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 A B S T R A C T

Effective disaster mitigation and management rely on up-to-date exposure models providing detailed and 
spatially localized information on vulnerability-relevant characteristics of buildings. This study investigates 
the potential of heterogeneous multimodal geo-image data—incorporating street-level imagery (SLI), very high-
resolution optical remote sensing data, and a normalized digital surface model—for generic large-area building 
characterization. We introduce a deep multimodal multitask learning methodology for the synergistic fusion of 
multi-sensor data and efficient multi-criteria building classification. The proposed task-wise modality attention
(TMA) fusion optimizes multimodal feature representations for individual inference tasks separately according 
to their specific requirements. To address the challenge of partially missing SLI data (i.e., the missing modality 
problem), a transformer-based SLI spatial context encoder leverages spatial correlations between structural 
building attributes and their visual manifestations to make the semantic information from available SLI 
widely accessible. With the earthquake-prone metropolis Santiago de Chile as test site, the two scenarios—SLI 
available and SLI missing—are evaluated through a comprehensive experimental cross-comparison of estimated 
generalization accuracies for classifying buildings according to five target variables: height, lateral load-resisting 
system material, seismic building structural type, roof shape, and block position. The results underscore the 
significant potential of the employed modalities and methods. Across the five addressed attributes, covering a 
total of 35 thematic classes, the most accurate models achieve mean 𝜅 accuracies of 85.19% and 74.96% for 
data points with and without SLI coverage, respectively. The presented data and methods allow to generate 
an area-wide building exposure model with a unique combination of thematic resolution, spatial detail and 
coverage.
1. Introduction

Population growth, urbanization, and climate change have led to 
a significant increase in the number of people and assets exposed 
to natural hazards worldwide (UNDRR, 2022; Dodman et al., 2022; 
Taubenböck et al., 2024). To understand, assess, and mitigate natu-
ral disaster risks, up-to-date and detailed knowledge of the exposed 
built environment—its spatial distribution and vulnerability—is essen-
tial (Wyss and Rosset, 2013). An exposure model includes a spatially 
referenced inventory of buildings, each assigned attributes defining 
its physical vulnerability to natural hazards (Taubenböck et al., 2009; 
Pittore et al., 2017). Alongside the information on the hazard itself, 
up-to-date exposure and vulnerability data are critical for designing 
adaptation strategies and disaster management plans before and after 
an event, based on risk analyses and damage assessments (Geiß and 
Taubenböck, 2013; UNISDR, 2015). However, due to the large number 
of buildings, their heterogeneous structural designs, and the spatio-
temporal dynamics driven by urbanization, maintaining an inventory 
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database across extensive areas is a highly complex task. Traditional 
data collection methods, such as in-situ building inspections, are not 
capable to meet this challenge (Pittore et al., 2017).

At the same time, holistic vulnerability assessments across multiple 
natural hazards impose high demands on exposure models in terms of 
thematic detail and spatial resolution, as (i) different building attributes 
may influence the vulnerability to different hazards (Silva et al., 2022), 
and (ii) natural hazards vary in spatial scale, exhibiting distinct spatial 
patterns and variabilities (Gill and Malamud, 2014; Dabbeek and Silva, 
2019; Gómez Zapata et al., 2021). A generic description of the building 
stock combined with a high spatial resolution enhances the flexibility 
of the risk or impact model to consistently and efficiently address 
multi-hazard scenarios.

Building instances within an exposure model are assigned
vulnerability-relevant characteristics according to standardized tax-
onomies (Pittore et al., 2018). E.g., the GED4ALL multi-hazard building 
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classification system proposed by Silva et al. (2022) covers the lateral 
load-resisting system (LLRS; i.e., the structural system that resists acting 
lateral forces such as seismic loads, wind loads, water pressure or earth 
pressure) and its material (e.g., masonry or wood), height, occupancy, 
block position (i.e., the position of a building or housing entity in 
relation to its neighbors), structural irregularity, and roof shape, among 
others. A vulnerability model (e.g., a fragility curve) relates the inten-
sity of a natural hazard to the damage probability of a building, as 
determined by its vulnerability-relevant characteristics. This enables 
the assessment of a building’s vulnerability concerning a specific hazard 
intensity (Calvi et al., 2006; Douglas, 2007).

Drastic transformation processes, coupled with limited exposure 
data, require leveraging relevant datasets and developing automated 
methods to enable efficient vulnerability-related characterization of the 
built environment on a large scale. Driven by expanding data acqui-
sition initiatives (both remote and in-situ sensing), social media, and 
advances in artificial intelligence, geospatial imaging sensor data has 
become a key source for automated spatial information extraction (Zhu 
et al., 2017; Ibrahim et al., 2020; Biljecki and Ito, 2021).

Numerous studies have demonstrated the potential of remote sens-
ing data and supervised machine learning techniques for the spatially 
continuous extraction of vulnerability-relevant attributes at building 
object level using high to very high resolution sensors. Target variables 
include building height, occupancy, and roof type as well as the seismic 
building structural type (SBST), which characterizes a building’s main 
load-bearing structure from a seismic vulnerability perspective (e.g., 
Sarabandi and Kiremidjian, 2007; Geiß et al., 2015; Liuzzi et al., 2019; 
Zhou et al., 2023; Müller et al., 2023; Mutreja and Bittner, 2023; Li 
et al., 2024b,a).

By capturing the streetscape from a human vision perspective, 
street-level imagery (SLI) complements the top-down view of remote 
sensing data bridging information gaps that often hinder complex 
applications (Lefevre et al., 2017; Zhang et al., 2019; Biljecki and 
Ito, 2021)—e.g., by providing high-resolution façade views. In their 
pioneering study, Wieland et al. (2012) employ omnidirectional SLI 
to extract structural attributes through expert-based visual image in-
terpretation and to estimate building height via photogrammetric 3D 
building reconstruction. Compared to traditional in-situ surveys, such 
SLI-based remote visual screenings enable a decentralized and location-
independent inspection of a large number of buildings, significantly 
increasing data collection efficiency (Geiß et al., 2017; Esquivel-Salas 
et al., 2022). This is particularly true when building upon commer-
cial web mapping services (e.g., Google Street View; Anguelov et al., 
2010; Santa María et al., 2017; Pittore et al., 2018), crowd-sourcing 
based alternatives (e.g., Mapillary or Kartaview; Hou et al., 2024) or 
social media (e.g., Flickr; Hoffmann et al., 2023). The extraction of 
vulnerability-relevant building attributes using SLI and deep learning 
(DL) classification methods has been the subject of several studies, cov-
ering the identification of building height, LLRS, LLRS material, SBST, 
ductility, building age, roof shape, block position and soft-storey con-
struction (Kang et al., 2018; Gonzalez et al., 2020; Yu et al., 2020; Qiao 
and Yuan, 2021; Aravena Pelizari et al., 2021, 2023; Sun et al., 2022; 
Ogawa et al., 2023), among others. Generalization accuracies show that 
combining geospatial imagery with machine learning-based inference 
enables efficient automated building inventory collection, providing a 
cost- and labor-efficient alternative to traditional methods. Also ac-
counting for façade information, the derivation of structural building 
features from oblique images captured by unmanned aerial vehicles 
has been successfully demonstrated for spatially limited areas (Meng 
et al., 2021; Zhang et al., 2023). In the context of multi-hazard risk 
assessments, Aravena Pelizari et al. (2023) employ multitask learning 
to effectively address the need for generic building characterization at 
the algorithmic level, enabling the simultaneous prediction of multiple 
structural target variables with substantially enhanced model accuracy 
and efficiency.
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However, a systematic study exploring the potential of integrating 
heterogeneous multimodal geo-image data for a generic, spatially con-
tinuous vulnerability-related characterization of buildings exposed to 
natural hazards remains absent. This paper aims to address this gap 
by considering SLI, very high-resolution (VHR) optical remote sensing 
data, and a normalized digital surface model (nDSM) derived from 
high-resolution optical imagery.

1.1. Multimodal geospatial imagery and deep learning

With the increasing availability of geospatial image data from 
different platforms and sensor types, along with derived products 
like digital surface models, the synergistic fusion of complementary 
modalities to enhance the target information has been a widely re-
searched field (Gomez-Chova et al., 2015; Schmitt and Zhu, 2016; 
Aravena Pelizari et al., 2018; Hong et al., 2021; Li et al., 2022; Mena 
et al., 2024).

This study focuses on heterogeneous data fusion, i.e., the integration 
of data derived from fundamentally different imaging mechanisms (e.g., 
the fusion of SAR and optical data or the combination of remote sensing 
and ground-based data; Li et al., 2022). In this context, end-to-end 
optimized DL methods show great potential compared to traditional 
data fusion approaches (Hong et al., 2021).

In DL, three data fusion strategies can be distinguished (Schmitt 
and Zhu, 2016; Ramachandram and Taylor, 2017; Zhu et al., 2017):
observation-level fusion, feature-level fusion, and decision-level fusion
(DLF). Observation-level fusion combines different modalities into a 
common feature vector before being fed into the DL model, potentially 
hindering the identification of higher-level synergies between modali-
ties. Feature-level fusion extracts modality-specific representations from 
the input, integrates them using a suitable fusion algorithm, and passes 
the result to the decision level. Multimodal representation and fusion 
components are optimized end-to-end, potentially uncovering benefi-
cial higher-level multimodal relationships. DLF aggregates decisions 
from independent modality-specific models and is often preferred for its 
simplicity (Schmitt and Zhu, 2016; Ramachandram and Taylor, 2017; 
Baltrusaitis et al., 2019). Heterogeneous data fusion problems, where 
modalities differ substantially, typically involve fusion based on already 
abstracted information, such as extracted features or modality-specific 
model decisions (Hong et al., 2021).

Multimodal learning often faces scenarios of partially unavailable 
modalities, necessitating solutions to the missing modality problem (Mena
et al., 2024; Kieu et al., 2024). This study addresses the prevalent 
scenario in which remote sensing data provide spatial continuity and 
comprehensive coverage, whereas SLI data remain incomplete due 
to buildings being unrecorded or obscured (Srivastava et al., 2019; 
Aravena Pelizari et al., 2021; Biljecki and Ito, 2021). Furthermore, ob-
taining complete and up-to-date SLI coverage across large areas is pro-
hibitively expensive, particularly given the spatio-temporal dynamics 
of urban environments.

1.2. Related works

With regard to the geo-image modalities used in this study, Srivas-
tava et al. (2019) and Hoffmann et al. (2019) employ VHR optical 
remote sensing data and SLI through feature-level fusion within a 
multi-stream CNN to predict urban land use classes of OpenStreetMap 
buildings. Srivastava et al. (2019) concatenate modality-specific feature 
vectors immediately before classification, while Hoffmann et al. (2019) 
additionally assess earlier-stage concatenation and DLF. Overall, both 
studies report significant accuracy gains employing both modalities. 
In Hoffmann et al. (2019) decision-level fusion in the majority of cases 
outperforms feature-level fusion. Srivastava et al. (2019) also address 
the inference of data points with missing SLI. Specifically, they employ 
the features of the available residual modality to project these data 
points, along with those containing SLI, into a common embedding 
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space and use the SLI features of their nearest neighbors in this space 
as substitutes.

Several recent studies propose methods for synergistic multimodal 
image classification of remote sensing and ground-based imagery based 
on the benchmark datasets AiRound (11 land use classes) and CV-BrCT 
(9 land use classes) introduced by Machado et al. (2021). Machado 
et al. (2021) compare multi-stream CNN models with early feature-level 
fusion and DLF variants. DLF through the multiplication of modality-
specific class probability outputs is found to yield the highest accura-
cies. Machado et al. (2023) propose a retrieval CNN to replace missing 
modalities with similar existing samples from the database. Zhao et al. 
(2024) propose a teacher-student model to extract cross-modal knowl-
edge and address partially missing data. Furthermore, they implement 
a cross-view attention module to capture correlations among the multi-
modal representations, outperforming both feature concatenation and 
DLF.

Chen et al. (2022) classify urban villages using SLI and VHR optical 
remote sensing data, also employing an attention based fusion to adap-
tively weight ground-based and top-view representations. Hosseinpour 
et al. (2022) beneficially leverage adaptive gating in the DL-based 
fusion of digital elevation models and VHR optical data for building 
segmentation.

The presented studies emphasize two key challenges of multimodal 
DL, i.e., developing tailored fusion strategies to exploit positive syner-
gies and the handling of missing modalities.

1.3. Conceptualization and contributions

Against the provided background, this research addresses the syner-
gistic fusion of heterogeneous multimodal geospatial image data (SLI, 
VHR optical data and an nDSM with 2 m geometric resolution) for the 
vulnerability-related multicriteria characterization of buildings exposed 
to natural hazards (Fig.  1).

The inference of building attributes is addressed via DL-based image 
classification (Rawat and Wang, 2017), commonly referred to as scene 
classification in remote sensing (Cheng et al., 2020). This enables 
the comprehensive integration of spatial context information, which 
has proven effective for assigning complex semantic classes in urban 
environments using VHR remote sensing data (Herold et al., 2003; Geiß 
et al., 2015; Huang et al., 2018; Zhang et al., 2018; Martins et al., 
2020). With respect to the addressed spatial entities, the proposed 
approach aligns with Huang et al. (2018), Zhang et al. (2018), Martins 
et al. (2020) and Wang et al. (2021), where representative sample 
locations are defined within previously delineated target objects. Re-
stricting the application of the DL model to image patches extracted 
at such specifically defined data points, considerably reduces training 
data annotation efforts as well as the required number of model updates 
and predictions, increasing overall efficiency compared to pixel-based 
methods (Martins et al., 2020; Wang et al., 2021).

The base entities constitute building object polygons that can be 
derived from the input remote sensing data itself, e.g., through in-
stance segmentation (Stiller et al., 2019) or semantic segmentation (Ne-
upane et al., 2021). Furthermore, OpenStreetMap provides crowd-
sourced building polygons, while Microsoft and Google published ex-
tensive building footprint data extracted from VHR remote sensing 
data1 2. Focusing on delineated building objects, residual areas are 
excluded from the outset. This aligns with the SLI data (Section 2.1.1), 
which capture building façades but omit other urban elements.

Unlike remote sensing data with inherent geographic alignment, SLI 
exhibits spatial discrepancies between image content and recorded co-
ordinates, as the latter represent camera positions rather than captured

1 Microsoft, GlobalMLBuildingFootprints: https://github.com/microsoft/
GlobalMLBuildingFootprints.

2 Google, Open Buildings: https://sites.research.google/open-buildings/.
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Fig. 1. Heterogeneous multimodal geospatial image data and deep multimodal 
multitask learning for the vulnerability-related multi-criteria characterization 
of buildings exposed to natural hazards.

views (Qiao and Yuan, 2021). Inspired by Huang et al. (2018), Zhang 
et al. (2018), and Martins et al. (2020), we propose a method utilizing 
morphological line representations for representative spatial assign-
ment and sampling within building objects. This integration process 
yields consistently localized SLI and remote sensing image patches, 
which serve as inputs for classification.

To infer multiple vulnerability-relevant target variables from multi-
modal imagery, we propose a multimodal multitask classification (M3TC) 
framework. It employs a feature-level fusion module—termed task-
wise modality attention (TMA)—to optimally exploit synergies among 
input modalities by weighting their representations according to the 
specific requirements of each target task. In contrast to prior studies 
(Section 1.2), our approach provides a robust solution for multicriteria 
building characterization. From an application perspective, the (M3TC) 
framework is designed to efficiently support the generic inventor-
ization of exposed buildings, as envisioned in the faceted GED4ALL 
multi-hazard building taxonomy (Silva et al., 2022).

Many multimodal learning approaches enable synergistic inference 
despite missing modalities by leveraging dependencies within com-
plete multimodal image data available during training (Baltrusaitis 
et al., 2019; Kieu et al., 2024). Examples include cross-modal image 
retrieval (Srivastava et al., 2019; Machado et al., 2023), cross-modality 
learning (Hong et al., 2021), and information exchange via cross-modal 
loss functions (Xie et al., 2023). However, the explicit consideration 
of spatio-contextual dependencies generally remains unconsidered. In 
contrast, this work addresses the challenge of missing SLI data us-
ing a transformer-based SLI spatial context encoder, which adaptively 
learns spatio-contextual representations from the façade views of the 
𝐾 nearest neighbors with available SLI data as substitutes. Consistent 
with Tobler’s First Law of Geography (Tobler, 1970), which states 
that spatial interdependencies are stronger among proximate objects 
than distant ones, this approach leverages spatial correlations in the 
structural and visual properties of buildings. These correlations aim 
to capture distinctive patterns shaped by urban growth history, past 
natural disasters, evolving construction designs and regulations, as well 
as socio-economic factors such as demographics, income levels, and 
urban planning.

In summary, the technical innovations of this study are threefold:
(i) the spatial integration of multimodal geo-image data via morpho-
logical line representations of building objects; (ii) TMA for optimizing 
data fusion in multimodal multitask learning; and (iii) the SLI spatial 
context encoder to mitigate missing SLI—together enabling the efficient 
area-wide extraction of reliable, faceted building exposure information.

https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/GlobalMLBuildingFootprints
https://sites.research.google/open-buildings/
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Fig. 2. Overview of the input data and processing steps. Details are provided in the indicated sections.
The presented M3TC framework is applied and experimentally 
evaluated for multi-criteria building characterization, focusing on five 
vulnerability-relevant attributes: height, LLRS material, SBST, roof shape, 
and block position (Section 3.1.1). The test site is Santiago de Chile, a 
city highly prone to earthquakes. Considering the two data scenarios—
SLI available and SLI missing—the conducted experiments involve an 
extensive cross-comparison of generalization capabilities across indi-
vidual geo-image modalities and their combinations. This includes a 
detailed assessment of the contributions from the TMA data fusion 
strategy and the SLI spatial context encoder. Finally, the most accurate 
models are used to generate a spatially continuous exposure model.

The remainder of the paper is organized as follows: Section 2 details 
the data utilized and the proposed methodology. Section 3 outlines the 
experimental setup, while Section 4 presents and discusses the results. 
Finally, Section 5 concludes the paper. Fig.  2 provides an overview of 
the input data and processing steps applied in this study, along with 
references to the corresponding paper sections.

2. Materials and methods

2.1. Data

2.1.1. Street-level imagery
The employed SLI data comprise GSV building façade views from

Aravena Pelizari et al. (2021) within Santiago de Chile’s 7M inhabitant 
metropolitan area: (i) scenes with a viewing direction perpendicular 
360 
to the driving direction of the recording vehicle were sampled in 
a spatially stratified manner; (ii) a filtering procedure based on a
Places365 (Zhou et al., 2018) pretrained CNN separated façade from 
non-façade views. Example façade views are shown in Fig.  7.

2.1.2. VHR optical remote sensing data
With regard to VHR optical data, an RGB orthophoto mosaic from 

an airborne sensor with a geometric resolution of 0.4 m is utilized (Fig. 
3a, b; IDE, 2015). Collected in January 2014, these data approximately 
align with the acquisition time of the SLI data. They are representative 
of VHR satellite imagery produced by modern multispectral systems 
such as WorldView-3 (0.31 m), GeoEye-1 (0.41 m), Pléiades-1 A and 
1B (0.50 m), SkySat (0.50 m), and others.

2.1.3. Normalized digital surface model
In addition, a normalized digital surface model (nDSM) with a 

2 m spatial resolution, derived from panchromatic tri-stereo imagery 
captured by the SPOT-7 satellite in 2014, is used (Fig.  3c). The original 
sensor data were processed by Stiller et al. (2021), which included the 
generation of a digital surface model (d’Angelo and Reinartz, 2011), 
from which the nDSM was derived (Perko et al., 2015). An accuracy 
assessment based on a very high resolution nDSM reported a mean 
absolute error of 2.9 m. A cost-effective alternative to classical pho-
togrammetrically derived height information lies in DL-based height 
predictions from a single image (monocular height estimation; e.g., Chen 
et al., 2023; Müller et al., 2023).
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Fig. 3. Multimodal geospatial image data: (a) municipalities of Santiago de Chile (Comunas) with data coverage (shaded backdrop: Sentinel-2 image); (b) VHR 
optical remote sensing data; (c) nDSM; (d) building objects and street-level façade shooting positions.
2.1.4. Building object instances
Building objects extracted from the VHR optical remote sensing 

data as part of Stiller et al. (2019) using Mask RCNN instance seg-
mentation (He et al., 2017) serve as geographic base entities for the 
exposure model (Fig.  3d). The dataset includes detailed delineations 
of built-up areas in the Santiago de Chile metropolitan area, with a 
spatial resolution ranging from individual buildings to building blocks. 
Freestanding buildings are captured individually, while building blocks 
represent dense, contiguous developments. The estimated accuracy of 
the building layer is 80.38% Intersection over Union, 92% Overall 
Accuracy (𝑂𝐴), and features a kappa (𝜅) of 0.83 (Stiller et al., 2019).

2.2. Spatial data integration

The spatial integration of the multimodal geospatial image data is 
based on the building object instances and comprises the following 
steps: (i) the extraction of morphological line representations of the 
building objects (hereafter referred to as sample lines), (ii) the local-
ization of the street-level façade views on the sample lines, (iii) the 
definition of sample locations along the sample lines.

The notion behind the sample line is to delineate spatial locations 
within the building objects that correspond to their façade view at 
street level, either along their main axis or the object parts that face 
the street. The derivation of the sample line is shown in Algorithm 1 
and in Fig.  4. The building objects are skeletonized to extract their 
main axes using the algorithm of Lee et al. (1994). Furthermore, the 
building objects are eroded by the distance 𝑑, set to 5 m, considering 
the building morphology of Santiago de Chile and corresponding object 
representations. Subsequently, the skeleton line sections overlapping 
with the eroded building object areas are erased (Fig.  4a). The final 
sample lines (Fig.  4b) are constructed from the remaining skeleton 
line sections and the outlines of the eroded building object areas. 
Consequently, building objects or parts of building objects with a width 
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of ≤10 m are represented by their main object axis, while those with a 
width of >10 m are represented by their 5 m inwardly offset boundary.

Algorithm 1: Sample line (𝑆𝐿) extraction
1: procedure get_𝑆𝐿(𝑜𝑏𝑗𝑒𝑘𝑡𝑖 , 𝑑) ⊳ Input: 𝑂𝑏𝑗𝑒𝑐𝑡𝑖, distance 𝑑
2:  𝑆𝑖 ← Skeletonize(𝑜𝑏𝑗𝑒𝑘𝑡𝑖) ⊳ Skeletonize object
3:  𝐸𝑖 ← Erode(𝑜𝑏𝑗𝑒𝑘𝑡𝑖 , 𝑑) ⊳ Erode object by distance 𝑑
4:  𝑆𝐸𝑟𝑖 ← Erase(𝑆𝑖 , 𝐸𝑖) ⊳ Erase skeleton by eroded object
5:  𝑆𝐿𝑖 ← Union(𝑆𝐸𝑟𝑖 , 𝑂𝑢𝑡𝑙𝑖𝑛𝑒(𝐸𝑖)) ⊳ Union of remaining object skeleton and eroded 

object outline
6:  return 𝑆𝐿𝑖 ⊳ Output: Sample line
7: end procedure

The localization of available façade views within the building ob-
jects is performed as follows: a link line is generated from the coordi-
nates of the façade shooting points and the horizontal viewing direction 
of the camera sensor, which underlies the façade view (Fig.  4b). The 
assignment location (MALL location) of a façade view is then defined 
as the point on the sample line closest to the first intersection between 
the link line and the boundary of the corresponding building object. At 
these MALL locations, all geo-image modalities are available for building 
characterization. Fig.  4e provides an overview of the MALL location 
coverage in the center of Santiago de Chile.

For the characterization of building objects or object parts beyond 
the data points with SLI coverage, sample locations are defined along 
the sample line at 12 m intervals. Building objects with a sample line 
shorter than 12 m are represented by their center point. These data 
points (MRS locations; Fig.  4c, d) are captured exclusively by the remote 
sensing data.

Sub-object-level spatial assignment and sampling address densely 
built-up areas where individual buildings are challenging to delineate, 
instead forming parts of building block objects (Kraff et al., 2020). 



P. Aravena Pelizari et al. ISPRS Journal of Photogrammetry and Remote Sensing 231 (2026) 357–375 
Fig. 4. Spatial integration of SLI and remote sensing data. (a) Sample line (SL) extraction: 1. Object skeletonization, 2. Object erosion, 3. Erase-Union operation 
(Algorithm 1); (b) The resulting SL and localization of street-level façade views using the link line, where coverage with all image modalities (MALL locations) is 
present; (c) Generation of sample locations in SL sections without SLI coverage, i.e., where only remote sensing image modalities are available (MRS locations); 
(d) Final sample locations; (e) West-East transect in the center of Santiago de Chile illustrating the density of MALL locations.
These objects may consist of buildings with varying vulnerability char-
acteristics. This approach facilitates detailed vulnerability mapping 
even in high-density urban environments.

Using the identified sample locations as center points, correspond-
ing remote sensing data patches are generated with dimensions of 
88 × 88 m (i.e., 220 × 220 pixels for the optical data and 44 × 44 pixels 
for the nDSM). This patch size enables the representation of buildings 
with varying footprint extents while capturing both the immediate 
spatial context and broader urban morphologies in the downstream 
feature encoding.

2.3. Deep multimodal multitask learning

The multimodal multitask classification (M3TC) problem can be de-
fined as follows: Given instances represented by 𝑀 heterogeneous 
modalities 𝑋MM =

{

𝑋𝑚
}𝑀
𝑚=1, where 𝑋𝑚 ∈ R𝑑𝑚  denotes a 𝑑-dimensional 

instance representation space, each instance 𝑥MM ∈ 𝑋MM is associated 
with a label space 𝑌 MTC =

{

𝑌𝑡
}𝑇
𝑡=1, where 𝑌𝑡 ∈

{

𝑦𝑡,𝑐
}𝐶𝑡
𝑐=1. Here, 

𝑇  denotes the total number of addressed classification tasks, and 𝐶𝑡
corresponds to the task-specific number of classes. The goal of M3TC ist 
to learn a prediction model 𝑀M3TC (𝑥MM

)

∶ 𝑋MM → 𝑌 MTC, minimizing 
a joint loss over all tasks (Section 2.3.4).

The presented M3TC architectural framework (Fig.  5) consists of an 
encoder module for each modality (Multitask feature extraction; Sections 
2.3.1, 2.3.3), followed by a feature fusion and a classification module. 
The encoders utilize hard parameter sharing multitask learning to simul-
taneously learn shared initial feature representations, jointly optimized 
for inferring the target variables (e.g., Aravena Pelizari et al., 2023). 
The proposed feature fusion module adaptively weights these repre-
sentations according to the requirements of the individual target tasks 
(task-wise modality attention fusion; Section 2.3.2). For classification 
resulting multimodal fusion features are passed to a fully connected 
layer with softmax activation each. Final class labels are obtained from 
the softmax outputs 𝑠 via 𝑦 = argmax

(

𝑠
)

.
𝑡 𝑡,𝑐 𝑡,𝑐
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2.3.1. Image data encoders
The CNN based geo-image encoders were chosen for their parameter 

efficiency. For feature extraction from the SLI, EfficientNetV2-B2 (Tan 
and Le, 2021) designed for input image data of size 260 × 260 pixels is 
employed. The EfficientNet architecture has already demonstrated high 
predictive accuracy in the context of multi-criteria building characteri-
zation based on SLI (Aravena Pelizari et al., 2023). For the remote sens-
ing image modalities, CNN based on the DenseNet architecture (Huang 
et al., 2017) are utilized. Compared to other state-of-the-art methods, 
DenseNets have recently shown to be highly competitive in terms of 
accuracy and parameter efficiency across various VHR remote sensing 
multi-class scene classification benchmark datasets (Dimitrovski et al., 
2023). The core elements of DenseNets are the dense blocks, which 
feature direct connections from each layer to all subsequent layers by 
concatenating their outputs. This optimizes feature reuse and informa-
tion flow (Huang et al., 2017). A DenseNet with 120 convolutional 
layers (DenseNet120) is used for feature extraction from optical remote 
sensing data, and a DenseNet with 38 convolutional layers (DenseNet38) 
is used for feature extraction from nDSM data (Table  1). Shared mul-
titask feature extraction from the input image data is concluded with
global average pooling to keep subsequent data fusion and classification 
sparse.

2.3.2. Task-wise modality attention fusion
From the M3TC setting, the following two hypotheses emerge:

(i) not every available modality is equally relevant for deriving the 
various target variables being addressed, and (ii) not every feature 
representation from the shared encoders provides equal value for each 
task. To counteract potential accuracy losses due to these issues, the
task-wise modality attention (TMA) fusion module is employed. Inspired 
by channel-wise feature weighting in Squeeze-and-Excitation blocks (Hu 
et al., 2018) and the use of underlying mechanisms in multimodal 
data fusion (Hosseinpour et al., 2022; Chen et al., 2022), TMA fusion 
involves task-specific, attention-gate-based weighting of multimodal 
input representations, followed by feature reduction. For a given set of 
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Fig. 5. M3TC model architectures. Modality-specific encoders, shared across T classification tasks, enable multitask feature extraction. Imagery is processed via 
CNN followed by global average pooling (GAP; Section 2.3.1). Task-wise modality attention (TMA) fuses the features by weighting representations according to 
task requirements (Section 2.3.2). Fully connected (FC) layers with softmax activation perform task-wise classification (Section 2.3). (a) Configuration with SLI 
available. (b) Configuration with SLI missing: reduced SLI features from the 𝐾 nearest neighbors (KNN) with available SLI are ordered by distance (xSLI-KNN
sequence), and passed to the transformer-based SLI spatial context encoder (Section 2.3.3). (c) TMA fusion for two input modalities and two classification tasks, 
with relative feature vector sizes in brackets. (d) The SLI spatial context encoder in detail.
Table 1
DenseNet-encoder-architectures. conv indicates convolution-batch normalization (BN)-ReLU in the first layer; BN-ReLU-
convolution thereafter.
 VHR optical encoder (input size: 224 × 224) nDSM encoder (input size: 44 × 44)
 Layers DenseNet120 Output size DenseNet38 Output size
 Convolution 7 × 7 conv, stride 2 112 × 112 7 × 7 conv, stride 2 22 × 22
 Pooling 3 × 3 max pool, stride 2 56 × 56 3 × 3 max pool, stride 2 11 × 11
 Dense Block (1)

[

1 × 1 conv
3 × 3 conv

]

× 6 56 × 56
[

1 × 1 conv
3 × 3 conv

]

× 6 11 × 11
 Transition Layer (1) 1 × 1 conv 56 × 56 1 × 1 conv 11 × 11
 2 × 2 avg pool, stride 2 28 × 28 2 × 2 avg pool, stride 2 5 × 5
 Dense Block (2)

[

1 × 1 conv
3 × 3 conv

]

× 12 28 × 28
[

1 × 1 conv
3 × 3 conv

]

× 12 5 × 5
 Transition Layer (2) 1 × 1 conv 28 × 28 – –
 2 × 2 avg pool, stride 2 14 × 14 
 Dense Block (3)

[

1 × 1 conv
3 × 3 conv

]

× 24 14 × 14 – –

 Transition Layer (3) 1 × 1 conv 14 × 14 – –
 2 × 2 avg pool, stride 2 7 × 7
 Dense Block (4)

[

1 × 1 conv
3 × 3 conv

]

× 16 7 × 7 – –

 Feature aggregation 7 × 7 global avg pool 1 × 1 5 × 5 global avg pool 1 × 1
363 
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tasks 𝑇  and feature representations from 𝑀 available modalities, the 
TMA fusion process can be formulated as: 

𝑧 = Concat
(

𝑥1,… , 𝑥𝑀
)

, 𝑧 ∈ R1×1×𝐹𝑧

𝑧̌𝑡 = ReLU (Conv (𝑧)) , 𝑡 ∈ {1,… , 𝑇 } , 𝑧̌𝑡 ∈ R1×1× 𝐹𝑧
𝑟

𝑤𝑥𝑚,𝑡 = 𝜎
(

Conv
(

𝑧̌𝑡
))

, 𝑤𝑥𝑚,𝑡 ∈ R1×1×𝐹𝑥𝑚

𝑥̌𝑚,𝑡 = 𝑤𝑥𝑚,𝑡 ⊗ 𝑥𝑚

𝑥̌𝑡 = ReLU
(

Conv
(

Concat
(

𝑥̌1,𝑡,… , 𝑥̌𝑀,𝑡
)))

, 𝑥̌𝑡 ∈ R1×1× 𝐹𝑧
𝑟̌ ,

(1)

where 𝐶𝑜𝑛𝑐𝑎𝑡 stands for vector concatenation, Conv for 1 × 1 con-
volution, 𝐹𝑗 for the number of feature channels of vector 𝑗, 𝜎 for 
sigmoid activation and ⊗ for element-wise multiplication. The terms 
𝑟 and 𝑟̌ denote dimensionality reduction factors. 𝑤𝑥𝑚,𝑡  represents the 
adaptively learned task-specific weight vectors for each modality, 𝑥̌𝑚,𝑡
the weighted feature vectors, and 𝑥̌𝑡 the fused multimodal representa-
tions optimized to meet the requirements of the respective target tasks. 
A schematic visualization of TMA fusion for two modalities and two 
target tasks is shown in Fig.  5c.

2.3.3. SLI spatial context encoding
To address the issue of missing SLI data—such as at the MRS

locations (Fig.  4d)—the SLI spatial context encoder is proposed (Fig.  5b, 
d). This model learns spatial context representations from data points 
with available SLI to substitute the missing information. Specifically, 
the CNN-encoded SLI feature representations of the 𝐾 nearest neighbors 
with SLI coverage, [𝑥𝑆𝐿𝐼

]

𝑁𝑁𝑘
, 𝑘 ∈ 1, 2,… , 𝐾, are used to adaptively 

capture spatial interdependencies via a transformer. K is treated as a 
hyperparameter and optimized (Section 3.3). To mitigate the increase 
in input data size and model complexity as the number of nearest neigh-
bors grows, the input SLI feature dimensionality is reduced via a fully 
connected layer with ReLU activation (Fig.  5a: Feature reduction). The 
resulting feature vectors are sorted in ascending order by distance to 
serve as input for spatial context encoding (Fig.  5b: xSLI-KNN sequence): 

𝑥SLI-KNN =

⎡

⎢

⎢

⎢

⎣

𝑥SLI1𝑁𝑁1
… 𝑥SLI𝐷𝑚𝑁𝑁1

⋮ ⋱ ⋮
𝑥SLI1𝑁𝑁𝐾

… 𝑥SLI𝐷𝑚𝑁𝑁𝐾

⎤

⎥

⎥

⎥

⎦

. (2)

The transformer relies on self-attention to capture intricate depen-
dencies within the data (Vaswani et al., 2017), i.e., queries (𝑄), keys
(𝐾), and values (𝑉 ) represent different projections of the same input. 
It consists of 𝐿 sequential blocks (see Fig.  5d), each comprising two 
modules: a multi-head attention (MHA) module and a multi-layer per-
ceptron (MLP) module. The input and output of the modules are linked 
through residual connections (He et al., 2016). Unlike the configuration 
presented by Vaswani et al. (2017), this implementation applies layer 
normalization (Ba et al., 2016) to the inputs of the modules within 
the residual blocks promoting more stable training and faster model 
convergence (Xiong et al., 2020). As such, the output 𝑥𝑙 of block 𝑙 is 
computed as follows: 
𝑄,𝐾, 𝑉 = Norm

(

𝑥𝑙−1
)

𝑥𝑙
′′
= MHA (𝑄,𝐾, 𝑉 ) + 𝑥𝑙−1

𝑥𝑙
′
= Norm

(

𝑥𝑙
′′
)

𝑥𝑙 = MLP
(

𝑥𝑙
′
)

+ 𝑥𝑙
′′
, 𝑥 ∈ R𝐷𝑚×𝑁 .

(3)

The MHA module consists of a predefined number of 𝐻 scaled dot-
product attention (SDA) layers (heads): 

SDA𝑖
(

𝑄𝑖, 𝐾𝑖, 𝑉𝑖
)

= 𝐴𝑖𝑉𝑖 = softmax
(

𝑄𝑖𝐾⊤
𝑖

√

𝐷𝑡

)

𝑉𝑖, 𝑖 ∈ {1,… ,𝐻} , (4)

where 𝐴𝑖 represents the attention weight matrix and 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 ∈ R𝐷𝑡×𝑁

matrices are independent trainable linear transformations of the input. 
The dot products of 𝑄  and 𝐾  are scaled by √𝐷  to mitigate vanishing 
𝑖 𝑖 𝑡
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gradients. MHA is derived concatenating all SDA layer outputs, fol-
lowed by a projection back to the dimension of the original input 𝐷𝑚
based on the weight matrix 𝑊 ∈ R𝐻×𝐷𝑡×𝐷𝑚 : 

MHA (𝑄,𝐾, 𝑉 ) = Concat
(

𝑆𝐷𝐴1,… , 𝑆𝐷𝐴𝐻
)

𝑊 . (5)

The MLP module consists of two fully connected layers with a ReLU 
activation in between: 

MLP
(

𝑥𝑙
′
)

= ReLU
(

𝑥𝑙
′
𝑊 1 + 𝑏1

)

𝑊 2 + 𝑏2, (6)

𝑊 1 ∈ R𝐷𝑚×𝐷𝑓 , 𝑊 2 ∈ R𝐷𝑓×𝐷𝑚 , 𝑏1 ∈ R𝐷𝑓  and 𝑏2 ∈ R𝐷𝑚  are the 
associated trainable weight matrices and biases.

Before being passed to the transformer, sinusoidal position encod-
ings (PE) are added to the elements of the input matrices to incorporate 
positional information (Vaswani et al., 2017). The 𝐾×𝑁 output feature 
matrix of the transformer is aggregated via Average Pooling (AP) across 
the 𝐾-axis and normalized after Ba et al. (2016). Correspondingly, 
with   denoting the transformer (Eqs. (3)–(6)), SLI spatial context 
representations (𝑥CTX) are obtained by: 

𝑥CTX = Norm
(

AP
(


(

PE + 𝑥SLI-KNN
)))

. (7)

Provided that (i) the spatial distribution of available data cap-
tures relevant spatio-contextual interdependencies, and (ii) data points 
exhibit distinctive features supporting their inference, the proposed 
approach can also mitigate the limited availability of spatial data 
modalities beyond SLI.

2.3.4. Optimization
During training, given a labeled example 

(

{

𝑥𝑖𝑚
}𝑀
𝑚=1 ,

{

𝑦𝑖𝑡
}𝑇
𝑡=1

)

, an 
M3TC model learns by updating the shared and the task-specific pa-
rameters to jointly minimize categorical cross entropy for each task. 
The mulitask loss (𝐿MTC) is defined as the sum of all task-specific losses 
(𝐿𝑡): 

𝐿MTC =
𝑇
∑

𝑡=1
𝐿𝑡. (8)

3. Experimental setup

3.1. Data: target variables, balancing, partitioning and quantities

3.1.1. Target variables
Considering the SLI and VHR optical data, along with an ontology 

based on visually inferable criteria (visual-structural criteria) jointly de-
veloped by local structural engineers and experienced image analysts, 
24,263 data points within the study area were labeled according to five 
vulnerability-relevant target variables (Aravena Pelizari et al., 2021, 
2023), i.e.: (i) the material type of the LLRS (MatLLRS), (ii) building 
height (number of storeys), (iii) a seismic building structural type 
(SBST), characterizing the main-load bearing system from a seismic 
vulnerability perspective, (iv) roof shape (RoofShp) and (v) block po-
sition (BlockPos), referring to a building’s or dwelling unit’s location 
relative to its neighbors. Labels denote the central building entity in 
the façade view. If multiple buildings are present, the label refers to 
the fully depicted building with the largest area share. If no building is 
fully captured, the label refers to the one with the largest visible area. 
Table  2 provides an overview on all target variables and associated 
class labels. Schematic exemplifications are shown in Fig.  6. In addition, 
Fig.  7 provides annotated façade views to visualize label manifestations.
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Fig. 6. Exemplification of addressed target variables (a-c: height, material LLRS, seismic building structural type, roof shape; d-f: details on masonry LLRSs; 
g-k: block position): (a) 1 storey, unreinforced masonry, MUR/H1, monopitch roof; (b) 2 storey, confined masonry, MCF/H1-2, pitched or gabled roof; (c) 5-7 
storeys, reinforced concrete, CR/H5-7, flat roof; (d) unreinforced masonry wall; (e) confined masonry wall, i.e., masonry with reinforced concrete confinement; 
(f) reinforced masonry wall, i.e., masonry with steel bar reinforcement; (g) detached single-party; (h) detached multi-party; (i) semi-detached; (j) adjoining block 
development; (k) adjoining terraced.
Source: Modified after (Aravena Pelizari et al., 2023).
Fig. 7. Example façade imagery with class labels for the addressed target variables Height, MatLLRS, SBST, RoofShp, and BlockPos.
Table 2
Target building characteristics and multi-class manifestations (class numbers 
in brackets).

 

3.1.2. Balancing and partitioning
To mitigate class imbalance while accounting for the characteristics 

of multi-task annotated data—i.e., interconnected task-specific class 
frequency histograms resulting from samples belonging to multiple 
classes—the reference data underwent label powerset-based random 
undersampling (LPRUS), as specified in Aravena Pelizari et al. (2023). 
The input data retention rate was set to 85%. Label powerset bins were 
also used when splitting the data into training, test, and validation sets 
365 
(shares: 65%, 17.5%, 17.5%, respectively), ensuring representativity 
with respect to the occurring cross-task label combinations.

3.1.3. Quantities
The spatial data integration (Section 2.2) for the study area yields 

161,474 MALL locations, where all geo-image modalities (i.e, SLI, opt, 
and nDSM) are available, as well as 1,281,460 MRS locations, captured 
exclusively through remote sensing data (i.e., opt and nDSM). As noted 
above, 24,263 of the MALL locations are labeled, representing the 
reference data for this study. The datasets resulting from data balancing 
and partitioning are shown in Fig.  8.

3.2. Experiments and validation

This study evaluates the potential of various geo-image modalities 
for vulnerability-related building characterization. Specifically, we in-
vestigate how classification accuracy can be improved by combining 
the available modalities through data fusion. Two cases are examined:
(i) all modalities being available, as with MALL locations, and (ii) only 
VHR optical remote sensing data and an nDSM being available, but with 
missing SLI data, as with MRS locations. Particular attention is given 
to assessing the contribution of spatial context modeling for accurate 
multi-criteria building characterization. Robustly handling both MALL
and MRS situations is crucial for deriving reliable, spatially continuous 
exposure models.

To assess the potential of the TMA method for multimodal image 
data fusion, the classic concatenation of encoded representations and 
decision-level fusion (DLF) serve as benchmarks. DLF is applied through 
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Fig. 8. Effect of LPRUS and class frequency distributions of training, validation, and test data for the five target tasks (total counts in parentheses).
the element-wise multiplication of softmax class probabilities result-
ing from 𝑀 different modalities (e.g., Machado et al., 2021) for the 
addressed classification tasks: 

𝑦𝑡 = argmax
𝑡,𝑐

𝑀
∏

𝑚=1

(

𝑠𝑚𝑡,𝑐
)

. (9)

The transformer-based modeling of spatial context in the absence of 
SLI data is benchmarked using an additional variant of the SLI spatial 
context encoder that employs LSTM cells (Hochreiter and Schmidhu-
ber, 1997) instead. Specifically, a stacked LSTM is implemented (e.g., 
Rußwurm and Körner, 2020), comprising a bidirectional LSTM unit
(Schuster and Paliwal, 1997) followed by a unidirectional unit to com-
prehensively capture spatio-contextual dependencies. The last hidden 
state is considered as spatio-contextual representation and passed on. 
For both variants of the SLI spatial context encoder, the influence of the 
number of nearest neighbors on classification accuracy is examined.

The generalization ability of the models is reported in terms of 
overall accuracy (𝑂𝐴), 𝜅 statistics, and 𝐹1-scores, all derived from 
seven independent realizations. 𝜅 quantifies the agreement between 
multiclass predictions and reference labels, accounting for the agree-
ment expected by chance (Cohen, 1960). Additionally, task-specific 
accuracy values for different modality combinations and the applied 
data fusion method (𝑚𝑓 ) are aggregated as cumulative residuals in 
accuracy relative to a defined reference modality (𝑏): 

𝛥𝑚𝑓
𝑏 =

𝑇
∑

𝑡=1

(

𝑚𝑓,𝑡 −𝑏,𝑡
)

∕𝑏,𝑡. (10)

⋅,𝑡 referring to the measure used to assess the accuracy of task 𝑡.

3.3. Model parametrization and training

The reduction factors for TMA fusion, 𝑟 and 𝑟̌ (Eq. (1)), are set to 
16 and 10, respectively. Both values achieve a good balance between 
model accuracy and complexity, the former aligning with the findings 
of Hu et al. (2018).

The SLI representations for modeling spatio-contextual dependen-
cies are based on the most accurate SLI encoder model from seven 
realizations. The dimensionality of the feature sets fed into the SLI 
spatial context encoder is defined as 𝐷𝑚 = 128, and the number of 
transformer encoder blocks in the SLI spatial context encoder is set to 
𝐿 = 3. The intermediate dimension of the MLP modules is defined as 
𝐷𝑓 = 𝐷𝑚×4 (Eq. (6)). To prevent overfitting, dropout (Srivastava et al., 
2014) is applied within the transformer blocks.

While the parametrization of the transformer-based SLI spatial con-
text encoder remains unchanged across all experiments, tuning is per-
formed for the LSTM-based variant on the dimensionality of the hid-
den states 𝐷ℎ. Specifically, the value pairs for the uni- and bidirec-
tional LSTM units 

(

𝐷ℎ𝑢𝑛𝑖 , 𝐷ℎ𝑏𝑖

)

∈ {(64, 96), (128, 192), (192, 288)} are 
considered. Dropout is applied between the two LSTM units.
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For both the transformer- and LSTM-based SLI spatial context en-
coders, the number of nearest neighbors is varied within 𝐾 ∈ {3, 5, 10,
25, 50, 75, 100, 150, 200, 300, 500} to optimize the spatio-contextual repre-
sentations. To ensure reliable estimates of generalization accuracy and 
avoid bias in the training process due to data overlap in the nearest-
neighbor space, validation and test data must be excluded from the set 
of MALL locations considered as nearest neighbors.

For training, the CNN encoders are initialized with ImageNet (Rus-
sakovsky et al., 2015) pre-trained parametrization. Since we noticed 
that leveraging the full potential of ImageNet pre-training is beneficial 
for extracting information from the nDSM data, each patch is fed three 
times, simulating an RGB image. To stabilize the optimization process, 
the SLI spatial context encoder undergoes a separate warm-up phase, 
increasing the learning rate linearly from 1𝑒−10 to 1𝑒−3 over 413 
update steps (i.e., 1 epoch). The LSTM units are initialized using Glorot 
uniform initialization (Glorot and Bengio, 2010). The fully connected 
classification layers are He normal initialized (He et al., 2015) and 
subject to L2 weight regularization (L2 = 1𝑒−4). Thereon, all models 
are uniformly trained with Adam optimization (Kingma and Ba, 2014) 
and an initial learning rate of 1𝑒−3. For comprehensive yet efficient 
training, the learning rate is reduced by a factor of 0.1 when validation 
accuracy plateaus. Early stopping is applied to prevent overfitting. 
Considering the Nvidia RTX A4000 GPU’s 16 GB memory, all models 
are trained with a batch size of 32.

4. Results and discussion

4.1. Performance: impact of input modalities and fusion strategy

Table  3 provides a comparative overview of the models’ general-
ization capabilities based on the available geo-image modalities and 
the applied data fusion strategies under the two scenarios: SLI available
(top section) and SLI missing (bottom section). It presents the mean 
estimated generalization accuracies (𝑂𝐴 and 𝜅), both task-specific and 
aggregated across all classification tasks. The absolute added value of 
incorporating additional modalities and the applied fusion method is 
indicated by the cumulative residuals of the task-specific accuracies 
relative to a reference modality (𝛥𝑚𝑓

𝑏 , Eq. (10)).
The results from individual modalities indicate that SLI data consis-

tently delivers the highest classification performance across all tasks, 
with a substantial margin (mean 𝑂𝐴 = 87.30%, mean 𝜅 = 83.02%). This 
is followed by the accuracies obtained with VHR optical imagery (opt; 
mean 𝑂𝐴 = 74.86%, mean 𝜅 = 67.22%), which outperform the nDSM-
based accuracies (mean 𝑂𝐴 = 65.87%, mean 𝜅 = 54.18%) for all tasks 
except height classification. In the absence of SLI, the highest mean 
task accuracies were achieved using spatio-contextual representations 
learned from the available SLI data (ctx; 𝑂𝐴 = 77.42%, 𝜅 = 70.37%). 
These results highlight both the high semantic information content of 
SLI and the potential of spatio-contextual information for the structural 
characterization of buildings.
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Table 3
Mean accuracy values [%] for the target variables based on the availability of geo-image modalities and the fusion method, derived from 
seven independent runs. Top section: SLI available (MALL locations); bottom section: SLI missing (MRS locations). In case of multimodal 
data fusion, cumulative residuals of task-specific accuracies relative to a reference modality 

(

𝛥𝑚𝑓
𝑏

)

 are provided. Reference modality 𝑏 is 
underlined and represents the modality with the highest individual accuracy within the combination.
In both data scenarios—where SLI is available and where it is 
absent—starting with a single modality, the integration of each ad-
ditional modality leads to a substantial increase in accuracy. Among 
the evaluated fusion approaches, TMA fusion consistently achieves 
the highest accuracy compared to the benchmark methods feature 
concatenation (CNC) and DLF. Accordingly, the highest accuracies are 
achieved through the TMA fusion of all available modalities.

In the case of SLI availability, a mean task accuracy of up to 88.53% 
𝑂𝐴 and 84.70% 𝜅 (SLI+opt+nDSM with TMA fusion) is achieved, 
corresponding to mean accumulated accuracy gains of up to +7.1% 𝑂𝐴
and +10.2% 𝜅. It becomes apparent that the already high accuracies re-
sulting from the street-level perspective can be considerably improved 
with the addition of top-view image modalities.

In the absence of SLI, substantially lower accuracy levels can be 
observed, with the highest mean task accuracy values reaching 𝑂𝐴 =
80.41% and 𝜅 = 74.21% (ctx+opt+nDSM with TMA fusion). Com-
pared to the exclusive use of ctx representations, integrating the re-
mote sensing-based modalities via TMA fusion results in mean task-
accumulated gains of +19.9% in 𝑂𝐴 and +27.6% in 𝜅. Envisaging the 
considered data fusion methods, this corresponds to a 6.2 percentage 
points (pp.) and 9.5 pp. higher gain in terms of 𝜅 accuracy compared 
to CNC and DLF, respectively.

When evaluating the accuracies of data fusion methods across dif-
ferent modality combinations, the added value of the TMA method 
becomes particularly evident in the opt+nDSM models. Relative to 
using opt alone, mean accumulated accuracy gains of +27.8% in 𝜅 are 
achieved—9.4 pp. higher than with CNC and 12.7 pp. higher than with 
DLF.

Hypothetically assuming the test dataset is representative of the 
entire study area, we extrapolated the misclassification difference 
between CNC and TMA fusion to all unlabeled data points (𝑛 =
1, 418, 671), based on the mean 𝑂𝐴 estimated for their respective 
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data availability scenario (i.e., SLI+opt+nDSM or ctx+opt+nDSM). 
This suggests that TMA fusion would reduce misclassifications by 
approximately 46,573 across all tasks.

Fig.  9 presents the results as boxplots of the cumulative accu-
racy residuals across tasks, relative to the model run representing the
median of the mean task accuracies for a defined reference modal-
ity. Visualizing the stochastic variability in model training, this pro-
vides further insights into (i) the relative accuracy gains achieved 
through modality combinations and (ii) the impacts of different data 
fusion strategies. It becomes evident that the TMA fusion method 
consistently achieves better data fusion results in the majority of re-
alizations compared to the benchmark methods CNC and DLF. Not 
included in Table  3, Fig.  9c shows the cumulative cross-task accu-
racy residuals in the absence of SLI when additional modalities are 
incorporated, starting from VHR optical data. The opt+nDSM-TMA 
combination yields a median increase in 𝜅 of +25.59%, opt+ctx-TMA 
+41.22%, and opt+nDSM+ctx-TMA reaches +51.28%. This highlights 
the potential of spatio-contextual information inferred from data points 
with available SLI to mitigate accuracy losses due to missing SLI. 
Moreover, it underscores the substantial accuracy gains in structural 
building characterization achieved through the fusion of the considered 
modalities.

Although TMA fusion models employ considerably more train-
able parameters than CNC and DLF models—particularly when all 
modalities are included—the overall model sizes remain moderate. 
The SLI+opt+nDSM model with TMA fusion comprises 64.62M pa-
rameters (the largest model), while the ctx+opt+nDSM model with 
TMA fusion comprises 25.07M parameters (the 2nd largest model). 
Training and inference times across CNC, DLF, and TMA models were of 
similar magnitude. E.g., mean per-epoch training times (min:sec) for the 
SLI+opt+nDSM models were 5:33 with CNC, 4:53 with DLF, and 4:45 
with TMA; for the ctx+opt+nDSM models, they were 2:42 with CNC, 
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Fig. 9. Cumulative residuals of task-specific accuracies (𝑂𝐴 and 𝜅) for com-
binations of geo-image modalities and data fusion strategies, relative to the 
median values of different reference modalities [%]: (a) 𝛥𝑚𝑓

𝑆𝐿𝐼 , (b) 𝛥𝑚𝑓
𝑐𝑡𝑥 , (c) 𝛥𝑚𝑓

𝑜𝑝𝑡 .

2:47 with DLF, and 2:47 with TMA. The number of epochs required for 
convergence did not vary substantially. Inference times were likewise 
comparable (min:sec per 5k data points, batch size = 4): 1:07 with 
CNC, 1:09 with DLF, and 1:13 with TMA for the SLI+opt+nDSM 
models, and 0:50 with CNC, 0:50 with DLF, and 0:53 with TMA for 
the ctx+opt+nDSM models.

4.2. Insights on modeling spatio-contextual dependencies

Here, the modeling and integration of spatio-contextual represen-
tations (Section 2.3.3) for classifying data points with missing SLI 
coverage (i.e., the MRS locations; Section 2.2) are examined in greater 
detail.

First, the performance of classification models (task means of 𝑂𝐴
and 𝜅) based solely on spatio-contextual information is rendered as a 
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function of the number of considered nearest neighbors (Fig.  10a). It 
becomes evident that, even when considering only the SLI representa-
tions of the first nearest neighbors of the data points, a mean accuracy 
of 71.15% 𝑂𝐴 and 61.91% 𝜅 can be achieved. This is remarkable and 
already underscores the relevance of spatio-contextual information for 
the physical characterization of buildings. Using the SLI spatial context 
encoder with three nearest neighbors, classification accuracy can be 
increased by 4.52 pp. in 𝑂𝐴 and 6.02 pp. in 𝜅, reaching 75.67% and 
67.93%, respectively. As the number of considered nearest neighbors 
increases, accuracy continues to improve until convergence occurs at 
approximately KNN = 50 (𝑂𝐴 = 77.29%, 𝜅 = 70.17%). As such, it 
is demonstrated that the proposed approach also effectively utilizes 
information from more distant neighbors to represent spatial context.

Analogously, Fig.  10b illustrates how accuracy evolves as the num-
ber of considered nearest neighbors successively increases when fusing 
spatio-contextual information from the SLI data with the remote sens-
ing modalities opt and nDSM. Each model configuration employs the 
TMA data fusion method. The starting point is the exclusive use of 
remote sensing data (KNN = 0, i.e., opt+nDSM), which results in a 
mean task accuracy of 77.70% 𝑂𝐴 and 70.61% 𝜅. Next, the SLI features 
from the respective nearest neighbor are integrated as additional repre-
sentations of the data points (KNN = 1, i.e., opt+nDSM+NN-SLI feat.). 
As a result, classification accuracy slightly decreases, indicating that a 
single nearest neighbor does not yet provide sufficient complementary 
contextual knowledge to achieve a global benefit. Instead, it introduces 
disruptive noise into the model. For KNN ≥ 3, model performance re-
sults from the integration of learned spatio-contextual representations. 
The accuracies achieved with the proposed transformer-based SLI spa-
tial context encoder (blue bars) are compared to those of an LSTM-based 
variant (yellow bars; Section 3.2). The integration of spatio-contextual 
representations considering multiple nearest neighbors leads to an 
improvement in model accuracy from the outset. Both the accuracies of 
opt+nDSM+ctxTransformer and opt+nDSM+ctxLSTM increase with higher 
KNN values, reaching a peak at KNN = 100 (𝑂𝐴 = 80.41% and 𝜅
= 74.21% with transformer, 𝑂𝐴 = 80.05% and 𝜅 = 73.79% with 
LSTM). The mean accuracy of the opt+nDSM+ctxLSTM models is con-
sistently outperformed by that of the opt+nDSM+ctxTransformer models. 
For KNN = 100, the mean cumulative task-specific accuracy residuals 
𝛥opt+nDSM+ctx

Transformer

opt+nDSM  are 3.18 pp. higher in 𝜅 than 𝛥opt+nDSM+ctxLSTMopt+nDSM . 
As distances increase, the interdependencies between the visual ap-
pearances and the addressed structural characteristics of buildings 
diminish. Beyond a certain threshold, additional nearest neighbors no 
longer add value and instead introduce interference. Consequently, 
classification accuracy decreases once the accuracy peak is surpassed. 
However, this decrease is more pronounced for opt+nDSM+ctxLSTM
models: While the 𝑂𝐴 and 𝜅 values for opt+nDSM+ctxTransformer models 
remain constant with KNN ≥ 200, these values continue to decrease for 
opt+nDSM+ctxLSTM models.

In summary: (i) The SLI spatial context encoder facilitates the mod-
eling of meaningful spatio-contextual representations by leveraging 
SLI feature sequences from nearest neighbors within a spatial dis-
tance hierarchy; (ii) an adequate number of nearest neighbors is crit-
ical to fully harness the encoder’s potential; and (iii) the proposed 
transformer-based variant outperforms its LSTM-based counterpart, de-
livering higher accuracy and greater robustness to long data sequences.

4.3. Interactions between input modalities and class-wise accuracies

Fig.  11 visualizes the class-specific accuracies (𝐹1-scores) of the 
target variables, resulting from the use of the different considered geo-
image modalities and their combinations. For the latter, results are 
based on TMA data fusion.

Due to the already high SLI accuracies, the potential for class-wise 
improvements by additionally considering the remote sensing-based 
modalities is limited, but nevertheless clearly discernible (Fig.  11a). 
As expected, the inclusion of the nDSM in particular improves the 
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Fig. 10. Modeling and integration of spatio-contextual dependencies: (a) Accuracies of the transformer-based SLI spatial context encoder classifier as a function 
of the number of considered 𝐾 nearest neighbors (KNN). In the case of KNN = 1 (dashed line), the SLI representations of the nearest neighbor are used for 
classification. (b) Accuracy evolution of the opt+nDSM+ctx-TMA model configuration and comparison of LSTM- and transformer-based context modeling (left 
𝑂𝐴, right 𝜅). The starting point is the classification without considering spatial context (KNN = 0), i.e., based solely on the remote sensing data (opt+nDSM). This 
is followed by the integration of the SLI representations of the nearest neighbor (KNN = 1) of a data point and the spatio-contextual representations modeled by 
the SLI spatial context encoder (KNN ≥ 3).  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
accuracy of classes correlated with building height. This effect is most 
pronounced in higher neighboring classes due to reduced omission and 
commission errors (e.g., H5-7, H8-12, H13+ for the Height task and 
CR/H5-7, CR/H8-12, CR/H13+ for the SBST  task). Additionally, other 
target variables, such as the MatLLRS classes MCF, MR, W, UNK, and 
COM3, the RoofShp class PIT-MON, as well as the BlockPos class ADJ-
BD, benefit from nDSM integration. The fusion of SLI and top-view VHR 
optical data (opt) also meets expectations regarding improvements in 
prediction accuracy at the class level. Pronounced benefits are observed 
for the MatLLRS classes MR, COM1-2, and IND; the SBST  classes 
MR/H1-2, CR/H1-2, and MCF/H3-4; the RoofShp class PIT-MON; as 
well as for the BlockPos task in general. E.g., due to occlusion by fences, 
walls, or vegetation, SLI data alone cannot always unambiguously 
distinguish whether a building is a detached single-party house (DET-
SP), a semi-detached house (SDET), or part of an adjoining block 
development (ADJ-BD). Additionally, the limited field of view of the 
SLI can hinder the determination of whether a multi-party building 
is part of an adjoining block development or a standalone structure 
(DET-MP). In such cases, top-view VHR optical images provide valuable 
complementary spatio-contextual cues. The integration of SLI data with 
both remote sensing modalities (SLI+opt+nDSM) generates additional 
synergies for most classes. Overall, this combination achieves the high-
est 𝐹1 accuracy values for 19 of the 35 target classes (SLI+nDSM: 8/35; 
SLI+opt: 7/35; SLI: 1/35).

Fig.  11b presents the 𝐹1-scores of data points where SLI is missing. 
Regarding the individual modalities, the nDSM data shows its high-
est potential for distinguishing height-related classes. Apart from the 
height- and SBST -classes with floor numbers H5-7, H8-12, and H13+, 
the accuracies achieved using VHR optical data substantially exceed 
those of the nDSM in most cases. The spatio-contextual representations 
(ctx) outperform both the VHR optical and nDSM data for most classes. 
The accuracies achieved through the combination of different geo-
image modalities generally surpass those of individual modalities, even 
at the class level. Overall, ctx+opt+nDSM produces the most accurate 
model across all individual classes, yielding the highest 𝐹1-scores for 
25 out of the 35 target classes (ctx+opt: 4/35; ctx+nDSM: 3/35; ctx: 
2/35; opt+nDSM: 1/35).

Following the global accuracy values (Table  3), the potential of 
individual geo-image modalities as well as the positive synergies due to 
their combination via TMA fusion are clearly evident at the individual 
class level, both when SLI data is available and when it is not. In the 
latter case, integrating the proposed ctx representations results in the 
highest 𝐹 -scores for 34 of the 35 classes.
1
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Additionally, Fig.  12 shows the normalized confusion matrices for 
the most accurate models identified in both situations: SLI available
(Fig.  12a) and SLI missing (Fig.  12b), providing a class-specific overview 
of the nature of prediction errors.

4.4. The exposure model

To ultimately obtain the spatially distributed exposure models, con-
sidering the two data scenarios—SLI available and SLI missing—all 
sample locations are classified using the best-performing model, respec-
tively (corresponding accuracy values are shown in Fig.  12). Starting 
from the base entities of the building objects, the derived point-based 
information layer can be aggregated into any larger geographical units 
(e.g., broader building blocks, spatial grids, or administrative units).

The resulting exposure model for Santiago de Chile is presented 
in Fig.  13. From top to bottom, the building height, material of the 
lateral load resisting system (MatLLRS), seismic building structural 
type (SBST), roof shape (RoofShp), and block position (BlockPos) are 
shown. The left column displays the derived exposure information, 
aggregated to the administrative units of comunas. The center and right 
columns (zoom boxes A and B, respectively) show the aggregation to 
the building objects. The pie charts represent the class shares of the 
five target variables for the respective aggregation objects. The size of 
the diagrams corresponds to the number of data points considered. In 
total, the exposure model comprises more than 1.4 million classified 
data points. Spatial data assignment and sampling at the sub-object 
level (Section 2.2) enable the depiction of vulnerability-relevant char-
acteristics as detailed distributions, even with respect to the building 
object level.

The spatially continuous exposure information reflects the heteroge-
neous spatial patterns characteristic of Santiago de Chile (Fig.  13, left 
column). The middle and right columns spotlight the high resolution 
of the exposure model and reveal that distinct spatial patterns and 
variability in the considered building characteristics prevail even at a 
small spatial scale. Accordingly, the buildings’ vulnerability to natural 
hazards also exhibits distinct spatial variabilities, making such informa-
tion highly valuable for spatial risk modeling (Aravena Pelizari et al., 
2021; Gómez Zapata et al., 2021; Geiß et al., 2023).

The proposed data and methods enable the area-wide collection 
of vulnerability-relevant building attributes in an automated manner, 
offering a unique combination of spatial and thematic resolution. This 
is crucial for comprehensive multihazard risk analyses. The required 
spatial resolution of the exposure model depends on the extent, the 
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Fig. 11. Class-wise mean 𝐹1-scores for the addressed classification tasks as a function of the input modalities: (a) SLI available; (b) SLI missing. When multiple 
input modalities are used, TMA data fusion is applied. Cross-task mean 𝐹1-scores (𝐹 1) are provided in parentheses.
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Fig. 12. Confusion matrices, as well task-wise and cross-task mean accuracies (OA and 𝜅 in %) of the best M3TC models (y-axis: reference labels, x-axis: predicted 
labels): (a) SLI available; (b) SLI missing.
available spatial resolution, and the spatial variability of the intensities 
of the considered natural hazards (Dabbeek and Silva, 2019). The 
higher the spatial resolution of the exposure model, the greater its 
flexibility in meeting these requirements effectively. At the same time, 
a high thematic resolution is crucial to adequately capture the specific 
vulnerabilities of buildings to different natural hazards (Pittore et al., 
2017; Silva et al., 2022).

5. Summary and conclusion

This paper investigates the integration of heterogeneous multimodal 
geo-image data (i.e., SLI, VHR optical remote sensing, and nDSM data) 
for vulnerability-related multicriteria characterization of buildings ex-
posed to natural hazards. It introduces a deep multimodal multitask 
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learning methodology, designed to enable a synergistic integration 
and efficient classification of these complementary datasets. Herein,
task-wise modality attention (TMA) fusion is employed to optimize the 
synergistic utilization of multimodal input data across multiple infer-
ence tasks, weighting their feature representations based on the specific 
requirements of each task. To leverage the highly valuable yet limited 
semantic information of SLI façade views in a spatially continuous 
manner, the SLI spatial context encoder is proposed. This transformer-
based encoder exploits spatial correlations among structural building 
characteristics to generate meaningful representations as substitutes for 
data points lacking SLI coverage. The proposed methods facilitate the 
creation of an area-wide exposure dataset with a unique combination 
of spatial and thematic resolution, paired with high reliability.
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Fig. 13. Exposure model for Santiago de Chile. The rows show the spatial distribution of the five predicted vulnerability-related building characteristics: building 
height, LLRS material type, SBST, roof shape, and block position. Left column: data points aggregated at the comuna level; center and right columns (zoom boxes 
A and B, respectively): aggregation at the building object level.
Considering the data scenarios—SLI available and SLI missing—the 
experimental evaluations for classifying the five addressed target vari-
ables (height, LLRS material, SBST, roof shape, and block position) demon-
strated positive synergies across all input modality combinations, re-
sulting in significant accuracy gains. Accordingly, under both scenarios, 
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the fusion of all considered modalities yields the highest accuracies. The 
results demonstrate that TMA fusion of modalities consistently outper-
forms the considered benchmarks, including feature concatenation and 
decision-level fusion. The highest estimated generalization accuracies 
are achieved for data points with SLI coverage, with cross-task mean 
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values reaching up to 𝑂𝐴 = 88.91% and 𝜅 = 85.19%. For datapoints 
with missing SLI cross-task mean accuracy values of up to 𝑂𝐴 = 80.98% 
and 𝜅 = 74.96% were achieved.

In both data scenarios, the integration of SLI-based information 
proves particularly valuable for achieving accurate and thematically 
differentiated structural characterization of buildings—either through 
its direct use in the former case or via SLI spatial context encoding in 
the latter. This underscores the pivotal importance of the rich semantics 
in SLI for extracting structural characteristics of exposed buildings rel-
evant to vulnerability assessment, leveraging the geo-image modalities 
examined in this study.

The findings of this research highlight that integrating ground-
based SLI and top-view remote sensing data with tailored DL models 
is a promising approach for automating the generation of area-wide 
exposure models with high spatial and thematic resolution—an es-
sential requirement for effective disaster mitigation and management, 
particularly when considering vulnerability and risk across multiple 
natural hazards.

CRediT authorship contribution statement

Patrick Aravena Pelizari: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Software, Validation, Visu-
alization, Writing – original draft, Writing – review & editing. Chris-
tian Geiß: Conceptualization, Investigation, Supervision, Validation, 
Writing – review & editing. Hannes Taubenböck: Conceptualization, 
Resources, Supervision, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This study has been conducted as part of the project RIESGOS 2.0 
(03G0905A), funded by the German Federal Ministry of Education and 
Research (BMBF). We thank Dorothee Stiller for providing the building 
object and nDSM data.

References

Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L., 
Weaver, J., 2010. Google street view: Capturing the world at street level. Computer 
43 (6), 32–38. http://dx.doi.org/10.1109/mc.2010.170.

Aravena Pelizari, P., Geiß, C., Aguirre, P., Santa María, H., Merino Peña, Y., Tauben-
böck, H., 2021. Automated building characterization for seismic risk assessment 
using street-level imagery and deep learning. ISPRS J. Photogramm. Remote Sens. 
180, 370–386. http://dx.doi.org/10.1016/j.isprsjprs.2021.07.004.

Aravena Pelizari, P., Geiß, C., Groth, S., Taubenböck, H., 2023. Deep multitask 
learning with label interdependency distillation for multicriteria street-level image 
classification. ISPRS J. Photogramm. Remote Sens. 204, 275–290. http://dx.doi.
org/10.1016/j.isprsjprs.2023.09.001.

Aravena Pelizari, P., Spröhnle, K., Geiß, C., Schoepfer, E., Plank, S., Taubenböck, H., 
2018. Multi-sensor feature fusion for very high spatial resolution built-up area 
extraction in temporary settlements. Remote Sens. Environ. 209, 793–807. http:
//dx.doi.org/10.1016/j.rse.2018.02.025.

Ba, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. http://dx.doi.org/10.
48550/arXiv.1607.06450.

Baltrusaitis, T., Ahuja, C., Morency, L.-P., 2019. Multimodal machine learning: A 
survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41 (2), 423–443. 
http://dx.doi.org/10.1109/tpami.2018.2798607.

Biljecki, F., Ito, K., 2021. Street view imagery in urban analytics and GIS: A review. 
Landsc. Urban Plan. 215, 104217. http://dx.doi.org/10.1016/j.landurbplan.2021.
104217.

Calvi, G., Pinho, R., Magenes, G., Bommer, J., Restrepo-Vélez, L., Crowley, H., 2006. 
Development of seismic vulnerability assessment methodologies over the past 30 
years. ISET J. Earthq. Technol. 43 (3), 75–104.
373 
Chen, B., Feng, Q., Niu, B., Yan, F., Gao, B., Yang, J., Gong, J., Liu, J., 2022. Multi-
modal fusion of satellite and street-view images for urban village classification 
based on a dual-branch deep neural network. Int. J. Appl. Earth Obs. Geoinf. 109 
(102794), http://dx.doi.org/10.1016/j.jag.2022.102794.

Chen, S., Shi, Y., Xiong, Z., Zhu, X.X., 2023. HTC-DC Net: Monocular height estimation 
from single remote sensing images. IEEE Trans. Geosci. Remote Sens. 61, 1–18. 
http://dx.doi.org/10.1109/tgrs.2023.3321255.

Cheng, G., Xie, X., Han, J., Guo, L., Xia, G.-S., 2020. Remote sensing image scene 
classification meets deep learning: Challenges, methods, benchmarks, and oppor-
tunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 13, 3735–3756. http:
//dx.doi.org/10.1109/JSTARS.2020.3005403.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 
20 (1), 37–46. http://dx.doi.org/10.1177/001316446002000104.

Dabbeek, J., Silva, V., 2019. Modeling the residential building stock in the middle east 
for multi-hazard risk assessment. Nat. Hazards 100 (2), 781–810. http://dx.doi.org/
10.1007/s11069-019-03842-7.

d’Angelo, P., Reinartz, P., 2011. Semiglobal matching results on the ISPRS stereo 
matching benchmark. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. 
Sci. XXXVIII-4/W19, 79–84. http://dx.doi.org/10.5194/isprsarchives-XXXVIII-4-
W19-79-2011.

Dimitrovski, I., Kitanovski, I., Kocev, D., Simidjievski, N., 2023. Current trends in 
deep learning for earth observation: An open-source benchmark arena for image 
classification. ISPRS J. Photogramm. Remote Sens. 197, 18–35. http://dx.doi.org/
10.1016/j.isprsjprs.2023.01.014.

Dodman, D., Hayward, B., Pelling, M., Castan Broto, V., Chow, W., Chu, E., Dawson, R., 
Khirfan, L., McPhearson, T., Prakash, A., Zheng, Y., Ziervogel, G., 2022. Cities, 
settlements and key infrastructure. In: Pörtner, H.-O., Roberts, D., Tignor, M., 
Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., 
Möller, V., Okem, A., Rama, B. (Eds.), Climate Change 2022: Impacts, Adaptation 
and Vulnerability. Cambridge University Press, Cambridge, UK and New York,NY, 
USA, pp. 907–1040. http://dx.doi.org/10.1017/9781009325844.008.

Douglas, J., 2007. Physical vulnerability modelling in natural hazard risk assessment. 
Nat. Hazards Earth Syst. Sci. 7 (2), 283–288. http://dx.doi.org/10.5194/nhess-7-
283-2007.

Esquivel-Salas, L.C., Schmidt-Díaz, V., Pittore, M., Hidalgo-Leiva, D., Haas, M., Moya-
Fernández, A., 2022. Remote structural characterization of thousands of buildings 
from San Jose, Costa Rica. Front. Built Environ. 8, 947329. http://dx.doi.org/10.
3389/fbuil.2022.947329.

Geiß, C., Aravena Pelizari, P., Marconcini, M., Sengara, W., Edwards, M., Lakes, T., 
Taubenböck, H., 2015. Estimation of seismic building structural types using multi-
sensor remote sensing and machine learning techniques. ISPRS J. Photogramm. 
Remote Sens. 104, 175–188. http://dx.doi.org/10.1016/j.isprsjprs.2014.07.016.

Geiß, C., Priesmeier, P., Aravena Pelizari, P., Soto Calderon, A.R., Schoepfer, E., 
Riedlinger, T., Villar Vega, M., Santa María, H., Gómez Zapata, J.C., Pittore, M., 
So, E., Fekete, A., Taubenböck, H., 2023. Benefits of global earth observation 
missions for disaggregation of exposure data and earthquake loss modeling: 
evidence from Santiago de Chile. Nat. Hazards 119 (2), 779–804. http://dx.doi.
org/10.1007/s11069-022-05672-6.

Geiß, C., Taubenböck, H., 2013. Remote sensing contributing to assess earthquake 
risk: from a literature review towards a roadmap. Nat. Hazards 68 (1), 7–48. 
http://dx.doi.org/10.1007/s11069-012-0322-2.

Geiß, C., Thoma, M., Pittore, M., Wieland, M., Dech, S., Taubenböck, H., 2017. Mul-
titask active learning for characterization of built environments with multisensor 
earth observation data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 10 (12), 
5583–5597. http://dx.doi.org/10.1109/jstars.2017.2748339.

Gill, J.C., Malamud, B.D., 2014. Reviewing and visualizing the interactions of natural 
hazards. Rev. Geophys. 52 (4), 680–722. http://dx.doi.org/10.1002/2013rg000445.

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward 
neural networks. In: Proceedings of the Thirteenth International Conference on 
Artificial Intelligence and Statistics. In: Proceedings of Machine Learning Research, 
vol .9, PMLR, pp. 249–256.

Gomez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G., 2015. Multimodal classification 
of remote sensing images: A review and future directions. Proc. IEEE 103 (9), 
1560–1584. http://dx.doi.org/10.1109/jproc.2015.2449668.

Gómez Zapata, J.C., Brinckmann, N., Harig, S., Zafrir, R., Pittore, M., Cotton, F., 
Babeyko, A., 2021. Variable-resolution building exposure modelling for earthquake 
and tsunami scenario-based risk assessment: an application case in Lima, Peru. Nat. 
Hazards Earth Syst. Sci. 21 (11), 3599–3628. http://dx.doi.org/10.5194/nhess-21-
3599-2021.

Gonzalez, D., Rueda-Plata, D., Acevedo, A.B., Duque, J.C., Ramos-Pollán, R., Betan-
court, A., García, S., 2020. Automatic detection of building typology using deep 
learning methods on street level images. Build. Environ. 177, 106805. http://dx.
doi.org/10.1016/j.buildenv.2020.106805.

He, K., Gkioxari, G., Dollar, P., Girshick, R., 2017. Mask R-CNN. In: 2017 IEEE 
International Conference on Computer Vision. ICCV, IEEE, http://dx.doi.org/10.
1109/iccv.2017.322.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing 
human-level performance on ImageNet classification. In: 2015 IEEE International 
Conference on Computer Vision. ICCV, pp. 1026–1034. http://dx.doi.org/10.1109/
ICCV.2015.123.

http://dx.doi.org/10.1109/mc.2010.170
http://dx.doi.org/10.1016/j.isprsjprs.2021.07.004
http://dx.doi.org/10.1016/j.isprsjprs.2023.09.001
http://dx.doi.org/10.1016/j.isprsjprs.2023.09.001
http://dx.doi.org/10.1016/j.isprsjprs.2023.09.001
http://dx.doi.org/10.1016/j.rse.2018.02.025
http://dx.doi.org/10.1016/j.rse.2018.02.025
http://dx.doi.org/10.1016/j.rse.2018.02.025
http://dx.doi.org/10.48550/arXiv.1607.06450
http://dx.doi.org/10.48550/arXiv.1607.06450
http://dx.doi.org/10.48550/arXiv.1607.06450
http://dx.doi.org/10.1109/tpami.2018.2798607
http://dx.doi.org/10.1016/j.landurbplan.2021.104217
http://dx.doi.org/10.1016/j.landurbplan.2021.104217
http://dx.doi.org/10.1016/j.landurbplan.2021.104217
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb8
http://dx.doi.org/10.1016/j.jag.2022.102794
http://dx.doi.org/10.1109/tgrs.2023.3321255
http://dx.doi.org/10.1109/JSTARS.2020.3005403
http://dx.doi.org/10.1109/JSTARS.2020.3005403
http://dx.doi.org/10.1109/JSTARS.2020.3005403
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1007/s11069-019-03842-7
http://dx.doi.org/10.1007/s11069-019-03842-7
http://dx.doi.org/10.1007/s11069-019-03842-7
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-4-W19-79-2011
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-4-W19-79-2011
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-4-W19-79-2011
http://dx.doi.org/10.1016/j.isprsjprs.2023.01.014
http://dx.doi.org/10.1016/j.isprsjprs.2023.01.014
http://dx.doi.org/10.1016/j.isprsjprs.2023.01.014
http://dx.doi.org/10.1017/9781009325844.008
http://dx.doi.org/10.5194/nhess-7-283-2007
http://dx.doi.org/10.5194/nhess-7-283-2007
http://dx.doi.org/10.5194/nhess-7-283-2007
http://dx.doi.org/10.3389/fbuil.2022.947329
http://dx.doi.org/10.3389/fbuil.2022.947329
http://dx.doi.org/10.3389/fbuil.2022.947329
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.016
http://dx.doi.org/10.1007/s11069-022-05672-6
http://dx.doi.org/10.1007/s11069-022-05672-6
http://dx.doi.org/10.1007/s11069-022-05672-6
http://dx.doi.org/10.1007/s11069-012-0322-2
http://dx.doi.org/10.1109/jstars.2017.2748339
http://dx.doi.org/10.1002/2013rg000445
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb24
http://dx.doi.org/10.1109/jproc.2015.2449668
http://dx.doi.org/10.5194/nhess-21-3599-2021
http://dx.doi.org/10.5194/nhess-21-3599-2021
http://dx.doi.org/10.5194/nhess-21-3599-2021
http://dx.doi.org/10.1016/j.buildenv.2020.106805
http://dx.doi.org/10.1016/j.buildenv.2020.106805
http://dx.doi.org/10.1016/j.buildenv.2020.106805
http://dx.doi.org/10.1109/iccv.2017.322
http://dx.doi.org/10.1109/iccv.2017.322
http://dx.doi.org/10.1109/iccv.2017.322
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123


P. Aravena Pelizari et al. ISPRS Journal of Photogrammetry and Remote Sensing 231 (2026) 357–375 
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. 
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 
770–778. http://dx.doi.org/10.1109/CVPR.2016.90.

Herold, M., Liu, X., Clarke, K.C., 2003. Spatial metrics and image texture for mapping 
urban land use. Photogramm. Eng. Remote. Sens. 69 (9), 991–1001. http://dx.doi.
org/10.14358/pers.69.9.991.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 
1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Hoffmann, E.J., Abdulahhad, K., Zhu, X.X., 2023. Using social media images for 
building function classification. Cities 133, 104107. http://dx.doi.org/10.1016/j.
cities.2022.104107.

Hoffmann, E.J., Wang, Y., Werner, M., Kang, J., Zhu, X.X., 2019. Model fusion for 
building type classification from aerial and street view images. Remote. Sens. 11 
(11), 1259. http://dx.doi.org/10.3390/rs11111259.

Hong, D., Gao, L., Yokoya, N., Yao, J., Chanussot, J., Du, Q., Zhang, B., 2021. More 
diverse means better: Multimodal deep learning meets remote-sensing imagery 
classification. IEEE Trans. Geosci. Remote Sens. 59 (5), 4340–4354. http://dx.doi.
org/10.1109/tgrs.2020.3016820.

Hosseinpour, H., Samadzadegan, F., Javan, F.D., 2022. CMGFNet: A deep cross-modal 
gated fusion network for building extraction from very high-resolution remote 
sensing images. ISPRS J. Photogramm. Remote Sens. 184, 96–115. http://dx.doi.
org/10.1016/j.isprsjprs.2021.12.007.

Hou, Y., Quintana, M., Khomiakov, M., Yap, W., Ouyang, J., Ito, K., Wang, Z., Zhao, T., 
Biljecki, F., 2024. Global streetscapes — A comprehensive dataset of 10 million 
street-level images across 688 cities for urban science and analytics. ISPRS J. 
Photogramm. Remote Sens. 215, 216–238. http://dx.doi.org/10.1016/j.isprsjprs.
2024.06.023.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. http:
//dx.doi.org/10.1109/CVPR.2018.00745.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected 
convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern 
Recognition. CVPR, pp. 2261–2269. http://dx.doi.org/10.1109/CVPR.2017.243.

Huang, B., Zhao, B., Song, Y., 2018. Urban land-use mapping using a deep convolutional 
neural network with high spatial resolution multispectral remote sensing imagery. 
Remote Sens. Environ. 214, 73–86. http://dx.doi.org/10.1016/j.rse.2018.04.050.

Ibrahim, M.R., Haworth, J., Cheng, T., 2020. Understanding cities with machine 
eyes: A review of deep computer vision in urban analytics. Cities 96, 102481. 
http://dx.doi.org/10.1016/j.cities.2019.102481.

IDE, 2015. Fotografía Aérea Del Gran Santiago Año 2014. Infraestructura de 
Datos Geoespaciales, Chile, Online: https://www.ide.cl/descargas/capas/economia/
Fotografia-aerea-Gran-Santiago.rar (Zugriff am 12.04.2021).

Kang, J., Körner, M., Wang, Y., Taubenböck, H., Zhu, X.X., 2018. Building instance 
classification using street view images. ISPRS J. Photogramm. Remote Sens. 145, 
44–59. http://dx.doi.org/10.1016/j.isprsjprs.2018.02.006.

Kieu, N., Nguyen, K., Nazib, A., Fernando, T., Fookes, C., Sridharan, S., 2024. 
Multimodal colearning meets remote sensing: Taxonomy, state of the art, and 
future works. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 17, 7386–7409. 
http://dx.doi.org/10.1109/jstars.2024.3378348.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. http://dx.doi.
org/10.48550/ARXIV.1412.6980, arXiv:1412.6980.

Kraff, N.J., Wurm, M., Taubenböck, H., 2020. Uncertainties of human perception in 
visual image interpretation in complex urban environments. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote. Sens. 13, 4229–4241. http://dx.doi.org/10.1109/jstars.2020.
3011543.

Lee, T., Kashyap, R., Chu, C., 1994. Building skeleton models via 3-D medial surface 
axis thinning algorithms. CVGIP, Graph. Models Image Process. 56 (6), 462–478. 
http://dx.doi.org/10.1006/cgip.1994.1042.

Lefevre, S., Tuia, D., Wegner, J.D., Produit, T., Nassar, A.S., 2017. Toward seamless 
multiview scene analysis from satellite to street level. Proc. IEEE 105 (10), 
1884–1899. http://dx.doi.org/10.1109/jproc.2017.2684300.

Li, Z., Chen, B., Wu, S., Su, M., Chen, J.M., Xu, B., 2024b. Deep learning for urban land 
use category classification: A review and experimental assessment. Remote Sens. 
Environ. 311, 114290. http://dx.doi.org/10.1016/j.rse.2024.114290.

Li, J., Hong, D., Gao, L., Yao, J., Zheng, K., Zhang, B., Chanussot, J., 2022. Deep 
learning in multimodal remote sensing data fusion: A comprehensive review. Int. 
J. Appl. Earth Obs. Geoinf. 112, 102926. http://dx.doi.org/10.1016/j.jag.2022.
102926.

Li, Q., Mou, L., Sun, Y., Hua, Y., Shi, Y., Zhu, X.X., 2024a. A review of building 
extraction from remote sensing imagery: Geometrical structures and semantic 
attributes. IEEE Trans. Geosci. Remote Sens. 62, 1–15. http://dx.doi.org/10.1109/
tgrs.2024.3369723.

Liuzzi, M., Aravena Pelizari, P., Geiß, C., Masi, A., Tramutoli, V., Taubenböck, H., 
2019. A transferable remote sensing approach to classify building structural types 
for seismic risk analyses: the case of Val d’Agri area (Italy). Bull. Earthq. Eng. 17 
(9), 4825–4853. http://dx.doi.org/10.1007/s10518-019-00648-7.

Machado, G., Ferreira, E., Nogueira, K., Oliveira, H., Brito, M., Gama, P.H.T., San-
tos, J.A.d., 2021. Airound and CV-BrCT: Novel multiview datasets for scene 
classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14, 488–503. 
http://dx.doi.org/10.1109/jstars.2020.3033424.
374 
Machado, G., Pereira, M.B., Nogueira, K., Santos, J.A.D., 2023. Facing the void: 
Overcoming missing data in multi-view imagery. IEEE Access 11, 12547–12554. 
http://dx.doi.org/10.1109/access.2022.3231617.

Martins, V.S., Kaleita, A.L., Gelder, B.K., da Silveira, H.L., Abe, C.A., 2020. Exploring 
multiscale object-based convolutional neural network (multi-OCNN) for remote 
sensing image classification at high spatial resolution. ISPRS J. Photogramm. 
Remote Sens. 168, 56–73. http://dx.doi.org/10.1016/j.isprsjprs.2020.08.004.

Mena, F., Arenas, D., Nuske, M., Dengel, A., 2024. Common practices and taxonomy 
in deep multiview fusion for remote sensing applications. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote. Sens. 17, 4797–4818. http://dx.doi.org/10.1109/jstars.2024.
3361556.

Meng, C., Song, Y., Ji, J., Jia, Z., Zhou, Z., Gao, P., Liu, S., 2021. Automatic 
classification of rural building characteristics using deep learning methods on 
oblique photography. Build. Simul. 15 (6), 1161–1174. http://dx.doi.org/10.1007/
s12273-021-0872-x.

Müller, K., Leppich, R., Geiß, C., Borst, V., Aravena Pelizari, P., Kounev, S., Tauben-
böck, H., 2023. Deep neural network regression for normalized digital surface 
model generation with sentinel-2 imagery. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote. Sens. 16, 8508–8519. http://dx.doi.org/10.1109/jstars.2023.3297710.

Mutreja, G., Bittner, K., 2023. Evaluating convnet and transformer based self-supervised 
algorithms for building roof form classification. Int. Arch. Photogramm. Remote. 
Sens. Spat. Inf. Sci. XLVIII-1/W2-2023, 315–321. http://dx.doi.org/10.5194/isprs-
archives-xlviii-1-w2-2023-315-2023.

Neupane, B., Horanont, T., Aryal, J., 2021. Deep learning-based semantic segmentation 
of urban features in satellite images: A review and meta-analysis. Remote. Sens. 
13 (4), http://dx.doi.org/10.3390/rs13040808, 808.

Ogawa, Y., Zhao, C., Oki, T., Chen, S., Sekimoto, Y., 2023. Deep learning approach 
for classifying the built year and structure of individual buildings by automatically 
linking street view images and GIS building data. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote. Sens. 16, 1740–1755. http://dx.doi.org/10.1109/jstars.2023.3237509.

Perko, R., Raggam, H., Gutjahr, K.H., Schardt, M., 2015. Advanced DTM generation 
from very high resolution satellite stereo images. ISPRS Ann. Photogramm. Remote. 
Sens. Spatial Inf. Sci. II-3/W4, 165–172. http://dx.doi.org/10.5194/isprsannals-ii-
3-w4-165-2015.

Pittore, M., Haas, M., Megalooikonomou, K.G., 2018. Risk-oriented, bottom-up modeling 
of building portfolios with faceted taxonomies. Front. Built Environ. 4, http://dx.
doi.org/10.3389/fbuil.2018.00041.

Pittore, M., Wieland, M., Fleming, K., 2017. Perspectives on global dynamic exposure 
modelling for geo-risk assessment. Nat. Hazards 86 (S1), 7–30. http://dx.doi.org/
10.1007/s11069-016-2437-3.

Qiao, Z., Yuan, X., 2021. Urban land-use analysis using proximate sensing imagery: 
a survey. Int. J. Geogr. Inf. Sci. 35 (11), 2129–2148. http://dx.doi.org/10.1080/
13658816.2021.1919682.

Ramachandram, D., Taylor, G.W., 2017. Deep multimodal learning: A survey on recent 
advances and trends. IEEE Signal Process. Mag. 34 (6), 96–108. http://dx.doi.org/
10.1109/msp.2017.2738401.

Rawat, W., Wang, Z., 2017. Deep convolutional neural networks for image classification: 
A comprehensive review. Neural Comput. 29 (9), 2352–2449. http://dx.doi.org/10.
1162/neco_a_00990.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., 
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet 
large scale visual recognition challenge. Int. J. Comput. Vis. 115 (3), 211–252. 
http://dx.doi.org/10.1007/s11263-015-0816-y.

Rußwurm, M., Körner, M., 2020. Self-attention for raw optical satellite time series 
classification. ISPRS J. Photogramm. Remote Sens. 169, 421–435. http://dx.doi.
org/10.1016/j.isprsjprs.2020.06.006.

Santa María, H., Hube, M.A., Rivera, F., Yepes-Estrada, C., Valcárcel, J.A., 2017. 
Development of national and local exposure models of residential structures in 
Chile. Nat. Hazards 86 (S1), 55–79. http://dx.doi.org/10.1007/s11069-016-2518-3.

Sarabandi, P., Kiremidjian, A., 2007. Development of Algorithms for Building Inventory 
Compilation Through Remote Sensing and Statistical Inferencing. Technical Report 
158, The John A. Blume Earthquake Engineering Center, Department of Civil and 
Environmental Engineering, Stanford University, Stanford, CA, USA.

Schmitt, M., Zhu, X.X., 2016. Data fusion and remote sensing: An ever-growing 
relationship. IEEE Geosci. Remote. Sens. Mag. 4 (4), 6–23. http://dx.doi.org/10.
1109/mgrs.2016.2561021.

Schuster, M., Paliwal, K., 1997. Bidirectional recurrent neural networks. IEEE Trans. 
Signal Process. 45 (11), 2673–2681. http://dx.doi.org/10.1109/78.650093.

Silva, V., Brzev, S., Scawthorn, C., Yepes, C., Dabbeek, J., Crowley, H., 2022. A building 
classification system for multi-hazard risk assessment. Int. J. Disaster Risk Sci. 13 
(2), 161–177. http://dx.doi.org/10.1007/s13753-022-00400-x.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. 
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. 
Res. 15 (56), 1929–1958, URL: http://jmlr.org/papers/v15/srivastava14a.html.

Srivastava, S., Vargas-Muñoz, J.E., Tuia, D., 2019. Understanding urban landuse from 
the above and ground perspectives: A deep learning, multimodal solution. Remote 
Sens. Environ. 228, 129–143. http://dx.doi.org/10.1016/j.rse.2019.04.014.

Stiller, D., Stark, T., Wurm, M., Dech, S., Taubenböck, H., 2019. Large-scale building 
extraction in very high-resolution aerial imagery using mask R-CNN. In: 2019 Joint 
Urban Remote Sensing Event. JURSE, pp. 1–4. http://dx.doi.org/10.1109/JURSE.
2019.8808977.

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.14358/pers.69.9.991
http://dx.doi.org/10.14358/pers.69.9.991
http://dx.doi.org/10.14358/pers.69.9.991
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.cities.2022.104107
http://dx.doi.org/10.1016/j.cities.2022.104107
http://dx.doi.org/10.1016/j.cities.2022.104107
http://dx.doi.org/10.3390/rs11111259
http://dx.doi.org/10.1109/tgrs.2020.3016820
http://dx.doi.org/10.1109/tgrs.2020.3016820
http://dx.doi.org/10.1109/tgrs.2020.3016820
http://dx.doi.org/10.1016/j.isprsjprs.2021.12.007
http://dx.doi.org/10.1016/j.isprsjprs.2021.12.007
http://dx.doi.org/10.1016/j.isprsjprs.2021.12.007
http://dx.doi.org/10.1016/j.isprsjprs.2024.06.023
http://dx.doi.org/10.1016/j.isprsjprs.2024.06.023
http://dx.doi.org/10.1016/j.isprsjprs.2024.06.023
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1016/j.rse.2018.04.050
http://dx.doi.org/10.1016/j.cities.2019.102481
https://www.ide.cl/descargas/capas/economia/Fotografia-aerea-Gran-Santiago.rar
https://www.ide.cl/descargas/capas/economia/Fotografia-aerea-Gran-Santiago.rar
https://www.ide.cl/descargas/capas/economia/Fotografia-aerea-Gran-Santiago.rar
http://dx.doi.org/10.1016/j.isprsjprs.2018.02.006
http://dx.doi.org/10.1109/jstars.2024.3378348
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/jstars.2020.3011543
http://dx.doi.org/10.1109/jstars.2020.3011543
http://dx.doi.org/10.1109/jstars.2020.3011543
http://dx.doi.org/10.1006/cgip.1994.1042
http://dx.doi.org/10.1109/jproc.2017.2684300
http://dx.doi.org/10.1016/j.rse.2024.114290
http://dx.doi.org/10.1016/j.jag.2022.102926
http://dx.doi.org/10.1016/j.jag.2022.102926
http://dx.doi.org/10.1016/j.jag.2022.102926
http://dx.doi.org/10.1109/tgrs.2024.3369723
http://dx.doi.org/10.1109/tgrs.2024.3369723
http://dx.doi.org/10.1109/tgrs.2024.3369723
http://dx.doi.org/10.1007/s10518-019-00648-7
http://dx.doi.org/10.1109/jstars.2020.3033424
http://dx.doi.org/10.1109/access.2022.3231617
http://dx.doi.org/10.1016/j.isprsjprs.2020.08.004
http://dx.doi.org/10.1109/jstars.2024.3361556
http://dx.doi.org/10.1109/jstars.2024.3361556
http://dx.doi.org/10.1109/jstars.2024.3361556
http://dx.doi.org/10.1007/s12273-021-0872-x
http://dx.doi.org/10.1007/s12273-021-0872-x
http://dx.doi.org/10.1007/s12273-021-0872-x
http://dx.doi.org/10.1109/jstars.2023.3297710
http://dx.doi.org/10.5194/isprs-archives-xlviii-1-w2-2023-315-2023
http://dx.doi.org/10.5194/isprs-archives-xlviii-1-w2-2023-315-2023
http://dx.doi.org/10.5194/isprs-archives-xlviii-1-w2-2023-315-2023
http://dx.doi.org/10.3390/rs13040808
http://dx.doi.org/10.1109/jstars.2023.3237509
http://dx.doi.org/10.5194/isprsannals-ii-3-w4-165-2015
http://dx.doi.org/10.5194/isprsannals-ii-3-w4-165-2015
http://dx.doi.org/10.5194/isprsannals-ii-3-w4-165-2015
http://dx.doi.org/10.3389/fbuil.2018.00041
http://dx.doi.org/10.3389/fbuil.2018.00041
http://dx.doi.org/10.3389/fbuil.2018.00041
http://dx.doi.org/10.1007/s11069-016-2437-3
http://dx.doi.org/10.1007/s11069-016-2437-3
http://dx.doi.org/10.1007/s11069-016-2437-3
http://dx.doi.org/10.1080/13658816.2021.1919682
http://dx.doi.org/10.1080/13658816.2021.1919682
http://dx.doi.org/10.1080/13658816.2021.1919682
http://dx.doi.org/10.1109/msp.2017.2738401
http://dx.doi.org/10.1109/msp.2017.2738401
http://dx.doi.org/10.1109/msp.2017.2738401
http://dx.doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.006
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.006
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.006
http://dx.doi.org/10.1007/s11069-016-2518-3
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb71
http://dx.doi.org/10.1109/mgrs.2016.2561021
http://dx.doi.org/10.1109/mgrs.2016.2561021
http://dx.doi.org/10.1109/mgrs.2016.2561021
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1007/s13753-022-00400-x
http://jmlr.org/papers/v15/srivastava14a.html
http://dx.doi.org/10.1016/j.rse.2019.04.014
http://dx.doi.org/10.1109/JURSE.2019.8808977
http://dx.doi.org/10.1109/JURSE.2019.8808977
http://dx.doi.org/10.1109/JURSE.2019.8808977


P. Aravena Pelizari et al. ISPRS Journal of Photogrammetry and Remote Sensing 231 (2026) 357–375 
Stiller, D., Wurm, M., Stark, T., D’Angelo, P., Stebner, K., Dech, S., Taubenböck, H., 
2021. Spatial parameters for transportation: A multi-modal approach for modelling 
the urban spatial structure using deep learning and remote sensing. J. Transp. Land 
Use 14 (1), http://dx.doi.org/10.5198/jtlu.2021.1855.

Sun, M., Zhang, F., Duarte, F., Ratti, C., 2022. Understanding architecture age and style 
through deep learning. Cities 128, 103787. http://dx.doi.org/10.1016/j.cities.2022.
103787.

Tan, M., Le, Q., 2021. EfficientNetV2: Smaller models and faster training. In: Proceed-
ings of the 38th International Conference on Machine Learning. In: Proceedings of 
Machine Learning Research, vol. 139, PMLR, pp. 10096–10106.

Taubenböck, H., Mast, J., Geiß, C., Wurm, M., Esch, T., Seto, K., 2024. Global 
differences in urbanization dynamics from 1985 to 2015 and outlook considering 
IPCC climate scenarios. Cities 151, 105117. http://dx.doi.org/10.1016/j.cities.2024.
105117.

Taubenböck, H., Roth, A., Dech, S., Mehl, H., Münich, J., Stempniewski, L., Zschau, J., 
2009. Assessing building vulnerability using synergistically remote sensing and civil 
engineering. In: Kreck, A., Rumor, M., Zlatanova, S., Fendel, E. (Eds.), Urban and 
Regional Data Management. Taylor & Francis Group, pp. 287–300.

Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. 
Econ. Geogr. 46, 234. http://dx.doi.org/10.2307/143141.

UNDRR, 2022. Global Assessment Report on Disaster RiskReduction 2022. Our World 
at Risk: Transforming Governance for a Resilient Future. United Nations Office for 
Disaster Risk Reduction, Geneva.

UNISDR, 2015. Sendai Framework for Disaster Risk Reduction 2015–2030. United 
Nations International Strategy for Disaster Reduction, Geneva.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., 
Kaiser, L., Polosukhin, I., 2017. Attention is all you need. In: Guyon, I., 
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. 
(Eds.), Advances in Neural Information Processing Systems. Vol. 30, Curran 
Associates, Inc., URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wang, J., Zheng, Y., Wang, M., Shen, Q., Huang, J., 2021. Object-scale adaptive 
convolutional neural networks for high-spatial resolution remote sensing image 
classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14, 283–299. 
http://dx.doi.org/10.1109/jstars.2020.3041859.

Wieland, M., Pittore, M., Parolai, S., Zschau, J., Moldobekov, B., Begaliev, U., 2012. 
Estimating building inventory for rapid seismic vulnerability assessment: Towards 
an integrated approach based on multi-source imaging. Soil Dyn. Earthq. Eng. 36, 
70–83. http://dx.doi.org/10.1016/j.soildyn.2012.01.003.
375 
Wyss, M., Rosset, P., 2013. Mapping seismic risk: the current crisis. Nat. Hazards 68 
(1), 49–52. http://dx.doi.org/10.1007/s11069-012-0256-8.

Xie, Y., Tian, J., Zhu, X.X., 2023. A co-learning method to utilize optical images and 
photogrammetric point clouds for building extraction. Int. J. Appl. Earth Obs. 
Geoinf. 116, 103165. http://dx.doi.org/10.1016/j.jag.2022.103165.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., 
Wang, L., Liu, T.-Y., 2020. On layer normalization in the transformer architecture. 
In: Proceedings of the 37th International Conference on Machine Learning. Vol. 
108.

Yu, Q., Wang, C., McKenna, F., Yu, S.X., Taciroglu, E., Cetiner, B., Law, K.H., 2020. 
Rapid visual screening of soft-story buildings from street view images using deep 
learning classification. Earthq. Eng. Eng. Vib. 19 (4), 827–838. http://dx.doi.org/
10.1007/s11803-020-0598-2.

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., Atkinson, P.M., 2018. An 
object-based convolutional neural network (OCNN) for urban land use classification. 
Remote Sens. Environ. 216, 57–70. http://dx.doi.org/10.1016/j.rse.2018.06.034.

Zhang, L., Wang, G., Sun, W., 2023. Automatic identification of building structure 
types using unmanned aerial vehicle oblique images and deep learning considering 
facade prior knowledge. Int. J. Digit. Earth 16 (1), 3348–3367. http://dx.doi.org/
10.1080/17538947.2023.2247390.

Zhang, F., Wu, L., Zhu, D., Liu, Y., 2019. Social sensing from street-level imagery: A case 
study in learning spatio-temporal urban mobility patterns. ISPRS J. Photogramm. 
Remote Sens. 153, 48–58. http://dx.doi.org/10.1016/j.isprsjprs.2019.04.017.

Zhao, M., Meng, Q., Wang, L., Zhang, L., Hu, X., Shi, W., 2024. Towards robust 
classification of multi-view remote sensing images with partial data availability. 
Remote Sens. Environ. 306, 114112. http://dx.doi.org/10.1016/j.rse.2024.114112.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A., 2018. Places: A 10 million 
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40 
(6), 1452–1464. http://dx.doi.org/10.1109/tpami.2017.2723009.

Zhou, Y., Tan, Y., Wen, Q., Wang, W., Li, L., Li, Z., 2023. Deep multimodal fusion model 
for building structural type recognition using multisource remote sensing images 
and building-related knowledge. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 
16, 9646–9660. http://dx.doi.org/10.1109/jstars.2023.3323484.

Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F., 2017. 
Deep learning in remote sensing: A comprehensive review and list of resources. 
IEEE Geosci. Remote. Sens. Mag. 5 (4), 8–36. http://dx.doi.org/10.1109/mgrs.2017.
2762307.

http://dx.doi.org/10.5198/jtlu.2021.1855
http://dx.doi.org/10.1016/j.cities.2022.103787
http://dx.doi.org/10.1016/j.cities.2022.103787
http://dx.doi.org/10.1016/j.cities.2022.103787
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb80
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb80
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb80
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb80
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb80
http://dx.doi.org/10.1016/j.cities.2024.105117
http://dx.doi.org/10.1016/j.cities.2024.105117
http://dx.doi.org/10.1016/j.cities.2024.105117
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb82
http://dx.doi.org/10.2307/143141
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb84
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb84
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb84
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb84
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb84
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb85
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb85
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb85
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1109/jstars.2020.3041859
http://dx.doi.org/10.1016/j.soildyn.2012.01.003
http://dx.doi.org/10.1007/s11069-012-0256-8
http://dx.doi.org/10.1016/j.jag.2022.103165
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://refhub.elsevier.com/S0924-2716(25)00424-1/sb91
http://dx.doi.org/10.1007/s11803-020-0598-2
http://dx.doi.org/10.1007/s11803-020-0598-2
http://dx.doi.org/10.1007/s11803-020-0598-2
http://dx.doi.org/10.1016/j.rse.2018.06.034
http://dx.doi.org/10.1080/17538947.2023.2247390
http://dx.doi.org/10.1080/17538947.2023.2247390
http://dx.doi.org/10.1080/17538947.2023.2247390
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.017
http://dx.doi.org/10.1016/j.rse.2024.114112
http://dx.doi.org/10.1109/tpami.2017.2723009
http://dx.doi.org/10.1109/jstars.2023.3323484
http://dx.doi.org/10.1109/mgrs.2017.2762307
http://dx.doi.org/10.1109/mgrs.2017.2762307
http://dx.doi.org/10.1109/mgrs.2017.2762307

	Bottom-up building exposure modeling with multimodal earth vision
	Introduction
	Multimodal geospatial imagery and deep learning
	Related works
	Conceptualization and contributions

	Materials and methods
	Data
	Street-level imagery
	VHR optical remote sensing data
	Normalized digital surface model
	Building object instances

	Spatial data integration
	Deep multimodal multitask learning
	Image data encoders
	Task-wise modality attention fusion
	SLI spatial context encoding
	Optimization


	Experimental setup
	Data: target variables, balancing, partitioning and quantities
	Target variables
	Balancing and partitioning
	Quantities

	Experiments and validation
	Model parametrization and training

	Results and discussion
	Performance: impact of input modalities and fusion strategy
	Insights on modeling spatio-contextual dependencies
	Interactions between input modalities and class-wise accuracies
	The exposure model

	Summary and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


