. Given the angle-axis parameters # and 6, one obtains the respective
rotation matrix "R,, € SO (3) via Rodrigues’ rotation formular for the exponential map:

_ e _ v (@0)F
"Ry (u,0) =e" = kgo o

=13 4 d@rsin (8) + #* (1 — cos (9)) . (2.3)

While the angular velocity of a rotation parametrized by the angle-axis convention
is simply determined via the time derivation of the vector 0u, the relation between the
angular velocity and intrinsic z-y’-x" Euler angles is more intricate as shown in Eq. (2.4).

. cgcy —s4 0 éf 400
"w, = Gm(),fm = |cgsy ¢ Of |B| = Eitu) (2.4)
—Sﬁ 0 1 ’5/

The angular acceleration "w, follows from differentiation of Eq. (2.4) with respect to
time:

. . X 2
M, = GMONFT 4 GmELPT = dd(f;”). (2.5)

) —CpSyY — sﬁcxﬁ. —cyy O
G = | cpcyy — SpSP —s,7 0 (2.6)
_C‘Bﬁ 0 0

2.2.2 Homogeneous and Adjoint Transformations

Every point 'p, within the reference frame %, can be described in a different frame %
given that the relative orientation 'Ry and translation ‘t; ; between ¥; and ; are known.
This transformation can be either described by a rotation with subsequent translation, as
shown in Eq. (2.7), or by introducing so-called Homogeneous Coordinates. Homogeneous
Coordinates enable performing both rotation and translation in a single multiplication
with the matrix ¥T;. The respective point or vector is thereby extended by an additional,
fourth coordinate as shown in Eq. (2.8).

kpp = kRiiPp + kti,k (2.7)
k i k. kg
[ il’p] _i, [ fl’v] where *T; = [Ofig ﬂ 2.8)

= = | R R 2.9)

T T
‘Ri’ —FR; kti,k]
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Similar to the transformation performed on points, twist coordinates can also be
transformed between two reference frames X and %;, employing the so-called adjoint
transformation Adjir,. This transformation is associated with T; and it is defined in
terms of Eq. (2.10).

k - . "R; "t *R; 6x6
1
kR.T  _kR.T kg,
- . k
Adjip ' = Adji, = | 1 " (2.11)
0 R;

Wrenches are dual to twist coordinates, and are consequently transformed using the
transposed adjoint [21, Chapter 5.1]. It is important to note that this notation of the
transposed adjoint refers to a transpose operation that does not act on the block matrices
contained within the adjoint. Transposing the contained rotations and the respective
cross-product would lead to the inverse of the desired transformation ij and thus to
further inconsistencies with respect to the employed superscript/subscript notation.

T T kR' 03><3
kw,, = AdjkT’_Zwm where Adjle_ = [ I ] )

2.12
kKR, R (2.12)

The time derivative of an adjoint transformation is obtained by leveraging the Lie Bracket
Matrix adj (i) k'&; as proposed in [23].

(i ‘W o T (i i@ 033
ad] (ng) = |:03><k3 za\;;:| and ad]T (ZTk> - - |:1’f): ia]k:| (213)
Adjip, = Adjiy, adj (fgk) and Adj%. = AdjT; adj” (igk) (2.14)

2.3 Kinematics and Dynamics

This thesis is solely concerned with serial-chain kinematic structures within humanoid
robots. Information on the applicability of the presented topics to parallel kinematic
chains is available in the respective literature [1, 21, 22]. A serial kinematic chain
generally consists of a sequence of joints with links between them. The two respective
ends of the chain are thereby connected to the base link and the end effector. The general
kinematics of a humanoid can be described via a tree structure, where the root node
represents a single base link and the leaves resemble individual end effectors. In the
example of DLR’s Torque-Controlled Humanoid Robot (TORO)—whose kinematic chain
is visualized schematically in Fig. 2.1—this kinematic tree has five leaves representing
the end effector orientation of the four limbs (left/right arm and leg), as well as that of
the head. Through this tree, one can impose a partial order on the individual joints; i.e.,
a parent frame can be defined for any link except the base. The parent frame of the base
link is an arbitrarily placed inertial frame %,.
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[E—
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Figure 2.1: Schematic overview of DLR’s TORO with its kinematic chain in
zero-pose [6]. The parallel bar mechanism at the feet is actuated by a single
motor at the joint location F” with the passive joint F attached. For
simplification, a single active joint at the location of F is assumed in the
robot’s kinematic model throughout this thesis.
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2.3.1 Forward Kinematics

The forward kinematics of a serial manipulator with a single end effector (abbreviated
with “EE” in the subsequent equations), n revolute joints, and joint space Q define the
pose of its end effector with respect to its base as a function of the joint angles 6 € Q:
FK (0) : Q — SE (3). The kinematic chain can thereby be fully defined through the poses
of the 7 joint axes (in zero-position) with respect to the basis frame ¥, and the static
pose of the end effector relative to the last joint axis. Each joint axis can be expressed
through a unit vector #; € R® and a reference point **p; € R® on the axis. Let ‘t;;
denote the translational offset between the reference points of axes i and k. The respective
rotation induced by joint i is then given by the rotation matrix "' R;(u;, 6;) according
to Eq. (2.3). The position forward kinematics can be defined according to Eq. (2.15),
while the orientation forward kinematics can be defined via Eq. (2.16). The two rotations
baseRy and "R are hereby static, i.e., independent of the joint positions, and resemble
the orientations of the base frame and the end effector with respect to either start or end
of the kinematic chain.

n

1
2 buseRi Zti,z'+1) + baseRn ntn,EE (2.15)

base base —
tbase,EE = tbuse,l + <
i=1

n—1
buseREE — baseRO (H lRi-i—l) nREE (216)
i=0

An alternative approach to the above definition of the forward kinematics is made
possible by considering the velocity ;1 of the reference point of joint axis i + 1 induced
by the movement of joint i. One obtains the twist i¢;,; € se(3)—an infinitesimal
generator of SE (3)—that corresponds to '¢; 1 by means of Eq. (2.17). Conversely, the
twist coordinates that correspond to '&;, 1 are denoted via the vee operator “V” as shown
in Eq. (2.18).

" i1 v, , s
i = [(‘)‘{lj; 7’6“] c R¥* st T, =eb+% cSE(3) (2.17)
i ixV Wiy v Y
Git1 = §i+1 = 0l1x3 0 (2.18)

The forward kinematic formulation can subsequently be obtained via Eq. (2.19), where
base T and "Tgp again resemble the static transformation at either end of the kinematic
chain.

n-1
baserp. — base, (H e it 91') "Trp (2.19)
i=0

11
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2.3.2 End-Effector Jacobians

The spatial manipulator Jacobian for a serial manipulator with a single end effector
relates the individual joint velocities to the respective end effector velocities according
to Eq. (2.20). While this relation is generally linear in J (0), the Jacobian itself is typically
non-linear with respect to the respective joint configuration 0. The parameter 0 is often
omitted for the sake of brevity.

baseg .- = ] (0) 6 (2.20)

One obtains the spatial manipulator Jacobian through differentiation of the forward
kinematics function FK : Q — SE(3) with respect to time [21, Chapter 4.1]:

7(6) = KaFEI)((;mEETb”sQVW (EWEETM“)V} = [basegy ... bse,]

. 2.21)
\ i—1 (
given baseézi — ((Ad].basenilhusegi) where base:I;;l _ HekngGk .
k=0

Each column in the Jacobian thus corresponds to the respective joint’s twist coordinates
transformed to the manipulator configuration given through 6.

Alternatively, one often chooses the body manipulator Jacobian to represent the end
effector’s relative velocity with respect to the end effector’s own coordinate frame.
Assuming a serial chain of interconnected joints, where joint p resembles the parent
joint of joint k, the body manipulator Jacobian propagates by means of the individual
joint’s Jacobian ky pk as shown in Eq. (2.22).

Toasex (0) = Adjor? Jouse,p + Tpk (222)

The time derivative of the propagated body Jacobian is further given via:

kjbase,k (er 9> = Adjrl_lepjbase,p - adj (pgk) Ad].P_I}kkIp,k + kjp,k- (2.23)

The algorithm used for computing the individual joint Jacobians, their derivatives,
and the forward kinematics of individual joints is given in Algorithm 1. Apart from
the total joint configuration and the respective joint rates, this algorithm expects a
matrix E € R®*" as an input, which contains the individual twist coordinates of a joint.
While the algorithm, as stated below, is generally applicable to n-dimensional joints,
computation times can be improved by only considering the non-zero dimensions of
E—for the typical case of a revolute joint, this reduces the number of relevant columns,
and thus the number of iterations, to one. This matrix is unique to the respective joint
types—individual examples are shown in [1, Chapter 2.3].

The total manipulator body Jacobian is obtained via Algorithm 2, which assumes
the zero-pose of the manipulator, and thus the individual joint positions are given in
advance along with information on each joint’s parent frame. By sorting the input
arguments with respect to the partial order defined through the robot’s kinematic tree,
the correct order of computation is ensured.

12



2.3 Kinematics and Dynamics

Algorithm 1 Computation of the joint Jacobian in accordance with [23]

Input: Joint Configuration 8 € IR”, Joint Rates 6 € R", Joint’s Twist-Coord. & € R®*"

Output: Joint Jacobian J, Joint Jacobian Derivative ] , Joint Transformation °Tj

1 T I¥4

2: fori=mn,...,1do

3: Ci+— & > ¢; resembles the velocity induced by moving joint
4 0; + 6,

5 if ; # 0 then

6: ]:,i — Ad] -1 gi

7 J.i e —adj (J6) Adjr ¢
8 T+ exp(&6;) T

9 else

10: J.i < 0%x1, j;,l‘ — 061

11: end if

12: end for

13T, « T

14: return J, i, °T,

2.3.3 CoM Jacobian of a Humanoid Robot

In contrast to conventional serial chain manipulators, the kinematic chain of a humanoid
has multiple end effectors. Additionally, the base of the robot is not rigidly attached
to the environment but free-floating. To circumvent the latter issue, one can think of
the floating base as just another link that is rigidly attached via a virtual 6-Degrees
of Freedom (DoF) joint to an arbitrary but fixed inertial world frame ;. The joint
variables are then represented by the six values of the base’s pose worldp, . The
Jacobian propagation for this joint then follows the same rules as previously discussed
in Section 2.3.2.

Apart from the placement of multiple end effectors—usually one end effector per
limb—the CoM kinematics and dynamics also play a crucial role in the motion planning
of a humanoid robot (see Section 3). In general, each rigid body attached to a humanoid
is either a link that is directly attached to at least one joint or is a third-party rigid
body that is rigidly attached to a link. In the second case, the weight and inertia of the
respective rigid body are considered to be part of the respective link. Coupled links are
thereby not considered for simplicity. Let “pcom, i resemble the position of the CoM of
link 7 in a robot’s kinematic chain that contains N € IN links. Further, let m1;;, € R
resemble the total weight of all links in this chain. Then the CoM of the entire robot is
defined through Eq. (2.24).

1 n
Y “pcom, (2.24)

w —
PCoM =
Miotal ;=
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Chapter 2 Mathematical Foundations

In addition to the CoM of each link, its inertia (i.e., its mass distribution) must be
considered for computations regarding the dynamics of a robot. Throughout this thesis,
the inertia of each link is assumed to be given in terms of the constant body inertia
matrix My € R®*® expressed in the body frame of joint k that is associated with link k.
The values for each Mj can be obtained through parameter identification or by use of
the robot’s Computer-Aided Design (CAD) model [1, Chapter 6.3].

Similarly to the concept of the manipulator Jacobian, one can define a CoM Jacobian
Jcom that relates joint velocities to the velocity of the CoM “pcoum relative to the inertial
world frame ¥,. The virtual 6-DoF joint of the base must hereby be included in both
the number of the joints 71, as well as the joint configuration space 8 and its derivative
0. Let in the following “T;, denote the transformation from X, to the frame associated
with joint 7 in the joint configuration 6, and let “T;, denote the same transformation for
the zero pose. Further, let ], ;, denote the body Jacobian of joint i, relating the joint
velocities 6 to Gw,ip- The spatial CoM Jacobian is then given via Eq. (2.25) [23]. “Jcom
hereby only relates the linear velocities of the CoM.
i I3><3 03><3 Ad M ] _ L [I3><3 03X3] L
Miotal ;=7 JWT wlo = Motal (225)

where “Joom € R¥*" and L e R®*"

w]CoM -

2.3.4 Inverse Kinematics

Inverse Kinematics (IK) describes the problem of finding joint angles of a kinematic
chain for one or more given end-effector pose(s). Let x(,sx represent the N-dimensional
Cartesian task space of a humanoid robot. The forward and inverse kinematics are then
formally defined as:

FK (9) : Q — Xtask

(2.26)
IK (Xtask) Y Xtask — Q

In general, the IK problem is only known to be analytically solvable for manipulators
with less than six DoF and certain geometric correspondences between their joint axes.
In the case of a humanoid robot, neither of these necessary properties is usually fulfilled.
Still, analytical methods can be applied in the context of partial sub-chains within the
overall kinematic chain of the robot. For example, one can separate the tasks of the
upper- and lower-body limbs such that the movement of each arm can be planned
independently to follow a certain Cartesian trajectory. In the specific example of German
Aerospace Center (DLR)’s TORO, however, at least one joint in each arm would need
to be locked in place such that the individual kinematic chain of each arm becomes
analytically solvable, e.g., through an automatic decomposition into subproblems as
shown in [24]. As this thesis is primarily concerned with locomotion tasks—and thus
planning of the CoM and lower-body limb trajectories—a purely numerical method is
employed in the following IK computations.
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2.3 Kinematics and Dynamics

The joint-space of a humanoid robot generally consists of all of its joints—including
the virtual 6-DoF at its base. In the case of DLR’s TORO, this joint-space can be defined
according to Eq. (2.27). As there is no need to perform any motion with the head in
the context of this thesis, the respective joint values g, are set to remain in their zero
configuration at all times. Furthermore, the waist of the robot (guqist) is also set to
remain in its natural zero configuration. By these assumptions, one can formulate a
reduced joint-space 0,.4;ced-

waase ] _ _
JrightLeg € RS “Phase
GleftLeg € IR® ArightLeg
0:= Quwaist ceRR S IR33 and ereduced = qleftLeg € IRSO (227)
qrightArm S ]R6 qrightArm
qleftArm 6]12156 L qleftArm 1
Gneck €

In contrast to the joint space, which resembles a part of the robot’s system state,
the task-state is related to the motion planning objective. In other words, the motion
planning procedure imposes a specific set of tasks that must be fulfilled—up to a certain
accuracy—in order for the robot to successfully achieve its planned motion objective.
The IK is thereby concerned with mapping a set of Cartesian tasks in the task-space to a
valid joint-state configuration that fulfills this task. The set of feasible solutions to the IK
problem is therefore given via Eq. (2.28).

IK (Xtask) = {6 S Q ’ FK (6) - Xtask} . (2-28)

This set is either empty, contains a finite number of solutions, or contains an infinite
number of solutions. The solution set is empty if, and only if, the given tasks are placed
outside the robot’s workspace such that they can not be (simultaneously) fulfilled. The
latter is the case if, and only if, the manipulator Jacobian becomes singular, such that
det (J (8)) = 0.

For the remainder of this thesis, the task-space vector x:,sx of TORO is defined to
consist of the CoM “pcou, the orientation of the base link in terms of wﬂ;‘ st/ and the
poses of the two feet. The tasks for the upper limbs can vary between those formulated
directly in joint space and those in Cartesian space. As this thesis is primarily concerned
with bipedal locomotion, a formulation of Cartesian tasks for the upper-body limbs
often introduces unnecessary complexity if one desires a constant upper-body posture.

“pcom “pcom
wa By w By
6blzse Bbase
wp . wp. .
Xtask == | o, rightFoot c R3O Of  Xpask = | ., rightFoot c R3O (2.29)
PleftFoot PleftFoot
qrightHand wPrightHand
L qleftHand ] _wPleftHLmd ]
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Chapter 2 Mathematical Foundations

Based on the task-space xi;sx and the joint-space 0,.4,c.4, One can further define the
(stacked) system Jacobian. In the context of TORO, this system Jacobian is represented
by Eq. (2.30). In the case where the upper body limbs’ tasks are defined in joint space,
one can define Jyjgntarm = JrightArm = 130 such that the total dimensionality of x and
0,0duced Can be further reduced to R.

Jcom
330

] _ IrightFoot c ]R30><30 (230)
]leftFoot

]rightArm
L ]leftArm |

Given an initial guess 0"t which is located in the vicinity of the actual solution,
the Newton-Raphson method [22, Chapter 6.2.2] is used to iteratively compute the IK
solution. The joint-space step A@ is computed according to Eq. (2.31) in each iteration of
the algorithm.

0i11 = 0i + J* (Xtask — FK (6;)) (2.31)

One option for J* is the choice of the damped pseudoinverse as shown in Eq. (2.32).
Using this pseudoinverse corresponds to the solution of a damped least-squares prob-
lem [1, Chapter 10.3].

—1
=g (T + A2P0) T where A€R A<<1 (2.32)

Typically, the IK is not only computed once, but repeatedly over time with ), following
a set of time-dependent trajectories where a good initial guess 0;,;; at timestep t, can be
obtained via the first-order Taylor expansion:

Oinit, 1+t = 01 + AL0; . (2.33)
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Chapter 3
DCM-Based Bipedal Locomotion

3.1 CoP and ZMP

The CoP and ZMP are two essential quantities for bipedal locomotion that are often
used interchangeably—sometimes mistakenly—when discussing contact wrenches and
properties of contacts with the environment. The work in [25] thoroughly describes the
definitions, interpretations, and applicability of both quantities and serves as a reference
for the following paragraphs.

The CoP is the point in the robot’s support polygon, where the exerted moment of the
contact’s pressure field becomes zero (see Fig. 3.1). It therefore only exists if the robot is
in contact with its environment. Given that X defines a reference frame that is attached
to the center point of a robot’s support area, it holds that:

CTgrf = CtC,CDP X Cfgrf . (3.1)
Conversely, the pressure field of all forces and torques acting on the contact can be
represented by a single force acting at the CoP. The CoP is obtained via the relation
given in Eq. (3.2) between the contact forces/torques, and the contact’s normal vector
neR3.
n X CTgr f
Cforf-n
The ZMP, on the other hand, resembles the point on the ground where the tipping
moments (i.e., gravity and inertia) of the robot become zero. It is thus directly obtained

CPCOP - (32)

Continuous Single force Top-down
pressure field acting at the CoP view

Contact

ot A T
n
(. — 1 Q_“ ? n /
n
Contact Centroid

Figure 3.1: The continuous pressure field acting on a contact can be represented via a
single force acting at the CoP.
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Chapter 3 DCM-Based Bipedal Locomotion

through the dynamics of the robots and can also be computed, for example, during flight
phases, e.g., during running, where no support area exists. However, in the context of
this thesis, only walking on flat ground is considered, where the ground contacts of
both legs appear within the same plane such that the ZMP and CoP always describe the
same point.

3.2 Divergent Component of Motion (DCM)

The CoM dynamics of a robot, which are only affected by gravitational and external
forces, are a common choice for the central planning and control entity in humanoid
locomotion [1, Chapter 48].

In contrast to simplified models, such as the linear inverted pendulum (LIP) [1, Chap-
ter 17.4.3], the 3D-DCM resembles a reduced model of the centroidal dynamics of a
robot via a direct reformulation of Newton’s second law of motion. It is generally not
limited to bipedal walking, but can also be applied, e.g., to quadrupeds or multi-contact
scenarios with humanoids [26]. The formulations within the 3D-DCM framework are
applicable even in flight phases, enabling motion planning of centroidal dynamics for
running, jumping, or skipping motions [2]. The 3D-DCM locomotion framework [7],
which exhibited highly useful properties for planning of complex motions in the past [2-
4], splits the unstable second-order CoM dynamics into two first-order dynamics: the
stable CoM dynamics related to the DCM, and the unstable DCM dynamics related to
the so-called VRP.

Let in the following x & R3 resemble the position of the CoM, “pc,pm, with respect
to an inertial world frame ¥,. The 3D-DCM is then defined via Eq. (3.3). The CoM
dynamics, which become stable when expressed in terms of the DCM, are formulated
according to Eq. (3.4).

£ = x+bi (33)
b= (- 0) (3.4

The DCM time constant b € IRy is thereby defined according to Eq. (3.5), where Az € R
denotes the design variable that defines the average CoM height above ground, and
g resembles the gravitational constant. A generic adaptation of Az over time is also
possible, e.g., through the approach presented in [27].

Az
bh=,—= 3.5
\/ 2 (3.5)

The sum of all external forces acting on the CoM can be encoded in terms of a repelling
force law. This repelling force is defined through the difference between the CoM and the
so-called eCMP e € R3. In contrast to the Centroidal Moment Pivot (CMP), the eCMP
is not restricted to the robot foot’s contact plane, which allows the eCMP to encode both
direction and magnitude of the sum of external forces according to Eq. (3.6). The CMP
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3.2 Divergent Component of Motion (DCM)
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Figure 3.2: Quantities of the 3D-DCM framework visualized during straight walking.

resembles the intersection point between the ground and the line that connects the CoM

with the eCMP.
m

Zfexternal = »® (x - e) (3.6)

In addition to the eCMP, the VRP v € RR? is used to concisely express the unstable
dynamics of the DCM:

= (@), 67)

The trajectory of the VRP itself is defined through a spatial and temporal linear interpo-
lation of the support points v; € R3, which are located above each of the eCMPs by the
vertical offset Az:

vi=e+[0 0 Az, (3.8)

Intuitively, one can think of the VRP as a quantity “pushing” the DCM away, while the
CoM converges towards the DCM. All 3D-DCM quantities are visualized in Fig. 3.2 for
the example of straight-walking on flat terrain. One of the major benefits of the previ-
ously discussed formulations of the 3D-DCM represents the relatively low-dimensional
planning space. In the visualized setting of straight walking, the CoM dynamics can
be fully defined through the set of eCMPs placed at the center of the respective foot
contacts in addition to the average CoM height Az.

In order to generate the reference trajectories for the DCM, one leverages the fact that
the DCM dynamics in Eq. (3.7) become stable in the case of reversed time, as shown
in Eq. (3.9). Intuitively, one thereby starts planning from the goal position of the DCM
and integrates the dynamics backwards in time to obtain a DCM trajectory that is
inherently stable by design.

E(-0)=—5 E(-H—o (1) 39)

Integrating the stable CoM dynamics forward in time—based on the stable DCM
trajectory—subsequently allows for the planning of arbitrary long, stable, CoM dynamics.
Convex properties of the resulting trajectories are discussed in [28]. An algorithm for
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Chapter 3 DCM-Based Bipedal Locomotion

the efficient computation of the DCM and CoM trajectories, from a given set of VRP
waypoints, is proposed in [2].

3.3 3D-DCM Motion Planning

The following elaborations on the concept of a motion plan in the context of the 3D-DCM
framework were originally proposed in [2—4].

A motion plan consists of a set of sub-plans, which describe the individual task-space
objectives of the robot’s whole-body movement over time. In the context of this thesis,
the task-space of the robot, and hence the set of subplans, consists of: the CoM dynamics,
the individual limbs” movements, the CAM, as well as the orientation of the robot’s base
link. Each subplan thereby consists of a series of motion phases. Each phase is defined
by a duration T;, an initial phase state, and a final phase state. The initial phase state
thereby resembles either the start of the subplan or the final state of the previous motion
phase. Hence, every motion phase, except the first one, defines exactly one state in the
overall task trajectory.

3.3.1 Phase-State Interpolations for Reference Trajectories

By interpolating between the individual phase states, one obtains the desired task-space
reference trajectory of the respective subplan. Different types of motion phases thereby
require different modes of interpolation between the individual states. The most crucial
phases and their interpolations used in this thesis are briefly outlined below.

CoM-Phases

Interpolation between different CoM-phases is done by linearly interpolating the eCMP
waypoints—and subsequently the VRP—between the phase’s initial and final state. In
the context of this thesis, the VRP waypoints are thereby associated with the centroid of
a stance, i.e., a set of weighted contacts. The CoM and DCM trajectory for all subphases
is then obtained by employing the reverse time computation via the efficient waypoint
algorithm proposed in [2]. In contrast to the resulting VRP trajectories, the obtained
CoM trajectory is thereby C? consistent.

Limb Phases

The upper body limbs of a humanoid are, for the remained of this thesis, considered to be
controlled in joint space. Their respective state trajectories are obtained by interpolating
between the initial and final joint states via a fifth-order polynomial, which ensures
matching velocities and accelerations at the phase boundaries, resulting in an overall C2-
consistent trajectory. For bipedal walking, only the legs of the humanoid are considered
to come into contact with the environment and thus exert forces. One thus distinguishes
between a limb phase that maintains a ground contact and one where the limb is free
to move. In between, attachment and detachment phases ensure a smooth transition
between the exerted forces. Phases that resemble a “stepping motion” of the feet are
interpolated in Cartesian space. While the Cartesian x and y position, along with
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3.4 Whole-Body Control

the orientation, can be directly interpolated using a fifth-order polynomial each, the z
value involves two separate interpolations: The first one involves interpolating between
the initial state’s z value and an intermediate point located at the desired stepping
height. The second interpolation step finalizes the motion by interpolating from the just-
mentioned intermediate point to the phase’s final z value. Velocities and accelerations
at the beginning and at the end of a stepping motion are set to zero.

Orientation Phases

Analogous to the interpolation used for the orientation of the Cartesian states in the limb
phases, the orientation of the robot’s base is interpolated by the use of three fifth-order
polynomials for roll, pitch, and yaw to match angular velocities and accelerations at the
respective initial and final boundaries of the phase.

3.3.2 Planning for Shared Autonomy Walking

In shared autonomy, the high-dimensional action space of a humanoid robot is mapped
to a low-dimensional input device, such as a joystick, keyboard, or gaming controller.
This enables a human to take on the high-level reasoning process of planning the robot’s
motions while intuitively commanding the desired movements. That way, human
intelligence and algorithmic capabilities complement each other to perform sophisticated
and sensible movements on the robotic system. One of the major challenges in such
scenarios is ensuring the system’s high reactivity to commanded inputs while preventing
undesired movements. A timely processing and execution of the commanded actions is
thereby crucial to realizing low input delays.

With these requirements in mind, a motion plan can be incrementally built by itera-
tively sampling the input commands of the respective human interface device. In the
context of a gaming controller, the direction of the joystick can be interpreted as the
desired direction of the robot’s next step and yaw orientation about its vertical axis [4].
By this approach, one continuously generates alternating steps for the left and right
foot of the humanoid, one step at a time, based on the respective controller input. A
new step is thereby added to the motion plan as soon as the robot starts executing the
previous step. This ensures the high reactivity of the performed action to new inputs,
thereby allowing the human to intuitively command the robot’s motion. As the robot
needs to come to a safe stop when no further action is required, an implicit safety step is
planned to bring the robot to a safe stop along with each new stepping motion. A visual
example of the instantaneous motion plan during walking with a gaming controller is
shown in the Chapter on experiments in Fig. 6.11.

3.4 Whole-Body Control

The forces acting on the CoM, as planned within the 3D-DCM for a desired motion
plan, must be generated by a coordinated interplay of the robot’s individual joints and
their respective torques. As previously denoted in Section 3.2, the DCM dynamics
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Chapter 3 DCM-Based Bipedal Locomotion

are thereby only stable in reverse time. Thus, during the actual execution of a motion
plan, these dynamics must be stabilized by a controller. Thus, the task of a whole-body
controller is to generate ground reaction forces to track the desired DCM dynamics,
while, in the best case, accomplishing all commanded additional tasks imposed on the
system. These tasks may involve exerting a specific force on the robot’s environment
with one of its limbs, holding a specific whole-body pose, or following a commanded
limb trajectory. The passivity-based whole-body torque controller proposed in [3] with
additional information provided in [29] is employed within this thesis, along with the
whole-body motion optimization proposed in [5]. The latter thereby enables tracking of
a desired CAM trajectory by generating the respective momentum via a set of selected
joints, e.g., within the upper-body limbs. One of the major benefits of a passivity-based
whole-body torque-controlled robot is its capability for compliant and safe human-robot
collaborations, as well as a precise exertion of forces, e.g., for interaction with uneven or
compliant surfaces.
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Chapter 4

Realtime VRP Optimization by
Motion Preview

The CAM is long known to play a crucial role in human and humanoid locomotion [11].
Especially during dynamic and agile movements, such as fast walking or running,
links with non-negligible masses, and considerable distances from the robot’s CoM, are
exposed to high velocities. This results in large fluctuations in the angular momentum
introduced to the system. Previous work [9] proposed to optimize the VRP trajectory
with respect to these changes in the robot’s CAM as opposed to compensating for
it through extensive, upper-body motions employed by the whole-body controller.
However, in order to consider the CAM and its derivative in the motion planning
procedure, an accurate estimate of the robot’s kinematic and dynamic quantities during
execution of the respective motions must be available during the planning process.

The following chapter proposes a sliding-window algorithm that incrementally op-
timizes the placement of eCMP waypoints during real-time execution, while ensuring
a safe and consistent motion plan at all times. The robot’s full kinematics and all
quantities of its multi-body dynamics relevant to the CAM are thereby considered. As
the optimization only acts on the components in x and y, the terms VRP and eCMP
optimization may be interchangeably used in the following.

. Motion Planner
initial state

E A execution progress
. v optimized I A 4
7=] B_| command Action actions Plan motion plan | Reference

7= R 1S | Lookahead reference
M= v " Sequencer "| Assembler — Optimizer "|  Trajectory p Whole-body | state
Seq motion 4) ’ "1 Controller [~

¢ A plan Generator
(-] v .
- - orrectabl torque sl‘nc.
Footstep n Footstep | g | uncorrectable Estimation
> <

Planner contacts Adjustment errors \ 4

Robot
(3 kHz) sensor data

asynchronous synchronous (1 kHz)

Figure 4.1: Overview of the motion planner architecture presented in [4]. This thesis
extends the original architecture (highlighted in blue and black) to include a
Lookahead Optimizer module (highlighted in green).
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Figure 4.2: The Lookahead Optimizer consists of four distinct steps: Phase Splitting,
Reference Trajectory Generation, Lookahead State Computation, and eCMP
Optimization. All but the first step are repeated for multiple iterations.

4.1 System Architecture

The 3D-DCM motion planner presented in [4] serves as a baseline for the proposed
implementation and consists of an asynchronous and a synchronous component. The
objective of the asynchronous component is to provide the synchronous component
with a safe, consistent, and feasible motion plan. The synchronous part computes
time-continuous task-trajectories for the received motion plan, forwards them to the
passivity-based whole-body controller (see Section 3.4), and notifies the asynchronous
part about the execution progress. This thesis proposes an extension of the original
architecture through a so-called Lookahead Optimizer module, as shown in Fig. 4.1.
The input to the Lookahead Optimizer is the original motion plan provided through
the Plan Assembler. The Lookahead Optimizer employs four distinct steps until the
respective motion plan is sent to the synchronous part of the motion planner: Phase
Splitting, Reference Trajectory Generation, Lookahead State Computation, and eCMP
Optimization. As described in Section 3.2, the VRP trajectory is obtained via a piecewise
linear interpolation of the eCMPs, in addition to the offset Az. A schematic overview of
the Lookahead Optimizer’s structure is shown in Fig. 4.2.

4.1.1 CoM-Phase Splitting

Limited computing resources and real-time requirements do not allow for an arbitrary
frequent computation of the robot’s whole-body kinematics and dynamics. The Looka-
head Optimizer, therefore, is limited to a finite number of sample points along the
continuous motion plan at which the respective kinematic and dynamic computations
are conducted. As previously discussed in Section 3.2, each CoM phase defines a
single eCMP waypoint such that the eCMPs of two consecutive phases can be linearly
interpolated. In order to optimize the resulting VRP trajectory based on a sampling
density of N € IN; samples per second, each CoM phase of duration T € R has to be
split up into (%W individual subphases—each describing the position of a single eCMP.
The synchronous part of the motion planner employs the efficient waypoint compu-
tation algorithm presented in [2] to compute the centroidal dynamics for the received
motion plan. Due to the synchronous execution of this code at 1kHz, the time available
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Figure 4.3: Each phase of the CoM plan that is located within the current preview
window is split into multiple subphases of duration T;. If the duration of the
original subphase is not a multiple of T;, the last subphase will be shorter.

for this waypoint computation is highly constrained, while the computational complexity
of the efficient waypoint computation is O <n2 ) , where 1, denotes the total number
of CoM phases. Based on the measured runtimes in Section 4.2, the total number
of CoM phases provided to the synchronous part of the motion planner should not
exceed 100 to not risk violating the system’s real-time constraints. This significantly
limits the total portion of the plan available for optimization, and, along with the input
delay discussed in Section 4.2, motivates the use of a sliding window approach for
the optimization. The sliding-window procedure is visualized in Fig. 4.3 with a more
abstract visualization shown in Fig. 4.4. A discussion on the optimization window’s
respective parameters—length, sampling rate, and overlap—is conducted in Section 4.3.

The number of subphases obtained after splitting a CoM phase of duration T € R,
#Subphases, is obtained via:

#Subphases = ﬁ\f—‘ €N, 4.1)

The individual duration of each subphase i € 1,...,#Subphases is further defined
by Eq. (4.2).

T ; T
T, = {#SubphusesJ r b L#SuhphasesJ <T (4‘2)
T — (#Subphases — 1) LWTMIWSJ , else

The final eCMP position e; 1, at T; of each subphase i is obtained from the linear
interpolation between the original phase’s start- and final eCMPs (ep and et respectively)
according to Eq. (4.3). The position of the individual eCMPs is thereby expressed relative
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Figure 4.4: Visualization of the sliding-window approach of the Lookahead Optimizer.
Each rectangle represents an optimization window on the motion plan,
which is either planned, optimizing, optimized, or executing. Optimization
of a new window starts when the execution progress reaches the beginning
of the previous window. For overlapping windows, parts of the previously
optimized plan are also included in the new optimization window.

to the respective foot stance’s position to preserve the functionality of online footstep
adjustment [20].

Zi:l Tk

- (4.3)

e;1, = eo + (er — eg)

4.1.2 Reference Trajectory Generation

The Lookahead Optimizer mirrors the behavior of the Reference Trajectory Generator
in the synchronous part of the motion planner, in that it computes the explicit task-
trajectories for all limbs and employs the efficient waypoint algorithm to obtain the
continuous CoM dynamics of the robot.

4.1.3 Lookahead State Computation

The generated C?-consistent task-trajectories are evaluated at the timesteps {0, Ty, ..., T}
to obtain a total of #Subphases + 1 consecutive samples of the robot’s task-space X;4sk i
and its derivative X, ; within the current optimization window. For each of these
samples, the IK is computed according to Section 2.3.4 to obtain the robot’s respective
joint-space configurations {6;}. The respective joint rates are then obtained via:

0: = J" (8;) Xtaski - (4.4)
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Based on the tuple (Bi, 61> , the CAM ©°M[ and its derivative “°M I can be computed

to perform the eCMP adjustments in Section 4.1.4. In general, the spatial momentum of
a single rigid body k is computed as:

wk .
whk = |:w1::| = Ad]Z:TkMk kgw,k . (45)
Transforming Eq. (4.5) into the CoM’s reference frame via the appropriate adjoint
transformation yields the centroidal momentum contributed by a single body k to the
entire system. The total momentum acting about the CoM is thus computed by simply

adding up all moments contributed by the individual links in the robot as shown
in Eq. (4.6).

n
CMp = Y Adjlour, Adjiq, Mi*E = Adjluy LO (4.6)
k=1
The CAM thereby corresponds to the angular part of Eq. (4.6). The CAM-Matrix
A € R*", which maps joint velocities to the whole-body angular momentum expressed
in the CoM, can be defined according to Eq. (4.7).

CoMy _ [03><3 13x3] Adj(];oMTw LO=A0 (4.7)

The CAM'’s time derivative €°M i, which resembles the torque acting about the CoM, is
obtained via Eq. (4.8). In practice, A, is thereby obtained using numerical differentiation
in contrast to the analytical solution provided in (4.9), as the latter requires a significantly
larger computational effort, while the gained increase in accuracy is negligible in the
context of the tracking errors exhibited by the real system (see Section 6.3.1).

CoMj — A0+ A0 (4.8)

CoMj — [g3x3 3x3] ((A.djgoMTw L+ Adjlug, i) 0+A é)
R . . (4.9)

where L = Z (Adjszie M; 0 + Adjg;Tig M; me,ie)

i=1
An algorithm that implements all of the above-mentioned properties for a humanoid’s
kinematic chain is given in Algorithm 2. The input to this algorithm is the current joint
configuration 0, the joint velocities 6, transformations from the world frame to each joint
frame in zero-pose, the body inertia matrices, as well as the “PARENT” index of each
joint, trough which the partial order within the chain is defined. All but the first two
parameters are thereby static and independent of the current state of the system.

4.1.4 eCMP Optimization

The desired CoP of a foot contact is typically located within the center of the respective
support area, as this ensures a maximum error margin for the CoP until the foot starts
to tilt. In an unoptimized motion plan, there typically is one eCMP placed at the center
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Algorithm 2 Computation of the manipulator kinematics and spatial CAM matrices [23]

Input: Joint Configuration 6 € R", Joint Rates 0c R", Zero-Pose Transforms “T;,, Body
Inertias M; € R*®*®, Parent Index Map PARENT(i), Body CoM  pcop.

Output: Body Jacobians 7, Link Transforms 7, Spatial CAM Matrix L, CoM Jacobian
JcoMm, Multi—body CoM proM-

1. T[l.n], J[1.n] > initialize as empty arrays
2: fori=1,...,ndo
3: p < PARENT(i) > parent joint index
4 UT, < Tlp] > world-to-parent transform from previous iteration
5 Plwp < T [pl > parent Jacobian from previous iteration
6: © Jioigr iio,is/ 0T, < ALGorITHM 1 > compute local joint Jacobian and transform
7 0Ci0io < " Jiv,ig0 > compute local joint twist
8: PT, ="T, to, > parent-to-current joint in zero pose
PT,, < PT;, o T, > parent-to-current joint transform
10: YTy < “T, PT,, > world-to-current joint transform
1. T[] < T, > save transform in list
12: o io < Adjpr1 PTwp + T i > Body Jacobian at joint i
‘0
13 Ti] < i, > save Jacobian in list
14: L+ L+ Adjszl_e M;J, > accumulate spatial CAM matrix
15: m; <— M; 11 > total mass of body i
16:  “pcom < “pcom +mi- T T Ppcom
17: Miotal $— Miotal + M;
18: end for

19: Joom mt](;tal -Ly3,. D linear part of L (first three rows) resembles the scaled Jcom

20: prOM —

““pcom

Miotal

21: return J, T, L, Jcom, “Pcom
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4.1 System Architecture

of any given contact area. This eCMP placement is justified through Eq. (4.10), which
relates the contact torques T, s to the CoP pcop,,.,., [9]-

Tg”f = (x - pcopdesired) X fgrf + COMi

(3.6) m

(4.10)
= ﬁ (x - pcopdesired) X (x - e)

+ CoMi

By choosing coinciding pc,p,,,., and e, the cross product (i.e., the predominant term)
becomes zero, such that Eq. (4.10) simplifies according to Eq. (4.11).

Torf = % (x —e) x (x—e) + COM] = CoM] (4.11)

Thus, the contact torques are solely defined by means of the time derivative of the CAM.
It follows from Eq. (4.10) that the relation between the actual and the desired CoP is
defined in terms of Eq. (4.12), where Z corresponds to the vertical CoM acceleration.

1 Terfy
pCOPactuul - pcopdesired = m _Tgrf,x (412)
0

Inserting Eq. (4.11) into Eq. (4.12) subsequently yields a direct relation between the time
derivative of the CAM M| and the CoP deviation, given that the eCMPs were placed
at the desired CoPs. One option to minimize the deviation between the desired and
actual CoP per this formula is an active regulation of the CAM through the whole-body
controller, e.g., through motion in the upper-body limbs [5]. Alternatively, one can alter
the respective eCMPs, i.e., optimize the external forces, such that the cross-product term
cancels out with the derivative of the CAM in Eq. (4.10). The latter is proposed in [10]
on the basis of Eq. (4.13) [27].

1 i€0Mry
€ = PCoPiires T m(g+3) —lcomx (4.13)
0

4.1.5 CAM Reference Trajectories

Without CAM-optimized eCMP placements, the desired trajectories of the CAM are
either not tracked at all, or are set to zero to reduce the contact torques according
to (4.11). In practice, only the CAM about the z axis is regulated to zero (in the case of
straight walking) to avoid contact slippage without counteracting the CAM about the x
and y axis. By shifting the eCMPs based on Eq. (4.10), according to the computed CAM
in x and y direction, this computed CAM implicitly becomes the desired CAM:

CoMj CoMj
lx,desired = Zx
CoMZ' R CoMl'
y,desired — y (4 14)
CoM; . — CoM ’
x,desired — x
CoMl . _ CoMl
y,desired — y-
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The CAM acting about the z direction, however, must be explicitly computed. Recalling,
(4.10), the resulting contact torque about the z axis is given as:

Torfz = (xfgrf,y - ]/fgrf,x) - (pCoPdesi,ed,x fgrf,y — PCoPypsiveay fgrf,x) + COMiZ
m m ) T
where fgrf,x = & (x —ey), ngf,y — = (y _ ey) given x = [x y Z] .

Inserting T, ¢, = 0 into Eq. (4.15) yields the desired derivative of the CAM on the z axis.
The corresponding CAM is obtained via numerical integration [9]:

(4.15)

oM7 _
Iz desired = (pcopdesiredrx fgrf,y — PCoPuesireary fgrf,x) - (X fgrf,y - yfgrf,x)
CoM CoM7
¢ lz,desired = / 0 lz,desired dt.

The denoted CAM reference trajectories are tracked via the whole-body motion optimizer
proposed in [5]. This motion optimizer utilizes a selected set of joints—usually the upper-
body limbs—to generate any additional angular momentum necessary for tracking the
respective CAM trajectories. A constraint quadratic optimization is thereby employed to
generate the desired angular momentum while minimizing the error to the respective
joint’s task-space objective (e.g., maintaining a constant upper-body posture).

(4.16)

4.2 Runtime Environment

This thesis builds on top of multiple years of research accompanying the DLR’s hu-
manoid robot TORO. To benefit from existing implementations of previous work, the
choice of runtime environments and programming languages for implementing the
proposed concepts in this thesis is made with consideration for legacy code and existing
workflows. The synchronous part of the motion planner proposed in [2, 4], as well as
the whole-body controller of [3], is implemented using Matlab/Simulink (R2015b) and
running at a frequency of 1 kHz. The asynchronous portion of the motion planner, and
thus the system architecture in which the proposed Lookahead Optimizer module is
contained, is implemented in Java SE 8. For an efficient computation of linear-algebra
operations, the Efficient Java Matrix Library (EJML) (v0.41) is employed. For the follow-
ing benchmarks, an Intel Core i7-10700K CPU (3.8 GHz) with 32 GiB of RAM was used,
running the openSUSE Leap Linux distribution. All provided runtime measurements
were conducted using the most precise available system timer.

The average computation time on this system for running the eCMP optimization
for a single iteration—broken down to a single sample—consists of the computation
time required for the IK, as well as the computation of the CAM and its derivative.
Additionally, some time elapses during phase splitting, the actual adaptation of the
eCMPs, and the computation of the CoM trajectory after each iteration. However,
these computation durations are negligible individually and are combined into a single
miscellaneous (MISC) duration Toptimmisc:

Toptimsample = #Iterations - (Tik + Tcam) + Toptimmisc

4.17
~ #lterations - (130 - 10 °s + 105 -107°s) +20 - 10~ s. (17
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Computation Times in the Synchronous Code ToptimTotal (15 Window) TiK
1.3e-02 3.0e-04
1.2e-02
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% 1.1e-02 o
g &
= 1102 £ 1.5e04
1.0e-02 1.0e-04
Trajector
Generation & 9.5e-03
Motion Optimizer 5.0e-05
Miscellaneous
Whole-Body Controller 9.0e-03

(a) (b)

Figure 4.5: (a) Computation time of the motion planner’s synchronous part, considering
the upper limit of 7, = 100 maximal CoM phases. (b) Optimization time of
a Lookahead window of one second with 25 samples at two optimization
iterations, next to the IK computation times of each point within it.

The average computation time of Algorithm 2 is 92us. The computation of the CAM
(and its derivative) requires a single run of Algorithm 2, computation of the joint rates
according to (4.4), and taking the numeric derivative of the CAM matrix. The total
average time spent for a single sample for this computation is Tcam = 105us. The
IK leverages the joint rates computed from the previous CAM sample to start with
an educated initial guess, as shown in (2.33). Often, this initial guess is good enough
to avoid the expensive computation of the IK update step according to (2.31), which,
along with the computation of the Jacobian’s pseudo-inverse, contains a single run of
Algorithm 2. The IK takes an average 0.79 iterations to converge with a resulting total
average computation time of Tix = 130us (see Fig. 4.5b). The MISC computations take
an average of Toptimmisc = 20pus. Assuming two optimization iterations are employed,
this results in Toptimsample =~ 0.5 1073s. At 25 samples per second, the total optimization
of a one-second-long window takes about ToptimTotal = 13 - 10~3s as shown in Fig. 4.5b.
The synchronous code is being executed on one of TORO’s onboard computers,
which is equipped with an Intel Core i7-2715QE Processor (3 GHz) [6]. The waypoint
computation algorithm [2] takes 150us for a total of 1, = 100 phases (corresponding
to 100 eCMP waypoints). As the synchronous code needs to run at 1kHz, the added
burden of these additional phases induced by the eCMP optimization is significant.
However, the total runtime of the synchronous code in Fig. 4.5a still contains an average
safety-buffer of more than 40% that keeps it from violating its real-time constraints.
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4.3 Parametrization of Lookahead Windows

The essential component that differentiates this thesis from the previously proposed
algorithm in [10] is the use of a variable-sized optimization window. To achieve real-time
capability, e.g., for deployment in shared autonomy (Section 3.3.2), the parameters of the
eCMP optimization algorithm must harmonize with those chosen for the optimization
window and vice versa. The total available parameters of the algorithm are:

* Window Size: Temporal portion of the motion plan to be optimized

* Window Overlap: Percentage of overlap between two consecutive windows

¢ Sampling Rate: e€CMP samples per second considered in the optimization

* Optimization Iterations: Optimization iterations undergone in each window .

The following sections elaborate on the effect of the respective parameters and provide
reasonable default values for each.

4.3.1 Window Size

Due to the reverse time computation of the DCM (see Eq. (3.9)), every value along
the DCM trajectory is only influenced by future values in the DCM and thus only
through future values of the VRP/eCMP. Adjusting future eCMPs in a currently
executing motion plan—as done by the eCMP optimization algorithm—thus induces a
discontinuity between the instantaneous DCM that defines the dynamics of the running
system at time ¢, and the planned DCM at the same time instance ¢ in the updated motion
plan. This effect becomes weaker the longer the time span Tpdate between t and the
time instance of the motion plan where the adjustment happens, i.e., t,gjust- This effect
plays a crucial role for large e€CMP adaptions, e.g., as needed to extend a given motion
plan by additional steps [2]. However, the DCM discontinuity induced by the eCMP
optimization algorithm becomes negligibly small for any Typqate > 0.5s as visualized for
the example of an eCMP optimization in a straight walk in Fig. 4.6.

As the optimization procedure for a new window starts as soon as the system starts
executing the first phase of the previously optimized window (see Fig. 4.4), Typdate
does correspond to the parametrized window size, but also depends on the time spent
for the optimization of the window itself TyptimTotal, @s well as the time it takes for the
motion plan to arrive at the whole-body controller—including, e.g., communication
delay or reference trajectory generation on the synchronous part of the motion planner—
denoted Tyisc. A reasonable assumption for Typsc is located in the magnitude of a
few milliseconds or less—thus it is negligibly small as Tyisc << ToptimTotal << 0.5s.
Therefore, it is reasonable to represent Typdate Only in terms of the window size and the
runtime for the optimization itself:

Tupdate ~ Twindow — ToptimTotal (4-18)

32



4.3 Parametrization of Lookahead Windows

E Induced Deviation from Instantaneous DCM vs Time to eCMP Adjustment (T pdate)
0.014
'.§ 0.012 Tupdate =0.5s Tupdate =1.0s
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£ 0.000
< 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time to eCMP Optimization [s]

Figure 4.6: Deviation between the planned DCM and the instantaneous DCM in the
system, induced through an optimization in the motion plan happening
Tupdate sSeconds from the current system time . (Motion) Parameters: Five
steps at 15cm stepsize, single-support: 0.7s, double-support: 0.2s, 25
Samples/s, two iterations.

!
Given Typdate > 0.5s, the minimum window size is defined according to (4.19), where
N € N resembles the number of samples per second and Typtimsample Tesembles the
time it takes for the eCMP optimization per sample (see Section 4.2).

!
Twindow > 0.5s + ToptimTotal where ToptimTotal ~ Tiindow - N - ToptimSample

! 0.5s (4.19)
s.t. Twindow >

1-N- ToptimSample

The upper limit of T\yindow is defined through the number of phases 1,—corresponding
to the individual samples—that the synchronous part of the motion planner can consider
without running into the risk of violating its real-time constraints. In the “worst-case”
scenario, the eCMP optimization is conducted more or less instantly!, such that the syn-
chronous part of the motion planner must consider all optimized CoM phases from the
previous optimization window, along with the phases added by the current optimization
window?:

0.5 1y
Twindow < T . (4-20)
As discussed in the respective subsections of this chapter, reasonable values for the free
optimization parameters are N = 25, ToptimSample = 0.5 - 10-3s, and Ngmx = 100. Thus, a
reasonable range for the optimization window size is:

0.535 < Tindow < 25 . (4.21)

Note that Ty indow resembles the desired window size. The actual employed window size
may deviate, e.g., if the duration T of the total motion plan is shorter than Tyingow- Also,

TAs ToptimTotal >> 0, this is highly unlikely.
2Unoptimized (future) parts of the motion plan are not considered for n,,,.
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if the duration of the last window (see Eq. (4.22)) is shorter than the minimum required
time according to Eq. (4.19), the previous window size is adopted accordingly.

T

Twindow

TLastwindow = T — \\ J * Twindow (422)
If not denoted otherwise, a default window size of Tyingow = 25 is used for the remainder
of this thesis.

4.3.2 Window Overlap

The previous section discussed the effect of future eCMP adaptions on the induced
discontinuities between the planned and instantaneous DCM. However, this effect
likewise influences the eCMP optimization itself, if the motion plan changes in the
future vicinity of the optimization window. This occurs, for example, in the context of
shared autonomy (see Section 3.3.2). In the specific context of shared autonomy walking
via a gaming controller, the respective motion plan typically consists of only two moves:
the move currently being executed and the immediate next move. The duration of a
single step is thereby usually shorter than the default window size of two seconds,
such that the respective optimization window will always® be capped to the length
of the total step time, e.g., Twindow = Ibs + Tss = 0.2s + 0.7s. Fig. 4.7 visualizes this
scenario, where a gaming controller is used to command a straight walk. The individual
steps are thereby appended consecutively to the motion plan. Each new optimization
window thus always optimizes the last step in the motion plan. Naturally, the eCMP
optimization can only consider motions that are already contained in the motion plan,
while the boundary conditions on the DCM’s reverse time dynamics imply that the
CoM stops at the final move [2]. However, by the time the motion plan is extended by
an additional step, this assumption is no longer valid, which subsequently results in
incorrect assumptions on the system’s CAM and, thus, incorrect eCMP adjustments in
each optimization where the motion is continued instead of stopped.

This problem can be resolved by employing overlapping optimization windows.
That way, the major part of the motion plan is optimized twice: once during the first
optimization with the assumption that the current step will be the final (stopping) step,
and once as soon as the next move in the motion plan is available. This procedure results
in the behavior visualized in Fig. 4.8, where a 70% overlap between the individual
windows enables a correct optimization of the eCMPs. The overlapping percentage
Poverlap € 0% ...100% is expressed with respect to the previous optimization window
size. The overlapping duration is added to the desired window size for the total window

duration:
T p overlap

Twi = i ——— + L . 4.23
windowTotal prevWindowTotal 100% window ( )

This is generally possible, as the overlapping portion does not require any new phas-
es/samples to be added to the plan, such that (4.20) always holds. However, there exists

3Ignoring the initial Stand-To-Move and final Step-To-Stand motions [2].
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Step #1 Step #2 Non-Overlapping Windows: Resulting VRP

Window #1 Window #1 Window #2

Figure 4.7: A straight walk commanded via gaming controller with a single step per
optimization window. Non-overlapping optimization windows thereby
result in partially incorrect eCMP adjustments.

a general upper limit for the overlap percentage. This is because the synchronous part
of the motion planner has already started processing the previous window when the
current window starts optimizing. As the optimization must be finished before the
whole-body controller starts executing the respective part of the plan—ideally with a
significant buffer Typgate to reduce the induced DCM discontinuity—this upper limit is
given per Eq. (4.24).

T.

prevWindowTotal — (Tupdate + TwindowTotal * N - ToptimSample)

Poverla <
P TprevWindowTotal

100%  (4.24)

While 0.5s is a reasonable value for Tpqate regarding the overall window length, this
value is too conservative when talking about the maximum overlap percentage. The
reason for this is that the second optimization run on the overlapping portion of the
optimization typically has a significantly smaller effect on the overall VRP trajectory
than the initial run. Also, it is reasonable to assume that the discontinuity induced by
the overall plan extension is, in most cases, more significant than that induced by this
second eCMP optimization. Justification for the latter is given by comparing Fig. 4.6
to the values provided in [2]. Assuming TprevWindowTotal = 0.9s for the first window?,
TwindowTotat = 0.9s, N = 25 and TyptimSample = 0.5 - 1073s, one obtains the following
range for a typical maximum overlap percentage in the first optimization window for
Tupdate = 0s...0.5s:

41% < PoverlapMax < 95%. (4.25)

In practice, poverlap = 50% is chosen to achieve a reasonable large Typdate €ven with
fluctuating Toptimsample for shared autonomy walking, while povertap = 0% for motion
plans where the optimization window does not reach the end of the motion plan before
it is extended.

4The first overall optimization window can not overlap with any prior window.
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Overlapping Windows: Resulting VRP

Window #1

70% Overlap ~ Window #2

Figure 4.8: The same scenario as in Fig. 4.7, but with a 70% overlap between individual
optimization windows. The resulting eCMP adaptions are thereby correct.

4.3.3 Sampling Rate

Setting the sampling rate for the optimization poses a trade-off between the maximum
optimization window size and the accuracy obtained from the eCMP optimization.
Discussions on the individual optimization times per sample are thereby conducted
within Section 4.2. The number of samples required to accurately approximate the
theoretical, continuous, non-linear eCMP trajectory required to cancel the CAM term
in Eq. (4.10) is reasoned upon in this section. It is well known that—using equidistant
samples—the error between the underlying trajectory and the trajectory resulting from
linearly interpolating samples from that trajectory decreases quadratically with the
number of samples [30]. The magnitude of the actual error thereby depends on the
second derivative of the underlying trajectory via Rolle’s theorem [30]. Intuitively
speaking, the “curvier” the underlying trajectory, the larger the error obtained through
an approximation via linearly interpolated samples.

Fig. 4.9 showcases the qualitative effect of different sampling rates on the example
of a straight walk after optimizing the eCMPs. In this case, a rate of ten samples per
second already provides a good approximation of the ideal eCMP trajectory. Little to
no difference is visible when comparing the resulting trajectories at 25 or 50 samples.
Contrarily, Fig. 4.10 visualizes the same sampling rates applied to a more complex
movement: a slightly curved diagonal walk. In this case, the resulting eCMP adaptations
follow a stronger curvature. At a rate of ten samples per second, this subsequently leads
to significant deviations from the ideal trajectory. However, at 25 and 50 samples per
second, there is, once again, little visual difference between the resulting trajectories. The
CAM trajectories of both examples are visualized in Fig. 4.11 and Fig. 4.12, respectively.

Optimization window sizes that would require the use of only ten samples per second
exhibit no particular benefit with respect to the induced DCM deviation, as opposed
to, e.g., an optimization window of two seconds at 25 samples, either (see Fig. 4.6).
Regarding the real-world tracking deviations shown in, e.g., Section 6.3.1, the gained
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Figure 4.9: Different sampling rates for a straight walk after 2 optimization iterations.
Parameters: Five steps at 15cm stepsize, single-support: 0.7s,
double-support: 0.2s, Lookahead window: 5.7s.
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Figure 4.10: Different sampling rates for a curved diagonal walk after 2 optimization
iterations. Parameters: Ten steps at X=15cm, Y=10cm, angle=—15°,
single-support: 0.7s, double-support: 0.2s, Lookahead window: 10.2s.
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accuracy through the use of 50 samples is typically not worth the added computational
burden. Thus, rates of 25 £ 5 samples per second are reasonable for most applications,
such that 25 samples is used as the default value for the remainder of this thesis.

4.3.4 Iteration Count and Convergence

The adaptation of the eCMPs with respect to the exerted CAM of the system subse-
quently induces a change to the CoM, and thus to the CAM. These coupled dynamics
between the VRP, the CoM, and the CAM make it non-trivial to find a general proof
of convergence for the algorithm proposed in [10]. However, empirical evidence sug-
gests that the adapted eCMPs—and thus the CAM trajectory—always converge to a
static configuration. Fig. 4.11 presents the respective evidence by the example of a
straight walk. The sampling rate was thereby chosen at 25 samples per second, while
the optimization window size was set to include the entire trajectory”. The system’s
CAM thereby converges to a stable trajectory on each axis; qualitative differences are
only noticeable up to two iterations. A quantitative representation of the convergence
is obtained by looking at the respective adjustments of the individual eCMPs. There,
the median relative adjustment of a single eCMP with respect to the previous iteration
becomes less than one millimeter after two iterations. The qualitative representation of
the scattered eCMP supports this observation.

The second scenario for reference is shown in Fig. 4.12, where again the progress of
the CAM trajector is analyzed along the relative eCMP adaptions between each iteration,
but for the motion plan of a curved diagonal walk. Compared to the trajectory optimized
in Fig. 4.11, the motion plan of the curved diagonal walk in Fig. 4.12 is nearly twice as
long at 10.2 seconds and exhibits an overall less uniform motion of the eCMP trajectory.
Still, just like in the example for straight-walk, the median relative eCMP adjustment
converges after only two iterations to less than one millimeter.

Given the provided evidence, it is reasonable to conclude that the motion type (e.g.,
straight vs curved diagonal walk) and the overall length of the optimized trajectory has
no substantial influence on the rate® of convergence. Considering the magnitude of the
real-world tracking deviations shown in Section 6.3.1, deviations in the eCMP position
of one millimeter or less can be considered negligible. Thus, a reasonable default value
of 2 iterations is used for the remainder of this thesis.

5Lookahead windows of this size are generally only applicable to offline simulations as previously
discussed in Section 4.3. In the provided scenario, this setting enables a comparison independent of the
optimization window size and overlap.

6The total optimization time nonetheless varies with the length of the trajectory as discussed in Section 4.3.1.
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Figure 4.11: The CAM (simulated at 1kHz) in a straight walk after 0, ..., 4 iterations of
the eCMP optimization algorithm. The CAM trajectory quickly converges
towards a stable solution. The median relative adjustments to the eCMPs
become smaller than one millimeter after only two iterations. Parameters:
Five Steps at 15cm stepsize, single-support: 0.7s, double-support: 0.2s, 25

Samples/s, Lookahead window: 5.7s.

39



Chapter 4 Realtime VRP Optimization by Motion Preview

CAM-Y [Nms] CAM-X [Nms]

CAM-Z [Nms]

AeCMP [m]

107
1072
1073
10
107
107
107

0.0 05 1.0 1.5 20 25 3.0 35 40 45 50 55 60 65 70 75 80 85 9.0 9.5 10.0

Time [s]
0.7
—_ «~ 7T
T g 05 PR
> Tl W
\ o f®
| 2, 03 =
p= ‘~.'
% 0.1 .o: '.'
-0.1
0 1 2 3 4 -0.4 -0.0 0.4 0.8 1.2
#Iterations eCMP-X [m]

0 Iterations e 1 Iteration e 2 Iterations e 3 lterations e 4 Iterations

Figure 4.12: The CAM (simulated at 1kHz) in a curved diagonal walk after 0, ...,4

iterations of the eCMP optimization algorithm. The CAM trajectory quickly
converges towards a stable solution. The median relative adjustments to the
eCMPs become smaller than one millimeter after only two iterations.
Parameters: Ten steps at X=15cm, Y=10cm, angle=—15°, single-support:
0.7s, double-support: 0.2s, 25 Samples/s, Lookahead window: 10.2s.
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Chapter 5
Short-Term Contact Path-Planner

While the step adjustment [20] in the synchronous part of the 3D-DCM motion planner
in [2, 4] (see Fig. 4.1) already enables a minimal form of replanning—triggered through
an external event—it is intended to re-plan individual steps independently of the robot’s
surroundings. As shown in [4], stopping based on virtual boundaries is another already
existing feature within the current motion planning framework. Inspired by the just-
mentioned existing functionalities and the ongoing research in the field of (long-term)
step and path-planning [31-37], this chapter conceptually proposes to extend the existing
motion planner by a contact path planner to enable short-term replanning of the robot’s
movement based on its surroundings.

5.1 System Overview

The overall contact path planner consists of two separate modules: the vision module
and the path search module, as depicted in Fig. 5.1. The vision module is assumed to
obtain and maintain an internal representation of the robot’s surroundings, e.g., by using
an RGB-D camera, whose data is consistently merged into a (probabilistic) occupancy
map [38-40]. The motion planner thereby communicates any planned contacts and
their respective world coordinates with the vision module. If the vision module detects

s Motion Planner
initial state
E A execution progress
B . I optimize? I \ 4
=) command Acti actions Plan motion plan eference
e > <A\¢11un R S, Lou}gahe?q L: Rtf}'k”“ reference | Whole-body state
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c plan Generator ontroTer
m v contaclsT
torque State
Footstep | Path Search |contacts Footstep | o | uncorrectable Estimation
jcontacts | . < -
Planner Module Adjustment €1rors A 4
i‘ oo Robot
contacts collision-free contacts (3kHz) [ sensor data
Vision Module asynchronous synchronous (1 kHz)

Figure 5.1: Extension of the motion planner architecture presented in [4] to include a
vision and path search module along the Lookahead Optimizer (highlighted
in green).
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Chapter 5 Short-Term Contact Path-Planner

a potential collision between the current path and the environment, it sends a set of
feasible alternative contacts to the path search module, thereby triggering the replanning
procedure.

5.2 Vision Module

The development of a fully functional vision module for Simultaneous Localization And
Mapping (SLAM) and collision detection is out of scope for this thesis. Therefore, an
existing point cloud from a 3D scan is assumed to represent the robot’s surroundings.
The information on whether a path is colliding is, in this case, predetermined and
hardcoded. In practice, a (hierarchical) occupancy map can be used in combination
with a convex hull containing all of the robot’s possible link positions for a given
stance to distinguish between colliding and non-colliding path contacts. The further
functionality of the vision module can be dissected into two different cases: colliding
and non-colliding contact placements.

5.2.1 Vision Feedback for Non-Colliding Contacts

If the provided contacts are not colliding, the vision module performs a minor alignment
of the contacts with respect to the actual surroundings of the robot. If, for example, the
robot is walking on a slope, this information is quite valuable to the motion planner as it
reduces any subsequent deviations between the commanded and the actual foot contacts.
Although by the method proposed in [3], dynamic walking on uneven terrain is already
possible, the motions appear much smoother if the respective terrain can be considered
in advance,e.g., by reducing stomping of the heels during walking upwards a slope. This
is achieved by extracting a Region Of Interest (ROI) around each contact from the point
cloud, yielding a number of n € IN 3D points p;, which can be represented using a
single matrix R € IR®*". The points are mean-centered to obtain R according to Eq. (5.1).

B 1 n—1
Pror = P ;) pi (5.1)

R=R—[Pror " Prol egen

The objective now is to find a normal vector n € R® describing a plane that minimizes
the sum of squared distances to all points:

mninz (nTpl)z =n'RR™n. 5.2)
1

A solution to (5.2) is obtained by computing the singular value decomposition of R [41,
Chapter 12.1], where the Eigenvector corresponding to the smallest singular value
corresponds to the best estimated normal:

R=uzv? st n=Uj;. (5.3)
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5.3 Path Search Module

Projecting the initial position of the contact onto the plane defined by (pro;, 1) yields
the new, terrain-adapted, reference position of the contact. The contact’s orientation
is thereby computed from the fitted plane’s normal n. The adapted contacts are then
communicated back to the motion planner, along with the information that the provided
contacts are non-colliding and replanning is not necessary.

5.2.2 Vision Feedback for Colliding Contacts

Given that the currently planned footsteps would cause a collision between the robot
and its environment upon execution, the vision module is required to supply the motion
planner, and thus the path search module, with a set of alternative contacts, along with
a notification that the originally planned path is colliding. Obtaining a sensible, finite
set of alternative contacts from the infinite set of possible positions and orientations
of such contacts is generally non-trivial. One option is to choose a regular grid as a
sampling strategy, while ignoring contacts that lead to potential collisions. Potential
alternatives include sampling strategies based on hierarchical, probabilistic, and free-
space representations that integrate point clouds into a multi-resolution occupancy
map [38]. A concrete solution to this problem, however, is part of potential future work.

5.3 Path Search Module

Upon receiving the notice that replanning is required, along with a set of alternative
contacts from the vision module, the path search module conducts an informed graph
search to obtain a feasible motion plan from the last non-colliding stance to the original
planned goal stance. A stance ¢ thereby resembles a set of contacts!, each associated
with a single limb of the robot. The objective of the path search is to find a sequence
of stances [astm, ., Ugoal} that is feasible for the robot to traverse. The transition times
between individual stances can be determined using the method proposed in [26].

The path search problem is represented as a graph structure, where each node
represents a single stance ;. Edges between the nodes can be interpreted as the
transition of a single limb to a different contact, resulting in a different stance ¢;,. In
order to avoid circles within the graph, each edge is thereby considered unidirectional,
while each node—and thus, each stance—is unique. The last, non-colliding stance in the
motion plan thereby resembles the start node. Let in the following #N € IN_ resemble
the number of a robot’s limbs?, while #cy € IN. resembles the number of alternative,
non-colliding contacts provided by the vision module. Each contact is assumed to be
associated with a single stance in each possible path, such that the number of available
contacts for a node after i € IN transitions is #c; = #c;_; — 1. Each node thereby has
up to #N - #c; child nodes. From the start node onward, the graph is traversed via a

1Collision-free contacts received from the vision module, including the last non-colliding contacts in the
motion plan.
2For the proof-of-concept, bipedal walking is assumed such that #N = 2.

43



Chapter 5 Short-Term Contact Path-Planner

best-first search algorithm until the initial goal stance of the motion plan, i.e., the goal
node is reached. It must thereby be ensured that only feasible edges are followed, i.e.,
only feasible nodes are expanded.

A node is considered feasible if the robot is kinematically and dynamically capable of
transitioning between the stance defined through its goal node and the stance defined by
the respective node itself. A hierarchical filter is thereby applied to sort out unfeasible
child nodes: first, all contacts outside a conservative overestimate of the robot’s reachable
region are disregarded. For each of the remaining nodes, a 3D-DCM motion plan is
constructed, which, in the case of bipedal walking, consists of two VRP waypoins, placed
above the respective centroids of the stances 0; and o;_1, as well as the foot trajectory of
the transitioning limb. For multi-contact scenarios, a more elaborate placement strategy
for the VRP waypoints must be employed, e.g., as proposed in [28]. The IK of the
robot is then evaluated at an adjustable sampling rate along this plan. The dynamic
feasibility can be assured by solving the wrench-distribution problem [26] along the
respective motion plan. It is worth noting that a comprehensive dynamic feasibility
check, along with potential VRP optimization for multi-contact applications, renders
this filter operation computationally expensive and, using currently known methods,
makes it unfeasible for use in a real-time capable path search algorithm.

Algorithm 3 showcases how the feasibility checks and node expansion can be included
in a best-first graph search algorithm that utilizes a priority queue. The priority of a
node thereby resembles a heuristic estimate on how likely a selection of the respective
node leads to the goal stance.

Algorithm 3 Best-First Graph Search for Contact Path-Planning

Input: Goal stance goalStance, list of contacts contacts
Output: Path of stance nodes leading to goalStance, or null if no path exists

1: Initialize an empty priority queue Q

2: Enqueue the root node stance into Q with priority CoMPUTEPRIORITY (stance)

3: while Q is not empty do

4: currentNode <— Q.DEQUEUE(()) > Node with highest priority
if IsGoALREACHED(currentNode, goalStance) then

return BACKTRACK(currentNode)

end if
unusedContacts <— contacts not used in currentNode.stance
children < CREATEFEASIBLECHILDNODES (currentNode, unusedContacts)
10: for all child in children do
11: priority <— COMPUTEPRIORITY(child)
12: Q.ENQUEUE(child, priority)
13: end for
14: end while
15: return null > No path found

Y X N a
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5.4 Example Scenario

Figure 5.2: The vision module recognizes a set of contacts (red) that lead to collisions
with the environment, and proposes a set of alternative, non-colliding
contacts (orange) to the motion planner.

Figure 5.3: Visualization of the path search module’s replanned motion.

5.4 Example Scenario

This thesis focuses on a proof-of-concept scenario for the proposed short-term contact-
path planner’s concept. For the sake of showcasing the path planner’s intended func-
tionality, the actions of the vision model are thereby manually predetermined and
hard-coded. An offline prepared 3D scan is assumed to represent the robot’s surround-
ings. Further, the feasibility of individual nodes is only verified with regard to the
stance’s kinematic reachability within the path search module.

The proposed scenario assumes that a bipedal straight walk is hindered by a potential
collision with an obstacle—more precisely, a table. Fig. 5.2 illustrates the concrete setup
in the vision module: the robot’s desired path (green) collides with the table for parts
of its trajectory. The “colliding” contacts are thereby highlighted in red. In response to
this motion plan, which the vision module received from the motion planner prior to its
execution, it proposes a set of alternative, non-colliding contacts (orange) to the path
search module. The heuristic priority in the path search—for the proposed scenario—
consists of the inverse distance between the limb’s positions in the current stance and
their respective positions in the goal stance, in addition to the weighted inverse of the
number of all previous steps. The resulting motion plan is simulated via openHRP [42]
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Chapter 5 Short-Term Contact Path-Planner

(see section 6.2). Fig. 5.3 visualizes the corresponding result of the simulation.

5.5 Discussion

The previous sections conceptually proposed extending the motion planner architecture
with a path search module, which, in combination with an external vision module, is
envisioned to enable real-time capable short-term replanning, e.g., for obstacle avoidance.
A simplified implementation of the proposed graph search algorithm, which only
accounts for kinematic reachability in its feasibility checks, was subsequently used in
an example scenario to demonstrate a potential real-world application of the algorithm.
However, to successfully deploy a similar algorithm in a real-world scenario, especially
in the context of multi-contact locomotion, further investigations, e.g., towards a method
for a more efficient validation of dynamic stance feasibility, are necessary. While
the total computation time of the overall path search in the proposed scenario was
approximately 100 ms, the set of alternative contacts was handcrafted and contained
only 53 total contacts. Using a trivial regular grid for sampling alternative contacts
from non-colliding regions would likely result in runtimes in the order of seconds
without an additional tune in the heuristic priority computation. The terrain-adapted
contacts, as proposed in section 5.2.1, however, already resemble a working part of the
overall envisioned system—all with the assumption of a reasonably accurate SLAM
implementation.
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Chapter 6

Experiments and Evaluation

6.1 TORO: A System Overview

Figure 6.1: DLR’s Torque-Controlled Humanoid Robot (TORO) is used for the
experimental evaluation of the proposed algorithms.
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Chapter 6 Experiments and Evaluation

TORO is a torque-controlled humanoid robot that was designed and built by the
Robotics and Mechatronics Center of the DLR (see Fig. 6.1). It consists of a total
of 27 joints—two of which are position-controlled and located in the robot’s neck.
The remaining 25 joints resemble variations of the torque-controlled Light Weight
Robot (LWR) drive units [43], each of which contains a torque-sensor, position sensors,
and a brake system. A detailed overview of TORO’s kinematic chain is provided
in Fig. 2.1. The system is powered by two battery packs, which last approximately
45-60 minutes in total. Except for a safety-crane system, TORO is able to move freely
detached from its surroundings. Small gummy strips are attached to the footsoles to
increase friction and absorb any potential (erroneous) impacts. Each of the footsoles is
19cm long and 9.5cm wide. The coordinate frames of the robot’s feet are oriented as
shown on the yellow stickers on the feet in Fig. 6.1. The x axis is thereby positive in the
forward-facing direction of the robot, the positive y axis faces to the right (relative to
the robot), and z is positive in the direction of the ground, facing away from the robot.
For all of the following simulations and experiments, the standard parameters of 25
samples per second, two optimization iterations, and a lookahead window size of two
seconds are chosen for the eCMP optimization algorithm (see Section 4.3). Diagrams on
contact forces/torques or CoP deviations always represent the respective values of the
right foot. The respective quantities on the left behave analogously.

6.2 Simulation

Simulations are essential to minimize the risks of damaging the system in actual
experiments. Furthermore, they allow the isolation of the behavior of specific parts
of the system—such as the motion planner—without the necessity of considering,
for example, tracking deviations of the whole-body controller or any torque/velocity
constraints exhibited by the hardware. For this thesis, the openHRP [42] simulation is
chosen for this task due to its realistic contact model and overall accuracy in simulating
the real-world behavior of the actual TORO system.

6.2.1 Straight Walking

This section considers a straight walk with eight steps, as shown before and after apply-
ing the eCMP optimization in Fig. 4.11. For the unoptimized baseline, Fig. 6.2 displays
the quantities describing the robot’s centroidal dynamics, alongside the exerted contact
wrenches, when executing the unoptimized motion plan in the openHRP simulation.
While the CAM about the z axis, and thus, per Eq. (4.10), subsequently the contact
torques about the z direction, are regulated to zero by the whole-body controller, the
contact torques about the remaining axes remain significant. Especially on the y axis, the
torques nearly reach the contact constraints assumed by the whole-body controller [3].
Reciting (3.2), non-zero torques about the y axis, in this context, induce a CoP deviation
along the x axis of the foot, i.e., in the walking direction. Torques about the x axis further
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Figure 6.2: The planned CoM dynamics for a straight walk of eight steps without eCMP
optimization along the exerted contact wrench at the right foot over time. As
the CAM about the z direction is regulated to zero by the whole-body
controller, the contact torque about z is also nearly zero. Parameters: step
X=15cm, single-support: 0.7s, double-support: 0.2s.

49



Chapter 6 Experiments and Evaluation

0.12
—= 0.08
)
g 0.00-
E
Z -0.04
&~ ~0.08
T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
— VRP CoM  —— DCM Position X [m]
------- Contact Constraints
= 30 = — : e : T e '
2R I G T L
v AN— N— N—) N— p
£ 15/ ; \ ; ‘
= =30 - LT / N / LV A K \
T T T T T T
‘g 50 4 S e A e
25 — \‘ v \\ o ‘\‘ - ‘\\ l/ ‘\‘
E I R i a~d i al i PR L al, L
N 0 . \ 7 \ > . Y ) \ 4 7 ¢
€ 25 7 ; / )
> =50 == S—— 1  ee— e — / \—— /
T T T T T T T T
g 10 7 A ! e - A N
Z. 5% / \\ + \\ i ' -+ S ’
~ 0 ? - "\ ‘B N Y
E -5 — /, \ /, \\‘ // . /, \\‘ //
Ptn -10 ===+ e — 1 —— / o — —t 1 /
T T T T T T T T
— 30
Z, 15—
x 97
“g =15
=" =30 —
T T T T T T T T
— 60
Z. 40 -
> 20 -
i 0 —
=)
Yo
_20 —
T T T T T T T T
750 — —
Z' 600
= 450
< 300
«© 150
0
0 1 2 3 4 5 6 7 8
Time [s]

Figure 6.3: The planned CoM dynamics for a straight walk of eight steps with active
eCMP optimization along the exerted contact wrench at the right foot over
time. With respect to the baseline in Fig. 6.2, the contact torques about the x
and y axes are successfully reduced, while the contact torque about the z
axis increases as the CAM about this direction is regulated to zero by the
whole-body controller. Parameters: step X=15cm, single-support: 0.7s,
double-support: 0.2s.
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Figure 6.4: Contact torques on the z axis in the same scenario as in Fig. 6.3, but with an
explicit tracking of the CAM-Z trajectory defined in Eq. (4.16).
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Figure 6.5: Comparison between the unoptimized motion plan’s CoP deviations from
the contact center to that of the eCMP optimized plan. The optimized plan
exhibits a median improvement of 80%.

correspond to CoP deviations normal to the walking direction, within the contact plane.
Contrarily, the torques about the x and y axes resulting from the optimized motion
plan in Fig. 6.3 exhibit much smaller overall deflections. The main deviations from zero
torque are exerted about the x axis and happen during the attachment and detachment
phases of the contacts. During these transition phases, the robot remains in double
support and shifts its weight away from the current point of contact. During this motion,
the overall applied force is relatively small, resulting in a less rigid ground contact at the
foot from which the weight is transferred away. The torque about the z axis, however,
is increased with respect to the unoptimized plan. This torque is a direct result of the
eCMP adjustments as denoted in Eq. (4.15). Setting the motion optimizer [5] to tracking
the CAM'’s z reference trajectory obtained via Eq. (4.16) provides a remedy for this issue,
as shown in Fig. 6.4.

Quantitative results on the improvement obtained through the eCMP optimization
can be obtained via the overall deviation of the actual, simulated, CoP from the center
of the contact (i.e., the desired CoP), as shown in Fig. 6.5 alongside the trajectory of the
CoP and VRP within the actual foot’s contact area.
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6.3 Experiments

The proposed algorithm from the previous chapters is evaluated in a series of real-world
scenarios on the experimental platform TORO [6]. The subsequent experiments thereby
showcase a series of plots containing the contact forces and torques perceived by the
system. As the force-torque sensors at the feet of the TORO system were not available
for use during the experiments, the obtained values instead stem from the whole-body
controller’s perception of the system state. Nevertheless, the difference to an explicit
sensor measurement can be considered small enough to be negligible in the context of
showcasing the effectiveness of the sliding-window CAM-based eCMP optimization.

Several assumptions are made about the system executing the planned trajectories—in
this case, the TORO system. Some of these assumptions are the overall structure of
the robot’s kinematic model, the inertia properties of individual links, friction within
the joints, accurate sensor measurements of the individual joint torques, and many
more. Simulations are, just like any motion planning or control algorithm itself, up to a
certain point dependent on these assumptions. For example, the openHRP simulation
employed within the previous section makes use of the same kinematic and dynamic
model of TORO as employed for the computation of the CAM and the subsequent
adaptation of the eCMPs. Thus, any model discrepancies in this context will only
become apparent during real-world experiments, not during simulations. As a second
example, the readings obtained from the torque sensors within the joints are, in the
real world, temperature-dependent and require proper calibration. Consequently, the
results in the subsequent sections are assumed to differ from those obtained in the
previous section, which leveraged the computer simulation openHRP. Nonetheless, to
conclude proper functionality of the eCMP optimization algorithm, the obtained values
must exhibit a substantial improvement over the baseline performance obtained from an
unoptimized motion plan.

6.3.1 Straight Walking

The motion parameters for the real-world experiment of straight walking are analo-
gous to the simulation: eight steps are conducted with a step length of X = 15cm,
single-support time of 0.7s, and double-support time of 0.2s. A baseline for the system
performing the commanded motions without active eCMP optimization is shown in
Fig. 6.7. This figure contains a comparison between the commanded and actual CoM
dynamics, along with the exerted contact wrenches during the performed motions. It
becomes apparent from Fig. 6.7 that the real-world system—without the eCMP opti-
mization enabled—is much more frequently acting at the respective contact constraints.
This not only limits the walking speeds and overall agility of the robot, but also makes
walking less robust to external influences overall. In contrast to the contact torques ob-
tained from simulation in Fig. 6.2, the real experiment shows significant contact torques
being exerted about the z axis, even though the CAM’s z portion is again commanded
to be regulated to zero through the whole-body controller.
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Figure 6.6: Comparison between the unoptimized motion plan’s CoP deviations from
the contact center to that of the eCMP optimized plan during the
experiments on straight walking conducted with TORO. The optimized plan
exhibits a median improvement of 44%.

Activating the eCMP optimization algorithm yields the quantities visualized in Fig. 6.8.
Analogously to the results obtained in simulation, the contact torques are reduced—
albeit less optimally—about both the x and y axes. In contrast to the behavior shown
in Fig. 6.3, the contact torques about the z axis roughly remain the same whether the
eCMP adaptation is active or not, even without explicitly tracking the respective CAM-Z
trajectory in (4.16). The difference in the number of ground contacts, and hence in the
total trajectory time between Fig. 6.8 and Fig. 6.7 results from the experimental setup:
In Fig. 6.7, the motion plan starts with a right-foot stance, while the motion plan in
Fig. 6.7 starts with a left-foot stance. The number of contact phases of the right leg with
the ground is therefore five and four, respectively. This, however, does not impair the
comparability of the two respective scenarios. The quantitative comparison of the CoP
placements exhibited from both the unoptimized and optimized motion plan is shown
in Fig. 6.6. Although the improvement is overall less notable than in the simulation, it is
still indisputably significant at a median decrease of the CoP deviation by 44%.

6.3.2 CAM-Z Reference

In simulation, an explicit tracking of the CAM-Z trajectory in (4.16) severely decreased
contact torques about the z axis that resulted from the optimized eCMPs (see Sec-
tion 6.2.1). Without active eCMP optimization, the CAM-Z trajectory, and thus the
resulting contact torques about the z axis, could thereby be successfully regulated to
zero via the motion optimizer.

In the experiments on the real system, however, the exerted contact torques about
the z axis—even for the baseline experiment in Fig. 6.7—were substantial. Interestingly,
imposing eCMP adaptions to the respective motion plan without accounting for the
altered CAM-Z trajectory according to (4.16) did not significantly increase the z axis
contact torques either. In Fig. 6.9, the resulting z axis contact torques are shown for
an eCMP optimized straight walk during the tracking of a zero-reference trajectory for
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Figure 6.7: Straight walk experiment on TORO: Baseline CoM dynamics and contact
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(b) Contact torques about z using the non-zero trajectory defined via (4.16) as reference
trajectory for CAM-Z.

Figure 6.9: Contact torques about the z axis exerted by an eCMP optimized straight
walk for different CAM-Z references.

the CAM’s z component (Fig. 6.9a), versus tracking of the explicitly adapted trajectory
resulting from (4.16). While in simulation, a substantial difference was observed when
comparing these two scenarios; the non-zero CAM-Z trajectory for the real system only
appears to increase the variance of the z axis contact torque. While one conceivable
reason for this is given by the choice of gains in the motion optimizer in [5], further
investigations are necessary on this behalf. Further, during any turning motion of the
robot, the tracking of a desired CAM-Z trajectory is disabled by default for both this
thesis as well as prior work. This is because, with the current implementation, the
CAM about the z axis required for following a given motion plan can not be sufficiently
dissected from the “undesired” Z-CAM induced, e.g., through swing leg motions.
Solving this issue is part of the potential future work accompanying this thesis.

6.3.3 Shared Autonomy Walking

To experimentally evaluate CAM-based eCMP optimization during shared autonomy
walking via a gaming controller, two individual experiments with the TORO system are
conducted—one resembling the baseline performance of the system and one with eCMP
optimization enabled. The motion parameters for both experiments consist of a maximal
step-length of X =Y = 15cm, single-support time of 0.9s, and double-support time of
0.3s. The parameters of the eCMP optimization consist of 25 samples per second, with a
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Figure 6.10: Comparison between the optimized and unoptimized shared autonomy
walking in terms of the CoP deviations from the contact center (left). The
right figure resembles a probabilistic representation of the CoP’s position

throughout the experiment.

total of two iterations, a window size of two seconds, and 50% overlap in between the
optimization windows.

The contact torques in the right foot obtained from the baseline implementation are
visualized in Fig. 6.11. Enabling the CAM-based eCMP optimization results in the
quantities shown in Fig. 6.12. Both visualizations also contain a high-level overview
of the motion, with only the desired VRP being plotted along the robot’s actual poses
in a top-down visualization. As the commanded motion plans are both commanded
by a human via a gaming controller, the two distinct motions only roughly match.
As the optimized motion plan is overall less uniform and contains sharper turns, one
would generally expect higher overall contact torques than in the baseline experiment.
Nevertheless, the experiment in Fig. 6.12 still shows a clear improvement over the
baseline, and thereby further validates the effectiveness of the proposed algorithm. A
quantitative comparison between the baseline and the optimized version, in terms of the
CoP distances to the contact centers, is provided in Fig. 6.10. As the motion described
by the shared autonomy walk, and thus the movement of the CoP within each contact,
is non-repetitive throughout the motion plan, a probabilistic representation of the CoP’s
position within the contact is chosen over the CoP’s movement in a single representative
foot stance. The foot’s contact is thereby divided into 25 by 25 buckets. The CoP is
sampled and assigned to one of these buckets at the frequency used by the whole-body
controller (1kHz). The number of samples within each bucket divided by the total
number of samples then yields the probability of the CoP being located within each
bucket, as visualized in Fig. 6.10. It can be concluded that the CoP in the optimized
motion plan is much more likely to be located near the center of the contact than the
CoP exerted by the reference plan.

For a second example of the eCMP optimization being used in a shared autonomy
walk, the robot is commanded to turn in place by 180° and, directly after, should
walk ten straight steps. The motion parameters are thereby set for an increase in
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speed to a maximal step-length of X = 20cm, Y = 15cm, a single-support time of 0.7s,
and a double-support time of 0.2s. The parameters of the eCMP optimization remain
unchanged. The CoM dynamics with the resulting contact torques for this motion are
depicted in Fig. 6.13. Note that the depicted contact torque about the z axis exceeds
the assumed contact constraints when exiting the in-place turning motion to continue
with the straight walk. The fact that the system continues normal operation after this
movement implies a conservative assumption on the respective contact constraints.
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Figure 6.13: Second example of eCMP optimized shared autonomy walking: CoM
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6.3.4 Edge Walking

The previous sections were solely concerned with flat-foot walking. However, it can be
beneficial or even necessary to employ human-like heel-to-toe motions, e.g., to avoid
singularities in the knee joint when taking long steps [2, 3]. These heel-to-toe motions
are realized by shifting the CoP to the front edge of the foot during the detachment
process while simultaneously tilting the foot about its y axis. That way, only the foot
edge is in contact during the detachment process. This walking gait is also referred
to as Edge-Walking. Fig. 6.14 shows this motion employed along with the CAM-based
eCMP optimization. The motion parameters are as follows: Az = 0.93m, body pitch: 5°,
single-support: 0.9s, double-support: 0.3s, step-length: 35cm. Comparing the previous
experiment on straight flat-foot walking (see Fig. 6.8) with the results displayed in
Fig. 6.14, the contact torques on the x and y axes appear quite high. Upon closer
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inspection, it becomes clear that these high torques are primarily exerted during contact
detachment phases, where the CoP is actively moved to the front edge of the foot. In
this configuration, the foot’s contact with the ground is overall less rigid, such that the
CoP is likely to move sideways on the line defined through the foot’s front edge.

6.3.5 Diagonal Walking

Large diagonal steps are a particularly challenging scenario for flat-foot walking, as they
naturally involve large swing-leg trajectories that generate a substantial amount of CAM.
Fig. 6.15 visualizes the effectiveness of the eCMP optimization in these movements,
which, without optimization, would have likely led to foot tilting and subsequently to
the robot falling. The motion parameters consist of a maximal step length of X = 20cm,
Y = 10cm, a single-support time of 0.7s, and a double-support time of 0.15s.
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Figure 6.15: eCMP optimized diagonal walking with dynamic motion parameters.
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Chapter 7

Conclusion and Future Work

This thesis proposed a sliding-window approach that enables an incremental optimiza-
tion of the VRP trajectory of a given 3D-DCM motion plan based on the robot’s CAM.
The CAM is thereby obtained from a short preview window of the robot’s multi-body
dynamics during the planned motion, computed before its actual execution. The ef-
fectiveness of the proposed sliding-window approach was successfully evaluated on
numerous motion examples. Especially the proposed algorithm’s applicability to shared
autonomy walking stands out in comparison to previous methods. A high amount of
contact torques, acting about the z axis of the contact, was observed during the experi-
ments, for both optimized and unoptimized motion plans. Additional investigations on
this matter should be conducted to mitigate the respective effect, especially for motion
plans that contain sharp turns. The internal structure of the torque-controlled joints in
the TORO system prevents experiments on gaits that involve impact collisions, such as
running, jumping, or skipping, without risking potential damage to the system. Thus,
experiments on a different humanoid, capable of handling the respective impacts, would
be desirable.

As a second contribution, a conceptual adaptation of the motion planner was proposed,
which is envisioned to enable real-time capable short-term replanning, e.g., for active
obstacle avoidance. The proposed path search module thereby depends on a set of
non-colliding alternative contacts supplied by an external vision module. An efficient
method for validating a stance’s dynamic feasibility, along with a search algorithm that
efficiently handles multi-contact settings, is an open research problem and could be
explored in future studies.

63






Abbreviations

TORO Torque-Controlled Humanoid Robot
CoM Center of Mass

CoP Center of Pressure

ZMP Zero Moment Point

DCM Divergent Component of Motion

3D-DCM three-dimensional Divergent Component of Motion

CMP Centroidal Moment Pivot

eCMP Enhanced Centroidal Moment Pivot
VRP Virtual Repellent Point

CAM Centroidal Angular Momentum
DLR German Aerospace Center

LWR Light Weight Robot

CAD Computer-Aided Design

DoF Degrees of Freedom

IK Inverse Kinematics

EJML Efficient Java Matrix Library

SLAM Simultaneous Localization And Mapping
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ROI Region Of Interest
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