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Abstract—Recent advances in Synthetic Aperture Radar (SAR)
sensors and innovative advanced imagery techniques have enabled
SAR systems to acquire very high-resolution images with wide
swaths, large bandwidth and in multiple polarization channels.
The improvements of the SAR system capabilities also imply a
significant increase in SAR data acquisition rates, such that effi-
cient and effective compression methods become necessary. The
compression of SAR raw data plays a crucial role in addressing the
challenges posed by downlink and memory limitations onboard
the SAR satellites and directly affects the quality of the generated
SAR image. Neural data compression techniques using deep models
have attracted many interests for natural image compression tasks
and demonstrated promising results. In this study, neural data
compression is extended into the complex domain to develop a
Complex-Valued (CV) autoencoder-based data compression for
SAR raw data. To this end, the basic fundamentals of data com-
pression and Rate-Distortion (RD) theory are reviewed, well known
data compression methods, Block Adaptive Quantization (BAQ)
and JPEG2000 methods, are implemented and tested for SAR raw
data compression, and a neural data compression based on CV
autoencoders is developed for SAR raw data. Furthermore, since
the available Sentinel-1 SAR raw products are already compressed
with Flexible Dynamic BAQ (FDBAQ), an adaptation procedure
applied to the decoded SAR raw data to generate SAR raw data
with quasi-uniform quantization that resemble the statistics of the
uncompressed SAR raw data onboard the satellites.

Index Terms—Data compression, neural data compression, rate-
distortion theory, SAR raw data compression.
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I. INTRODUCTION

N EXT generation SAR systems will offer an improved
performance, using large bandwidths, digital beam form-

ing techniques, and multiple acquisition channels [1], [2], [3].
These new radar systems are designed to overcome limitations
of traditional SAR imaging sensors, enabling wider coverage
and better resolution, and are being widely explored by space
agencies and related industries. Such significant developments
in terms of system capabilities lead to large volumes of data to be
acquired in a shorter time interval, which, in turn, implies harder
requirements for the onboard memory and downlink capacity
of the system [4]. Consequently, the proper quantization and
compression of SAR raw data is of utmost importance, as it
defines, on the one hand, the amount of onboard data and, on
the other hand, it directly affects the quality of the generated
SAR products. These two aspects must be traded off due to the
constrained acquisition capacity and onboard resources of the
SAR system.

Data compression techniques are employed to reduce the
size of the acquired SAR raw data without sacrificing critical
information. By compressing data, the required downlink band-
width is significantly reduced, enabling efficient transmission
of SAR data from the satellite to the ground station. Moreover,
data compression is essential for onboard memory manage-
ment. SAR satellites have limited onboard storage capacity,
and efficient data compression algorithms allow for storing
larger amounts of data within the available memory. This en-
ables longer data acquisition periods and increased mission
flexibility, as SAR systems can acquire and store more data
before the need for data offloading. Effective data compression
techniques are essential for maximizing the utility of SAR
systems.

However, conventional compression methods face significant
challenges when applied to SAR data, largely due to its unique
characteristics. One fundamental issue is that SAR data exist
in the complex domain, while most traditional compression
algorithms are designed for real-valued signals. Additionally,
preserving the physical model underlying SAR data during
compression is essential, which is not typically considered by
conventional methods. The phase component of SAR data is
particularly critical for applications such as focusing pipelines
and Interferometric SAR (InSAR). Furthermore, SAR raw data
exhibit low correlation, which inherently limits the efficiency of
traditional data compression techniques.
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These challenges combined with the other peculiarities of
SAR data - such as its large dynamic range, inherent speckle
effect, and the spatial correlation - necessitate the develop-
ment of novel data compression methods for compressing SAR
raw data, considering its unique characteristics. The particular
statistics of the received signal should be considered while
designing an effective data compression technique for SAR data.
These constraints restrict the applicability and efficiency of the
conventional image compression techniques for SAR raw data
compression.

Block Adaptive Quantization (BAQ) is a widely used data
compression technique for SAR raw data compression onboard
the satellites, due to its efficiency and simplicity for coding
and decoding [4]. BAQ divides the data into fixed-size blocks
and applies adaptive quantization to each block based on its
statistical characteristics, such as variance. This adaptability
ensures that the compression remains efficient across regions
with varying signal dynamics. BAQ is particularly effective for
SAR data due to its ability to handle the large dynamic range
and speckle characteristics inherent in radar signals [4]. Due
to its wide usage in SAR systems, BAQ is used as one of the
benchmark methods for comparison in this study.

Additionally, JPEG2000 is a popular image compression
standard that employs wavelet-based compression and relies on
discrete wavelet transform (DWT) to capture both spatial and
frequency domain features of the image [5]. Previous studies
[6] have shown that applying a lowpass filter on SAR raw data
can reveal correlations in the data, which can be exploited for
data compression. Experiments in [6] demonstrated that, despite
its limitations in handling CV data, the wavelet filters used in
JPEG2000 are effective for SAR raw data compression, when
applied separately to the real and imaginary components. Due
to its versatility and efficiency, JPEG2000 is employed as a
benchmark method for comparison in this study.

Several studies have applied different data compression meth-
ods for SAR data compression, but mostly only for amplitude
of the SAR images. For instance, optical compression standard
methods such as JPEG2000 and Set Partitioning in Hierarchical
Trees (SPIHT), wavelet transform-based methods [6], [7], [8],
[9], [10], as well as machine learning and dictionary learning-
based methods such as Entropy-Constrained Dictionary Learn-
ing Algorithm (ECDLA) [11], [12] have been tested for detected
SAR image compression.

On the other hand, deep learning techniques have achieved
remarkable results in many different fields and are gradually
attracting interest for visual data compression [13], [14]. In
this context, autoencoders are widely used for lossy image
compression, mostly based on transforming the data into the
latent space for quantization and reducing the bitrate of the image
data, including detected SAR images [13], [15], [16].

Bearing in mind the huge potential and proficiency of the
CV deep architecture for various SAR applications [17], [18],
[19], this study inspects SAR raw data compression with CV
deep architectures. The developed CV neural data compression
method is tested for Sentinel-1 SAR raw data compression and
the performance is compared with the well-known and standard
SAR raw data compression methods, BAQ [4], and JPEG2000

data compression standards [6], in terms of quantitative and
qualitative metrics, performance gain and generalizability.

Due to the unavailability of the uncompressed Sentinel-1
SAR raw data, the adaptation method, proposed in [20] to add
random uniform quantization noise to the FDBAQ-compressed
raw data, is utilized to generate quasi-uniformly quantized SAR
raw data with similar statistics to the uncompressed SAR raw
data onboard the satellite.

The main contributions of this study are:
� A fully complex-valued deep architecture is proposed for

SAR raw data compression based on the rate-distortion the-
ory. To the best of our knowledge, it is the first completely
CV neural data compression architecture applied for SAR
raw data compression.

� Capability of the proposed method for learning the under-
lying physical model of SAR raw data and preserving it
during the data compression is tested.

� Comprehensive analyses demonstrated the efficiency and
generalizability of the proposed method against standard
and widely used data compression methods.

II. METHODOLOGY

In this section the dataset and the necessary preprocessing
steps are explained. A brief introduction to BAQ and JPEG2000
data compression standards is given and the developed CV deep
data compression architecture based on the rate-distortion theory
and CV deep networks is explained.

A. Dataset and Preprocessing

Sentinel-1, part of the Copernicus programme, is a renowned
SAR mission that offers free SAR data at various processing
levels. Sentinel-1 SAR data have been instrumental in the de-
velopment of numerous SAR applications [21], [22], [23], [24],
[25]. In this study, three Sentinel-1 scenes acquired over Chicago
and Houston in the United States, and Sao Paulo in Brazil, in
StripMap (SM) mode with HH polarization, are used for training
the deep learning model. Later, a subset of a separate Sentinel-1
scene acquired over Cape Verde, covering Sao Filipe constructed
area, airport, surrounding bare soil and vegetation covers and the
ocean, is used for testing the data compression methods. The
test scene is selected to cover diverse land cover types, hence
different backscattering mechanisms in the resulting SAR data.

However, the available Sentinel-1 SAR raw data (i.e., L0
product), which presently are the most popular, are already lossy
compressed with FDBAQ [26] method. As a result, the decoded
Sentinel-1 raw data have non-uniform quantization and do not
have the same statistics as the uncompressed SAR raw data
onboard the satellites. The adaptation of Sentinel-1 raw data
introduced in [20] is used in this study to resemble the statistics of
the uncompressed Sentinel-1 raw data, before the experiments.
In this way we change the statistics of the compressed data such
that we simulate the proper conditions for the evaluation of data
compression algorithms, but this is not a return/inversion to the
raw data obtained after the ADC. In this adaptation procedure,
a random uniform noise with a suitable amplitude is added
to the decoded SAR raw data to fill in the gaps between the
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quantization levels and represent the data in quasi-uniformly
quantized samples [20]. The adaptation procedure provides a
better approximation of the data compression methods behavior
for real-world scenarios and ensures the applicability of the
developed methods for SAR raw data compression onboard the
satellites.

Furthermore, to evaluate the generalizability of the network
when it is trained on one sensor and evaluated on a different
sensor, another test scene acquired by ERS-1 over La Coruna,
Spain, during an oil spill in December 1992 in VV polarization is
used. Contrary to Sentinel-1, ERS-1 raw data is not compressed
and can be directly used in the compression methods without
[20] adaptation.

B. Block Adaptive Quantization (BAQ)

BAQ is a data compression technique widely used in SAR
systems to reduce the volume of the acquired SAR raw data
while preserving essential information. The main idea behind
BAQ is to divide the SAR image into blocks of pixels and
perform quantization on each block independently. This allows
the quantization step size to be adaptively adjusted for each
block based on the local characteristics of the data to improve
the compression efficiency [4], [27], [28].

BAQ divides the SAR image into non-overlapping blocks of
pixels. For each block, local statistics are estimated to determine
the optimal quantization step size. Commonly used statistics
include mean, variance, or maximum magnitude. A quantization
step size is determined for each block, based on the estimated
local statistics and defines the intervals into which the CV pixels
will be mapped during data compression. The CV pixels in
each block are quantized by mapping them into the predefined
intervals according to the calculated step size. During data
decompression, the quantized data is dequantized to restore the
original CV pixels.

Several variations of BAQ have been developed over the years
to enhance its performance, such as Entropy Constrained Block
Adaptive Quantization [29], Performance Optimized Block
Adaptive Quantization [4], Block Adaptive Vector Quantiza-
tion [30], and Flexible Dynamic Block Adaptive Quantization
(FDBAQ) [26].

BAQ as a standard and most commonly used method for
SAR raw data compression onboard the past and current SAR
missions, including Sentinel-1 and TerraSAR-X, is selected as
a comparison method in this study.

C. JPEG2000

JPEG2000 is a wavelet-based image compression standard,
developed by the Joint Photographic Experts Group (JPEG)
committee to replace the original JPEG system [5]. JPEG2000 is
an efficient, flexible, and interactive image compression method,
and offers adaptability and control for a wide range of appli-
cations [31], [32]. Simplicity and computational efficiency of
JPEG2000 makes it a practical choice for various use cases,
including detected SAR data compression [7], [33].

Fig. 1. A high-level schematic overview of neural data compression models.

SAR raw data have a very low correlation but it has been
shown in the previous studies [6] that a lowpass filtered SAR
raw data contains some correlation which can be exploited for
compression. Although JPEG2000 is not inherently designed for
CV data, experiments in [6] showed that its wavelet filters can ef-
fectively utilize such correlation for SAR raw data compression
when applied separately to the real and imaginary components.

D. Neural Data Compression

In the lossy data compression algorithms usually an alterna-
tive representation of the image in another space is found to
be quantized, instead of the image pixel intensities [13]. The
transformation method for the conventional data compression
algorithms, including JPEG2000, is fixed and cannot be adapted
to the statistics of the data. However, in the neural data com-
pression methods, a neural network architecture is trained to
transform the data into the embedded features (i.e., the alterna-
tive representation), considering (i.e., learned from) the statistics
and distribution of the data. Since this transformation (and the
following quantization) is responsible for the lossy part of the
data compression, neural data compression methods provide a
more adaptive transformation model, hence lower data loss [14].

After the quantization, the image is represented in a discrete-
valued manner with a set of N symbols s = (s1, . . . , sN )
and it can be losslessly compressed using an entropy coding
method, such as arithmetic coding, to obtain a bitstream. The
entropy model uses a prior probability model of the quantized
representation, which is known to both encoder and decoder.
Fig. 1 shows a high-level schematic overview of neural data com-
pression models. This model resembles with the autoencoder
networks, although autoencoders are not the only architectures
used for neural data compression [14], [34].

As shown in Fig. 1, generally, neural data compression net-
works consist of three main parts, an encoder which maps
the input image into the latent embedded features, a decoder
that reconstructs the data from the embedded features, and an
entropy coder that estimates the real (unknown) distribution
of the embedded features with an entropy model and uses an
entropy coding algorithm (such as adaptive arithmetic coding),
which losslessly encodes them into a bitstream [35].

In a lossy neural data compression problem, the aim is to min-
imize the distortion error caused by representing the dataX with
the encoder and decoder architectures as the reconstructed data
X̃ , and simultaneously, reducing the required average number of
bits to losslessly encode the latent representation of the data Y .
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Rate-Distortion (RD) theory defines the limits on the possible
data compression rate for any given distortion [36]. Conse-
quently, the RD loss function is commonly used for training neu-
ral data compression networks. In this section, the rate-distortion
theory and loss function for training the data compression net-
works is reviewed, and later, the principles of the CV deep
architectures for developing the CV neural data compression
are introduced. Finally, the architecture of the CV autoencoder-
based data compression network is presented.

1) Rate-Distortion Loss in Information Theory: In the lossy
neural data compression models, RD loss LRD shown in (1), is
used. RD loss consists of two main terms. Rate loss LR which
estimates the minimum number of bits required on average to
store the embedded bitstream, and Distortion loss LD which
is the pairwise distortion metric between the input and the
output images. The weight parameter λ is used to control and
adjust the compression rate, according to a specific use case and
application.

LRD = LR + λLD (1)

The real distribution of the embedded features is unknown
as it arises from both the distribution of the input image, and
the encoding method which is used to infer the embedded
representation. As a result, the rate term in the loss function
is estimated using the Shannon cross-entropy between the real
distribution q(s) and the estimated distribution model p(s) of
the symbols in the embedded features, as shown in (2).

LR = Es∼q [−log2p (s)] (2)

The rate term is optimized during the training of the compres-
sion network through minimizing the cross entropy between the
real and the estimated distribution of the symbols in the discrete
embedded features. It should be noted that our purpose is to loss-
lessly compress the entire set s at once, instead of compressing
each part si separately. We assume that the symbols representing
each image are independent and identically distributed (i.i.d.).
As a result, we want to model the symbols stream as a random
variable s = (s1, . . . , sN ), in which each si is also a random
variable from the finite set of s. The joint entropy of the symbols’
s, denoted as H(q(s)), can be defined as shown in (3)

H (q (s)) = H (q1 (s1)) + H (q2 (s2) |q1 (s1)) + . . .

+H (qN (sN ) |q1 (s1) , . . . , qN−1 (sN−1)) (3)

We want to losslessly encode s into the bitstream that can be
recovered exactly but the distribution of the symbols q(s) is the
probability of many different occurrences of s and there are |s|N
of such occurrences [14].

If we denote the minimum code length of the compressed
bitstream with L∗,

H(q ((s)) ≤ L∗ < H(q ((s)) + 1 (4)

In this equation, L∗ is the expected code length for one
occurrence of s. While the code length might be shorter than
H(q((s)) for a particular occurrence, we cannot go below the
entropy in expectation for the whole stream of s [14].

Due to the unknown real distribution q(s) of the embedded
features, we use the estimated distribution model p(s). However,
using the estimated distribution p(s) for encoding the symbols s
with the q(s) distribution will lead to the overhead code length
L̄ equal to the Kullback–Leibler (KL) divergence of q(s) and
p(s), as shown in (5)

L̄ = DKL (q (s) , p (s)) (5)

And as a result, the overall expected code length r is the
summation of L∗ and L̄, as shown in (6)

r = L∗ + L̄ < 1 +H (q (s)) +DKL (q (s) , p (s))

= 1 + Es∼q [−log2p (s)] (6)

The last term in (6) equals to the Shannon cross entropy in (2).
Consequently, minimizing the cross entropy in LR minimizes
the expected code length or the rate term of the rate-distortion
loss function [14].

Furthermore, the distortion term in the loss function is used
to minimize the data loss during the transformation and quan-
tization of the lossy data compression. Distortion term can be
any similarity metric between the input and the reconstructed
image. Well-known Mean Square Error (MSE) measure is used
in this study as the distortion metric, as shown in (7).

LD = ‖x − x̃‖2 (7)

There is a trade-off between the rate and distortion terms
where a higher rate allows for a lower distortion, and vice versa.
So, the loss function used for training the data compression
network is the weighted sum of these two terms. The λ parameter
in (1) is the weight on the distortion term that controls the
trade-off between these two losses and enables us to achieve
different bitrates for different applications.

2) Complex-Valued Deep Architectures and CV Neural Data
Compression: CV deep architectures are developed to deal with
the complex-valued nature of data, such as SAR data, and exploit
the amplitude and phase information in these data, simultane-
ously, while preserving the correlation and coherence between
the real and imaginary components of the CV data. Applicability
and efficiency of the CV deep architectures for different SAR
applications have been tested in the previous studies [17], [18],
[19], [25], and demonstrated the ability of the CV networks to
learn the complex distribution of SAR data and preserve the
original properties, complex coherence and physical attributes
of SAR data.

The conversion of the necessary operators for deep networks
from real domain to the complex domain are provided in [17],
including the CV convolutional, linear, pooling and normaliza-
tion layers, and various activation functions, as well as the CV
backpropagation method for training the CV deep networks.
Complex partial derivative is used to develop the CV backprop-
agation, based on the Stochastic Gradient Descent (SGD). The
partial derivative of a complex function f(z) with respect to z
and z̄, while z = a+ jb ∈ C, (a, b) ∈ R2, according to the
Wirtinger calculus [37] is defined as (8)
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Fig. 2. Architecture of the proposed autoencoder-based compression model. In this figure, below each convolutional or transpose convolutional layer, a box is
showing "number of filters" × "kernel height" × "kernel width" | "stride size". In these boxes, downward arrows show downsampling in the convolutional layers
and the upward arrows show upsampling in the transpose convolutional layers. Moreover, all the convolutional layers in the encoder have zero padding of 2 and
all the transpose convolutional layers in the decoder have zero padding of 2 and out padding of 1.

The CV operators are utilized in this study to define and train
the CV data compression network, based on the autoencoder
architectures, for SAR raw data compression.

The architecture of the proposed model consists of three main
parts, encoder, entropy model, and decoder. Fig. 2 shows the ar-
chitecture of the proposed autoencoder-based data compression
network. In this figure, below each convolutional or transpose
convolutional layer, a box is showing “number of filters” ×
“kernel height” × “kernel width” | “stride size”. In these boxes,
downward arrows show downsampling in the convolutional
layers and the upward arrows show upsampling in the transpose
convolutional layers. All the convolutional layers in the encoder
have zero padding of 2 and all the transpose convolutional layers
in the decoder have zero padding of 2 and out padding of 1.

In this architecture, the encoder comprises of several CV con-
volutional layers followed by CV Generalized Divisive Normal-
ization (GDN) layers. The encoder represents the input image
patch x with the size of 256×256 pixels in the latent space as
the embedded features y. Later a quantization module quantizes
the embedded features into a discrete-valued representation ỹ.
Since the derivative of the quantization function is zero almost
everywhere, during the training, the quantization module is
replaced by additive uniform noise to maintain the gradient
for the backpropagation algorithm and train the network [13].
However, after training, actual quantization is used.

The quantized embedded feature maps ỹ are discrete-valued
and can be losslessly compressed into a bitstream using an
entropy coding method, arithmetic encoder in this study. The
resulting bitstream is the compressed data and is transferred or
stored.

To decompress and reconstruct the data, the entropy decoder
with the same entropy model as the entropy coder, is used to
decode the compressed bitstream and recover the latent features.
Later, the CV decoder network, with similar CV layers to the CV
encoder network (without the activation function in the output

layer), in reverse mode, is used to reconstruct the SAR raw data
from the latent features.

III. EXPERIMENTAL RESULTS

The workflow to conduct the experiments is shown in Fig. 3.
Due to the FDBAQ compression of Sentinel-1 SAR raw data,
the adaptation method proposed in [20] is used to prepro-
cess the SAR raw data before employing the data compres-
sion methods. BAQ, JPEG2000, and the CV autoencoder-based
data compression methods are applied to the adapted SAR
raw data. The decompressed data are processed to obtain the
Single Look Complex (SLC) SAR images and the evaluation
metrics are measured between the SLC images before and
after compression. It should be noted that during the training
of the network, distortion loss is computed between the input
and output SAR raw data, as the SLC products are not avail-
able while training the network. In the following subsections,
we quantitatively and qualitatively compare the performance
of the CV autoencoder-based compression method with BAQ
and JPEG2000, analyze the performance gain from the CV
network, and evaluate the generalizability of the proposed CV
architecture.

A. Quantitative Performance Comparison

The λ parameter in RD loss (1) regulates between the rate and
distortion in the loss function. Higher λ forces the network to
lower the data loss and reconstruct the data with higher quality,
in expense of a higher bitrate. On the other hand, a lower λ value
achieves lower bitrates (i.e., higher compression rate) but with
higher data loss. The network shown in Fig. 2 is trained with
different λ values to obtain different compression rates.

Three different measures, including Signal to Quantization
Noise Ratio (SQNR), phase error and complex coherence, are
measured between the SLC images before and after compression
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Fig. 3. Workflow of the experiments. Note that while training the network, both rate and distortion are computed on the raw data but while performance assessment,
the rate is computed on the compressed SAR raw data, while the distortion is computed on the final product (single look complex (SLC) SAR images) after focusing
the input and output SAR raw data.

Fig. 4. Comparative analysis of the CV autoencoder, BAQ, and JPEG200 data
compression with SQNR metric. The orange × shows the unexpected behavior
of BAQ with 3 bpp as explained below.

of the raw data with BAQ, JPEG2000, and CV autoencoder-
based data compression methods. The results are shown in
Figs. 4, 5, and 6, respectively.

It should be noted that the final bitrate obtained from the
trained CV network depends on the input data. A perfectly
optimized network should learn what information from the input
data should be preserved in the embedded features for better data
reconstruction, lower loss, and higher compression rate. As a
result, the size of the information preserved for each input patch
is different and depends on the heterogeneity/homogeneity of the
patch. In another words, each compressed patch has a different
bitrate (based on the content) and the reported bitrate values are
the average bitrate for all of the patches from the test scene.

The results presented in Figs. 4, 5, and 6 highlight the
superior performance of the proposed CV autoencoder-based
compression method for SAR raw data across all tested bitrates.
These findings emphasize the effectiveness of the proposed

Fig. 5. Comparative analysis of the CV autoencoder, BAQ, and JPEG200
compression with phase error metric. The orange × shows the unexpected
behavior of BAQ with 3 bpp as explained below.

Fig. 6. Comparative analysis of the CV autoencoder, BAQ, and JPEG200 com-
pression with complex coherence metric. The orange × shows the unexpected
behavior of BAQ with 3 bpp as explained below.
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TABLE I
INTERPOLATED SQNR VALUES FOR 2, 3, AND 4 BPP FOR THE CV

AUTOENCODER-BASED (CAE), BAQ, AND JPEG2000 (JP2) COMPRESSION

METHODS AND THE CORRESPONDING GAIN OF THE CAE WITH

RESPECT TO BAQ AND JP2

TABLE II
INTERPOLATED PHASE ERROR VALUES FOR 2, 3, AND 4 BPP FOR THE CV

AUTOENCODER-BASED (CAE), BAQ, AND JPEG2000 (JP2) COMPRESSION

METHODS AND THE CORRESPONDING GAIN OF THE CAE WITH

RESPECT TO BAQ AND JP2

approach, demonstrating the significant potential of CV deep
learning-based methods for SAR raw data compression.

While applying the BAQ to the raw data, an unexpected
behavior is observed for BAQ with 3 bit per pixel (bpp). The
results from the BAQ with 3 bpp (shown with the Orange × in
Figs. 4, 5, and 6) are much better than the expected results, even
slightly better than BAQ with 4 bpp. With further analysis, we
concluded that this behavior is due to the FDBAQ compression
of the available Sentinel-1 raw data, and there is a coincidental
similarity between the quantization steps of the raw data and
BAQ with 3 bpp. After adding random noise to the raw data and
employing the adaptation procedure [20], the results are as ex-
pected (shown in the Figs. 4, 5, and 6). This effect demonstrates
the necessity and effectiveness of the SAR raw data adaptation
procedure [20].

B. Performance Gain

To better compare the data compression methods and assess
the performance gain from the CV autoencoder-based data com-
pression in comparison to BAQ and JPEG2000, the evaluation
metrices for all the compression methods are interpolated for
2, 3, and 4 bpp bitrates. Tables I, II, and III represent the
interpolated metrices and the corresponding gain of the CV
autoencoder-based compression in comparison to the BAQ and
JPEG2000, respectively for SQNR, phase error and complex
coherence metrics.

The CV autoencoder obtained about 4-6 dB higher SQNR
than BAQ and about 1-2 dB higher SQNR than JPEG2000. The
superior performance of the CV autoencoder is evident also in
the phase error and complex coherence metrices. The results

TABLE III
INTERPOLATED COMPLEX COHERENCE VALUES FOR 2, 3, AND 4 BPP FOR THE

CV AUTOENCODER-BASED (CAE), BAQ, AND JPEG2000 (JP2) COMPRESSION

METHODS AND THE CORRESPONDING GAIN OF THE CAE WITH

RESPECT TO BAQ AND JP2

Fig. 7. Generalizability evaluation of the CV autoencoder. The CV model is
trained on Sentinel-1 data and tested on ERS-1 data.

shown in Figs. 4, 5, 6 and 7, and Tables I, II, and III demonstrate
the superior performance of the CV autoencoder-based com-
pression method for SAR raw data compression, with respect to
the BAQ and JPEG2000.

Moreover, the main purpose of the data compression algo-
rithms is to reduce the bitrate of the data for a target performance.
As a result, we explored how much the CV autoencoder-based
data compression has reduced the bitrate of the raw data for
a target SQNR performance. Looking at Fig. 4 with a target
SQNR performance of 15 dB, the CV autoencoder in comparison
to BAQ, reduced the bitrate of the compressed data by about
1.3 bpp (1.8 and 3.1 bpp, respectively) which is about 42%
improvement. With the target SQNR performance of 20 dB, the
CV autoencoder in comparison to BAQ, reduced the bitrate of the
compressed data by about 1.1 bpp (2.9 and 4 bpp, respectively)
which is about 27% improvement. The noticeable improvement
of the data compression rate without any additional data loss
indicates the immense potential of the CV deep networks for
efficient SAR raw data compression applications.

C. Generalizability

In the previous sections, the proposed CV autoencoder is
trained on three diverse scenes acquired with Sentinel-1 and
its performance is tested for compressing a separate Sentinel-1
scene with diverse landcovers. In this section, we inspect the
generalizability of the proposed method when it is trained on
the scenes from one satellite, and applied to a scene acquired by



ASIYABI et al.: COMPLEX-VALUED AUTOENCODER-BASED NEURAL DATA COMPRESSION FOR SAR RAW DATA 579

Fig. 8. Output SLC images before and after compression with the proposed
CV autoencoder-based and BAQ compression methods, over Sao Filipe city
(first row) and the airport (second row) from the Sentinel-1 test scene and over
La Coruna / Aegean Sea oil spill (third row) from the ERS-1 test scene.

a different satellite. An ERS-1 scene acquired over La Coruna,
Spain, during an oil spill in December 1992 is used for this
purpose. It should be noted that the ERS-1 scene is acquired in
VV polarization, while the training Sentinel-1 scenes are in HH
polarization with different imaging mode and imaging geometry
(e.g., incidence angle).

As shown in Fig. 7, the proposed CV autoencoder achieved
comparable performance to the BAQ and JPEG2000 techniques,
without any finetuning and retraining. Considering the signif-
icant differences between the training and testing scenes for
the CV autoencoder, the promising performance shows the
generalizability of the proposed method. This performance can
be further improved by finetuning the CV autoencoder for the
target sensor, as well as improvements in the architecture of the
model.

D. Qualitative Performance Comparison

Output SLC images over two zoomed-in areas in the Sentinel-
1 test scene, Sao Filipe city and the airport, and one zoomed-in
area in the ERS-1 test scene, La Coruna / Aegean Sea oil spill,
before and after compression with the proposed CV autoencoder
and BAQ are shown in Fig. 8. In comparison to BAQ, the SLC
image after compression with the proposed method preserved
more details of the original image and has a sharper and more
similar colour composition to the original image.

The visual differences between these images are not vividly
visible, due to the low resolution and size of the images (better
visible on the bright urban structures and the airport runway).
To better manifest the superior performance of the proposed
method, Fig. 9 shows the histogram of the normalized magnitude
differences between the compressed and the original uncom-
pressed image for the CV autoencoder and BAQ methods in
the both test scenes. With Sentinel-1 data, the proposed CV

Fig. 9. Histogram of the normalized magnitude differences between the com-
pressed and uncompressed original SAR images for the CV autoencoder and
BAQ methods in Sentinel-1 and ERS-1 test scenes.

autoencoder-based compression method has a noticeable lower
magnitude difference which indicates the better reconstruction
of the SAR data and lower data loss. Comparable performance
of the proposed method to BAQ on the ERS-1 data is shown
in the second histogram in Fig. 9 which reflects the generaliz-
ability of the proposed CV autoencoder-based data compression
architecture.

IV. CONCLUSION

SAR raw data compression problem is explored in this study.
Neural data compression methods, based on deep architectures
are extended to the complex domain and a CV autoencoder-
based data compression is designed. BAQ and JPEG2000 meth-
ods are employed for SAR raw data compression, as standard
data compression techniques, and the results are compared with
that of the developed CV autoencoder-based data compression
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architecture in terms of the quantitative and qualitative metrics,
performance gain and generalizability.

The adapted quasi-uniformly quantized SAR raw data are
compressed using the CV autoencoder-based data compression,
BAQ and JPEG2000 algorithms and three quality metrics, in-
cluding SQNR, phase error and complex coherence, are cal-
culated to compare the performance of the data compression
methods. The obtained results demonstrated the superiority of
the CV autoencoder-based data compression and showed the
immense potential of the CV neural compression methods for
SAR raw data compression onboard the next generation SAR
missions.

In conclusion, the findings of this study demonstrated the
competency and potential of the CV deep architectures for SAR
raw data compression. CV networks can learn the physical data
model and preserve the original properties and attributes of SAR
data. Due to these qualifications CV architectures are competent
to handle SAR raw data with peculiar characteristics. These
findings unfold new perspectives and pave the way for further
advancements of the CV architectures in the future studies for
various SAR applications and future advanced SAR satellite
missions.

REFERENCES

[1] D. Geudtner, M. Tossaint, M. Davidson, and R. Torres, “Copernicus
Sentinel-1 next generation mission,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2021, pp. 874–876.

[2] M. Davidson, L. Iannini, R. Torres, and D. Geudtner, “New perspectives
for applications and services provided by future spaceborne SAR missions
at the European Space Agency,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2022, pp. 4720–4723.

[3] D. Geudtner et al., “Copernicus and ESA SAR missions,” in Proc. IEEE
Radar Conf., 2021, pp. 1–6.

[4] M. Martone, N. Gollin, P. Rizzoli, and G. Krieger, “Performance-
optimized quantization for SAR and InSAR applications,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5229922.

[5] D. S. Taubman, M. W. Marcellin, and M. Rabbani, “JPEG2000: Image
compression fundamentals, standards and practice,” J. Electron. Imag.,
vol. 11, no. 2, pp. 286–287, 2002.

[6] R. M. Asiyabi et al., “On the use of JPEG2000 for SAR raw data
compression,” in Proc. Eur. Conf. Synth. Aperture Radar EUSAR, 2024,
pp. 249–253.

[7] R. Kozhemiakin, S. Abramov, V. Lukin, B. Djurović, I. Djurović, and M.
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