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ABSTRACT

Turbomachinery aerodynamic optimizations are predomi-
nantly carried out using RANS-based CFD. The approach has
reached a high level of maturity over the past years through ex-
tensive practical experience. With the ever-increasing demands
on designs, the demands on simulation accuracy are also increas-
ing, and efforts are being made to incorporate scale-resolved
simulations (SRS) into the design process of turbomachinery. Al-
though SRS still remain too costly for primary use in industrial
optimization, ongoing advancements favor its gradual integra-
tion. This is supported by design trends such as smaller core
engines, resulting in locally reduced Reynolds numbers. Poten-
tial boundary layer separation and a high level of unsteadiness
in these low Reynolds number flows amplify the uncertainties of
RANS. At the same time the computational requirements of SRS
are drastically reduced due to the reduced bandwidth of turbu-
lent scales. To assess the potential of utilizing SRS in optimiza-
tion frameworks, RANS-optimized airfoils are re-evaluated with
Large-Eddy Simulations (LES) based on a high-order Discontin-
uous Galerkin solver. First, a RANS optimization is performed
for a low Reynolds number airfoil with the aim of reducing the
loss at the design point and increasing the operating range, while
adhering to a constraint of nearly axial outflow angle. A subset of
Pareto-front geometries is then re-simulated using LES to assess
the impact of the chosen CFD methodology on the optimization
result. Detailed flow analyses give insights on the deficiencies of
RANS. The results demonstrate how optimizations can be driven
into a suboptimal direction when relying solely on RANS, un-
derscoring the necessity of incorporating SRS into the process
and providing initial insights into how this can be done. It is
demonstrated how data obtained from only a few SRS can be
fed back into the optimization process, leading to an improved
optimization outcome.
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NOMENCLATURE

Abbreviations
ADP aerodynamic design point
AVDR axial-velocity-density-ratio
CFD computational fluid dynamics
LE leading edge
LES large-eddy simulation
MP measurement plane
OP operating point
RANS Reynolds-averaged Navier-Stokes
SRS scale resolving simulations
STG synthetic turbulence generator
TE trailing edge

Roman letters
𝑐 chord
𝑐𝑓 skin friction coefficient
𝑑 distance to the wall
𝑝 static pressure
𝑝𝑡 stagnation (total) pressure
𝑡 pitch, thickness
𝑥, 𝑦, 𝑧 Cartesian coordinates
𝐿𝑇 turbulence length scale
Ma Mach number
Re Reynolds number
𝑇 static temperature
Tu Turbulence intensity
𝑉 volume

Greek letters
𝛼 flow angle, measured from x-axis in

counterclockwise direction at inlet and clockwise
direction at MP2

𝛽 metal angle, measured from chord
𝑑𝛽 wedge angle on suction side
𝛾 stagger angle, measured from x-axis
𝜎 viscous stress tensor
𝜏 shear stress
Δ cell size
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Superscripts and subscripts
□ averaging in the homogeneous dimensions time and

spanwise direction˜︁□ Favre-averaged quantity (temporally)
⟨□⟩𝑎 area-weighted averaging := 1∫

𝑑𝑎

∫
□𝑑𝑎

{□}𝑎 mass flow-weighted averaging := 1∫
𝜌𝑢𝑑𝑎

∫
𝜌𝑢□𝑑𝑎

i,j,k Cartesian vector components
x,y,z Cartesian vector components
w value on the wall
rel relative values
1,2 values at MP1/MP2
in,out values at CFD inlet/outlet

1. INTRODUCTION
The aerodynamic design and optimization processes of tur-

bomachinery heavily rely on Reynolds-Averaged Navier-Stokes
(RANS) simulations. Design approaches based on RANS, em-
bedded in well-developed computational workflows, offer reliable
solutions for standard design conditions but face significant lim-
itations when applied to more complex, unsteady flow scenarios.
While RANS remains a key design tool, the inherent modelling
that accounts for turbulent effects is prone to inaccuracies and
uncertainties. Therefore RANS-CFD becomes increasingly in-
accurate in conditions that differ from steady flows. That is par-
ticularly the case for designs involving complex secondary flows
and flow separation near operating limits. These limitations un-
dermine the reliability of RANS-CFD as a general design tool,
resulting in large safety margins and limited design freedom, pre-
venting the exploration of radically new designs and sometimes
imposing the choice of sub-optimal operating conditions.

With increasing demands for ultra-efficient, low-emission
propulsion systems and components, such as unducted low-noise
fans and compact core engines, the industry faces new challenges
that exceed the capabilities of conventional RANS-based meth-
ods. Scale-Resolving Simulations (SRS), including Large Eddy
Simulation (LES), have the potential to provide better predic-
tions, offering significantly reduced modeling uncertainty and
enhanced accuracy, specifically when applied to design problems
where RANS methods struggle to produce accurate solutions.
The downside of SRS is the computational cost. SRS are often
100 to 1000 times more resource-intensive than RANS. Advance-
ments in high-order numerical methods, GPU-based computing,
and machine learning now offer pathways for integrating SRS into
industrial design processes. However, SRS still remains imprac-
tical as the main simulation tool of routine design optimizations.

Fig. 1 exemplarily shows the results of an optimization per-
formed with MISES [1, 2], an inviscid blade-to-blade solver
coupled to the integral boundary layer equations to account for
viscous effects, of the compressor airfoil used for the studies
in this paper. In addition, RANS re-simulations of the MISES
Pareto-front and a full RANS-based optimization are plotted. The
MISES Pareto-front evaluated with RANS shows that these ge-
ometries are performing much worse than the RANS-optimized
Pareto-front geometries. This highlights how optimization pro-
cedures based on lower-fidelity design tools will converge to sub-
optimal solutions, as the optimizer exploits any uncertainty of the

Reference.

RANS 
Pareto­Front

MISES 
Pareto­Front

RANS Re­simulation of 
MISES Pareto­Front

o
1
 [­] 

o
2
 [
­]

 

0.022 0.024 0.026 0.028 0.03 0.032

0.03

0.032

0.034

0.036

0.038

0.04

0.042

FIGURE 1: Example of a sub-optimal optimization result due to a
lower fidelity flow solver MISES compared to a higher fidelity RANS
solver. Plotted are data bases of a compressor airfoil optimization
with the aim of minimizing o1 and o2. Data base (•) and Pareto-front
(•) obtained using MISES as a flow solver, data base (•) and Pareto-
front (•) using a RANS flow solver, and re-simulation of MISES-
optimized Pareto-front using RANS (•).

underlying models. This problem has been shown with different
design tools on different levels of the aero engine design process
(e.g. [3, 4]). The fundamental difficulty arises when the high-
fidelity model is not a viable option for use in the optimization
process as the main evaluation tool due to its prohibitively high
cost, as is the case with SRS.

Therefore, if an accuracy of SRS is needed, it is of high
interest to include as much information gathered from few SRS
into standard RANS optimization procedures. A feasible and
robust methodology to combine SRS and RANS is yet to be found,
but especially the use of multi-fidelity surrogates, such as Co-
Kriging [5, 6] combining RANS and SRS appears to be attractive.
However, it would require a good correlation between the high-
and low-fidelity models to be effective. This is not guaranteed,
especially in regions of the design space where RANS models
deviate considerably from the SRS reference. Furthermore the
surrogates would have to deal with extremely sparse high-fidelity
(SRS) data. Another promising methodology in this context is the
use of LES-augmented RANS approaches, such as data-driven
turbulence modeling.

In this paper we examine the potential of SRS to support
RANS-based optimizations. This can be regarded as a first step
in developing an optimization methodology with the ultimate
aim of providing the accuracy of SRS in an optimization but at
the cost of only a limited number of SRS simulations. A low-
Reynolds-number compressor cascade is used as a test vehicle,
representative of current challenges in compressor designs deal-
ing with locally reduced Reynolds numbers and, hence, large
flow separations, and at the same time simple enough to test and
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TABLE 1: Cascade design parameters

Inflow Mach number Ma1 0.60
Inflow Reynolds number Re1 1.5 × 105

Inflow angle 𝛼1 43◦
Turbulence intensity Tu 0.5 %
Chord length 𝑐 70mm
Pitch to chord ratio 𝑏/𝑐 0.577
Height to chord ratio ℎ/𝑐 2.4
Stagger angle 𝛾 16.04◦
AVDR 1.03

validate different strategies. First, a RANS-only optimization is
performed to identify the Pareto-optimal members. A subset of
these are re-assessed using high-fidelity SRS. The differences to
the RANS results and the projected consequences for the opti-
mization outcome are discussed in detail.

Based on the observed differences between SRS and RANS,
the settings of the RANS optimization are adjusted in a second
optimization step to enhance the overall outcome. This manual
intervention is feasible due to the simplicity of the 2D geometry
but is unlikely to scale efficiently to industry-relevant 3D cases.
Nevertheless, this study serves as a demonstration of how high-
fidelity models can be leveraged to augment RANS within an
optimization framework and represents an initial step toward a
fully automated SRS-assisted optimization approach.

2. OPTIMIZATION SETUP
The reference geometry for the study is a compressor airfoil,

which has originally been developed as an outlet guide vane
of a low pressure turbine stage in a small turbofan engine [7,
8] and has then been further optimized for the application of
riblets [9]. An overview of the general design parameters is
given in Tab. 1. Extensive experiments were carried out on the
reference airfoil in the Transonic Cascade Wind Tunnel [10, 11]
at the DLR in Cologne, complemented by recently conducted
RANS and LES [12].

2.1 Optimizer
The optimization was carried out using DLR’s optimization

tool AutoOpti. AutoOpti is a multi-objective optimization frame-
work based on evolutionary algorithms supported by surrogate
models. It has been successfully applied in numerous studies
related to the design of compressors [3, 13–15].

The overall aim of the optimization is to reduce the airfoil
losses, especially at design point, while maintaining a certain
operating range and axial outflow conditions. Kriging surrogate
models are employed to accelerate the optimization convergence.

Parameterization The profile is parameterized using 21 en-
gineering design parameters using BladeGen [16] as illustrated
in Fig. 2. Additionally, the pitch 𝑡 is allowed to vary, which
amounts to a total of 22 free design variables. The admissible
ranges for pitch and the different angles are provided in Tab. 2.
The suction side of the airfoil is parameterized using a spline
with six control points (CP𝑖,𝑥 |CP𝑖,𝑦). The first and last points are
fixed, leaving four control points adjustable in two dimensions,
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FIGURE 2: Illustration of the profile parameterization. Parameters
refining the LE shape are not shown.

TABLE 2: Range of selected optimization parameters

Parameter min. reference max.
pitch 𝑡 [m] 0.028 0.040 0.053
stagger angle 𝛾 [◦] 14.0 16.0 19.0

LE angles 𝛽LE [◦] 22.0 31.7 36.0
𝑑𝛽LE [◦] 0.0 18.3 32.0

TE angles 𝛽TE [◦] -30.0 -26.0 -22.0
𝑑𝛽TE [◦] 0.0 3.2 10.0

LE radius 𝑟LE/𝑐 0.005 0.0076 0.01
TE radius 𝑟TE/𝑐 0.005 0.0077 0.015

yielding a total of eight free parameters. Similarly, a spline with
five control points is used for a thickness distribution indirectly
defining the pressure side. The middle three control points are
free to be shifted (D𝑖,𝑥 |D𝑖,𝑦), i.e. yielding six free parameters.
Additionally, two parameters are dedicated to shaping the lead-
ing edge, including the possibility of asymmetry between the
upper and lower surface.

Operating points Three operating points at Main = 0.6 and
Rein = 1.5 × 105 were simulated for each geometry. One at the
aerodynamic design point (ADP) OPADP and two at off-design
operating points differing from the ADP by a ±5◦ incidence,
which are termed OP+ and OP− hereafter. The off-design op-
erating points are used to judge the operating range in terms of
off-design losses and outflow angles. The difficulty arises from
the fact, that both the flow velocities and the thermodynamic
state at the inlet are prescribed, exceeding the number of allowed
inflow boundary conditions for a well-defined problem of a sub-
sonic flow. The solution to this problem in the RANS and LES is
described further below. Note, that in a previous study [12] the
simulations were set up to match the available experimental con-
ditions, in particular the back-pressure. Therefore the results of
the reference geometry, which have been taken from the previous
study [12], should be compared to the other results of this study
with caution.

Objectives Two objective functions were defined, aiming at
reducing the losses at design point and off-design:

𝑜1 := min(𝜔ADP)! (1)

𝑜2 := min
(︂𝜔OP− + 𝜔OP+

2

)︂
! (2)
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TABLE 3: Initial optimization constraints

Quantity min max.
𝛼2.ADP -0.2 1.4
𝛼2.OP+ -1.4 2.6
𝛼2.OP− -1.4 2.6
𝑡max 0.05 0.09
𝑐t,max 0.34 0.51
profile area 0.041 0.062
center of gravity x 0.37 0.56

where

𝜔 =

{︁
𝑝t,1

}︁
𝑦
−
{︁
𝑝t,2

}︁
𝑦{︁

𝑝t,1
}︁
𝑦
− ⟨𝑝1⟩𝑦

. (3)

By default the operation□was used. Results using an alternative
Favre-averaging ˜︁□ will also be shown for better comparability
with solutions obtained with the compressible RANS equations.
The averaging □ is redundant in RANS.

Constraints Geometric and aerodynamic constraints were ap-
plied (Tab. 3). To avoid local minima in the thickness distribu-
tion the spline parameters were constrained accordingly and the
geometries checked during the optimization. To enforce axial
outflow, 𝛼2 was constrained at all operating points, with relaxed
limits at the two off-design points.

2.2 Numerical Setup
The numerical flow simulations, i.e. RANS and LES, have

been performed with DLR’s solver for turbomachinery flows
TRACE.

2.2.1 RANS. The RANS simulations are performed using
a density-based Finite-Volume discretization on block-structured
meshes. A MUSCL scheme with Van-Albada 1 limiter in com-
bination with Roe’s approximate Riemann solver is used to dis-
cretize the convective fluxes and central derivatives are employed
for the viscous fluxes to obtain second-order accuracy in space.
In order to derive the steady state solutions, the five conserva-
tion equations are solved in a coupled manner using an implicit
dual time-stepping approach. The additional turbulence model
equations are solved implicitly in a conservative but segregated
manner [17]. In the present study, we employ Menter’s SST 𝑘-𝜔
model in the 2003 version [18] with stagnation point fix of Kato
and Launder [19]. The transition from laminar to turbulent flow
is modelled by the two-equation 𝛾-Re𝜃 model [20]. At the inflow
and outflow boundaries, two-dimensional non-reflecting bound-
ary conditions are used [21]. At all OPs a controller was used
to reach the target Main by adjusting the back-pressure. Periodic
boundary conditions are used in the pitchwise, and inviscid walls
in the spanwise direction. The effect of the AVDR is modelled
via a source term

𝑆 =
1
ℎ

𝜕ℎ

𝜕𝑥

(︂
[0, 𝑝, 0, 0, 0]𝑇 − 𝐹𝑥

adv

)︂
(4)

following Giles [22] and Bolinches et al. [23], where 𝑝 is the
static pressure, ℎ the height of the channel, 𝑥 the axial coordinate

RANS
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Tu, 𝐿𝑇

𝑝

FIGURE 3: RANS and LES domain and mesh in the x -y plane for
the reference geometry. For the LES, only the high-order grid cells
are shown and the solution nodes, i.e. 25 in each 2D element, are
omitted for better visibility.

and 𝐹𝑥
adv the advective flux vector in the axial direction. The

contraction of the channel height is modelled from the blade’s
leading edge towards the trailing edge and shaped with a sinu-
soidal distribution, i.e.

ℎ(𝑥) = ℎLE − ℎTE
2

[︃
cos

(︃
𝑥 − 𝑥LE
𝑥TE − 𝑥LE

𝜋

)︃
+ 1

]︃
+ ℎTE. (5)

The same mesh resolution has been used for all RANS sim-
ulations, created with the in-house meshing tool PyMesh using
an O-C-H topology [24]. The grid-converged mesh consists of
28 000 hexahedral elements. The domain and mesh are shown
in Fig. 3. Probes are used to extract the mean flow values at sev-
eral positions, i.e. MP1, MP2 or boundary layer cuts, ensuring
consistency with the LES.

2.2.2 LES. The LES simulations have been performed with
the high-order discontinuous Galerkin (DG) solver of TRACE,
which has been thoroughly validated on, and successfully ap-
plied to various turbomachinery-related configurations, cf. [25–
29]. The implicitly filtered Navier-Stokes equations are first
transformed into the reference system with a high-order poly-
nomial mapping, which ensures free-stream preservation. The
solution and fluxes are approximated via one-dimensional 4th-
order Legendre polynomials with Legendre-Gauss-Lobatto basis
nodes, which are extended to 3D in a tensor-product fashion.
The numerical integration is performed with Legendre-Gauss-
Lobatto quadrature, collocated with the solution approximation.
The viscous terms are discretized using the Bassi and Rebay 1
scheme [30]. Adjacent elements are coupled via Roe’s approxi-
mate Riemann solver for the advective part and central fluxes for
the viscous part. Stabilization for under-resolved turbulent flows
is achieved by using a split formulation of the discontinuous
Galerkin spectral element method (DGSEM) following Gassner
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FIGURE 4: Study outline. Colours correspond to those in Fig. 5.

et al. [31]. In this present study, Kennedy-Gruber’s kinetic-
energy preserving two-point fluxes are used [32]. The result-
ing discretization achieves a 5th-order accuracy on unstructured
hexahedral grids. The time-integration is performed by employ-
ing a strong-stability preserving third-order explicit Runge-Kutta
scheme of Shu and Osher [33].

Riemann and one-dimensional non-reflecting boundary con-
ditions are used at the inflow and outflow, respectively, cf. [21].
Inflow turbulence is generated synthetically at the inflow plane
by a synthetic turbulence generator (STG), originally proposed
by Shur et al. [34], and implemented and validated in [35, 36].
The STG is based on a superposition of Fourier modes with ran-
dom phases and direction vectors, which produce a modified von
Karman spectrum. The fluctuations of the STG are added onto
the boundary state derived from the boundary conditions and are
weakly imposed over the flux. Periodicity is enforced in the pitch-
and spanwise direction. Similar to RANS, the source term Eq. (4)
is used to model the effect of the AVDR on the mid-section. The
current non-reflecting in- and outflow boundary conditions, as
typically used in turbomachinery applications, require the total
pressure 𝑝𝑡 ,in, total temperature𝑇𝑡 ,in and flow angle 𝛼in at the inlet
and the static pressure at the outflow 𝑝out to be prescribed, hence
Main = 𝑓 (𝑝out). Since the application of a controller in this case
is non-trivial and will delay the statistical convergence of SRS, it
was decided to take the back-pressure from the fully converged
RANS solution, that resulted in Main = 0.6. The error made is
assessed by rerunning the cheaper RANS with a controller set to
reach the true Main as obtained in the LES (Fig. 4).

The unstructured high-order mesh has been created as a 2D
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FIGURE 5: Optimization data bases. RANS optimization (•); sec-
ond RANS optimization with adjusted constraints (•); all con-
straints met: filled circle (•); not all constraints met: circle (◦);
selected geometries of first optimization (•); selected geometry of
second optimization (•); LES re-calculation evaluated according to
Eq. (3) (■); LES using an alternative loss evaluation (□); RANS re-
simulation with LES inflow Mach number (•).

mesh with Gmsh [37], which was then uniformly extruded in
spanwise direction. In the 𝑥-𝑦 plane, the mesh consists of 10 616
quadrilaterals. Polynomials of degree 2 have been used to ap-
proximate the curved boundary and the 6 layers adjacent to the
wall. The 2D mesh is plotted in Fig. 3, showing the benefit of
unstructured meshes, being able to locally refine the mesh at rele-
vant locations, i.e. boundary layer and wake region. In spanwise
direction, the resolution is kept constant for different spanwise ex-
tents, which is 24 elements and, hence, 120 degrees of freedom
(DOF) per 0.1𝑐. The mesh resolution at the wall was confirmed
to satisfy the 𝑦+ requirements of wall-resolved LES [12].

Each simulation is started from an initial RANS solution,
which has been interpolated onto the fine high-order grid. The
LES run for 25𝑡𝑐 convective time units, which are defined by the
inflow velocity and the chord length as 𝑡𝑐 = 𝑐/| |𝑢1 | |. The line
plots have been created with the time-resolved data of volume and
boundary probes, which have been sampled with a frequency of
𝑓𝑠 = 106 Hz ≈ 500/𝑡𝑐. The initial transient was automatically de-
tected and removed by the marginal standard error rule (MSER),
cf. [38]. For entropy generation analysis, statistical moments of
the full 3D flow field have been used, which have been sampled
starting at 5𝑡𝑐 with the same frequency as probes.

3. OPTIMIZATION STUDY
In order to examine the potential of SRS to support a RANS-

based compressor airfoil optimization an optimization study is
conducted in this work to incorporate a very limited number of
SRS to support a compressor blade optimization based on RANS
as outlined in Fig. 4. First, an optimization purely based on
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FIGURE 6: Airfoil geometries of reference selected RANS-optimized and selected RANS-optimized with adjusted optimization settings.

RANS is performed, from which a selected number of geome-
tries is re-evaluated using LES, similar to the example given in
the introduction Fig. 1, but now on a higher fidelity level. The
findings are manually fed back to a second optimization based
on RANS, that provides a final geometry, which is re-evaluated
using LES to confirm the improvement with respect to the im-
posed constraints and objectives. The following paragraphs guide
through the single steps.

3.1 RANS Optimization
The database of a RANS optimization is shown in Fig. 5

in terms of the two objectives, defined in Eqs. (1) & (2). The
highlighted points represent the reference geometry, the Pareto-
front and a selection of five geometries along the Pareto-front,
which will be used to investigate trends along the Pareto-front in
the following. The numbering convention used for 1 to 5 is
to have increasing 𝑜1 and hence decreasing 𝑜2. Compared to the
reference geometry a significant loss reduction both at ADP and
off-design could be achieved.

3.2 Pareto-front Geometries
The optimized airfoils 1 , 3 and 5 along with the refer-

ence are shown in Fig. 6 ( 3∗ is explained in Sec. 3.4). A varying
trailing edge angle along the Pareto-front can be observed, affect-
ing also the rear part of the suction and pressure sides. Along the
Pareto front, certain parameters vary, while others have largely
converged to constant values (Fig. 7). The trailing edge angle
decreases, whereas the stagger angle and pitch increase from de-
sign 1 to 5 . Additionally, suction side spline parameters in
the rear part of the blade and near the leading edge, as well as
the thickness distribution—thickening in the front and thinning
in the rear—show variation. In contrast, the leading edge angle,
leading and trailing edge radii, and leading edge asymmetry and
shape remain nearly constant along the Pareto front.

Compared to the initial reference geometry the optimized
geometries all have increased pitch, LE angle and an increased
(𝛾 + 𝛽TE). Furthermore, the blade thickness is reduced for the
first 90% of the chord (Fig. 7).

Examining the loss polars for the selected geometries
(Fig. 8a) the loss improvement can be confirmed. The trade-
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1FIGURE 7: Variation of scaled optimization parameters along the
selected five Pareto-optimal geometries alongside reference geom-
etry.

off between the two objectives (Eq. (1) and Eq. (2)) along the
Pareto-front can mainly be attributed to a trade-off between the
loss at OPADP and OP+ (steeper polar) or in more global terms
between the loss at OPADP and the working range of the airfoil.

The outflow angle constraints (Tab. 3) are all met, however
the optimization converged towards the lower limit at OP+ for all
selected geometries. At OPADP the outflow angle variation, which
lies within the allowed limits, coincides with the loss variation
along the Pareto-front.

These observations lead to the following conclusions that
can be dawn from the RANS optimization and evaluation of the
selected airfoils 1 to 5 :

• The increased pitch of all Pareto-front geometries helps re-
duce overall loss levels.

• Pitch can only be increased as long as constraints on outflow
angle are still met. Limiting factor is the outflow angle at
increased positive incidence OP+.

• Airfoils with lower losses at OPADP show a reduced working
range and higher off-design losses, especially at OP+.

• Airfoils with lower losses at design point have an increased
outflow angle at design point.
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FIGURE 8: Loss polars and outflow angles of reference airfoil and
selected optimized airfoils. Solid lines: RANS, dots: LES. The three
angles simulated during the optimization are highlighted. Grey
bars in (b) indicate the constrained range of α2.

3.3 LES of selected geometries
The selected geometries 1 to 4 were evaluated with

LES using the same boundary conditions, particularly the back-
pressure from RANS.

However, the Mach number (Main) and consequently
Reynolds number (Rein) obtained with LES differ from the RANS
values by up to 2 % at ADP and OP− , and by up to 6 % at OP+,
due to an overprediction of 𝑝out/𝑝in with LES. The discrepancies
regarding the loss prediction are listed in Tab. 4 and also plotted
in Fig. 5 and Fig. 8a in terms of the objectives.

An offset between LES and RANS regarding several flow
quantities can be observed, with a clear tendency but slight vari-
ations throughout the design space. Fig. 9 plots 𝜔 and 𝛼2 for
RANS and LES for different OPs. It is visible that for OP+ the
offset increases for 𝜔, indicating that for increasing incidence the
RANS prediction becomes more uncertain. Remarkably the trend
is opposite for the outflow angle 𝛼2. Here the offset increases for
OP− . Comparing RANS and LES it has to be considered that
due to the different losses the LES simulations result in slightly
different inflow Ma-numbers compared to the RANS simulations

for the same exit pressure. In order to evaluate the influence of
this shift in inflow Mach number, the LES are again re-simulated
using RANS matching the inflow Ma-number of the LES, as out-
lined in Fig. 4. The resulting objectives are plotted in Fig. 5
with lines marking the points that belong to the same geometry.
Fig. 9 also shows the results of the re-evaluation with RANS and
the matched inflow conditions from LES. It can be observed that
the inflow variation mainly affects the loss prediction at OP+.
This evaluation highlights the importance of accurate and well-
defined boundary conditions when comparing different numerical
approaches, but also experiments. This will be addressed in more
detail in future investigations.

However, the general conclusions that can be drawn on the
difference between RANS and LES in the context of this optimiza-
tion remain unaffected by the mismatch in inflow Mach-number.
The differences between RANS and LES remain almost constant
with only a slight shift of the adjusted RANS towards the LES. A
closer investigation of the isentropic Mach number (Fig. 10) and
skin friction coefficient 𝑐𝑓 (Fig. 11) underpins this statement. The
values are plotted over a relative coordinate along the staggered
blade 𝑥rel, defined by

𝑥rel = cos
(︂
arctan

(︂ 𝑦
𝑥

)︂
− 𝛼𝑠

)︂ √︁𝑥2 + 𝑦2

𝑐
, (6)

where 𝛼𝑠 is the stagger angle. The figures exemplary show the
results of geometry 3 and 3∗ , which is presented in Sec. 3.5,
but are comparable for the other geometries. The most notable
observations are

• The aerodynamic loading is increased for the optimized air-
foils compared to the reference airfoil.

• RANS and LES agree best at ADP, in particular when com-
paring against the RANS with adjusted Main, but with a
delayed reattachment of the separation bubble on the suc-
tion side in the RANS.

• At −5◦ the flow on the pressure side is strongly accelerated
around the LE, resulting in flow separation near the LE,
transition to turbulence and reattachment of the flow. The
length of the separation bubble is again overestimated in
RANS. On the suction side the start of separation matches
between RANS and LES, but here the flow reattaches earlier.

• The largest discrepancy have been observed at +5◦
(cf. Tab. 4), where the error due to a misprediction of the
leading edge separation and reattachment propagates down-
stream.

One major discrepancy between RANS and LES is the dif-
ference in the prediction of the outflow angle 𝛼2 (Fig. 8b). The
LES shows increased outflow angles at all operating points, up to
more than two degrees, i.e. an increased flow turning. Therefore,
the constraints of all selected geometries are not met, contra-
dictory to the predictions with RANS. The RANS optimization
converged towards geometries that are not meeting the constraints
if evaluated with the higher fidelity LES.
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3.4 Adjusted RANS-optimization based on LES data
The LES evaluation of the RANS-optimized airfoil geome-

tries reveals that RANS-based optimization can lead to subop-
timal results. To prevent the optimization from converging to-
ward suboptimal designs due to the limitations of the low-fidelity
RANS model, it is essential to integrate LES-derived data and
insights into the optimization framework.

Balancing the extremely high computational cost of LES
with the potential benefits it offers in optimization is a significant
challenge. Fully LES-based optimizations are currently imprac-
tical for industrial engineering applications, even for relatively
simple geometries such as single airfoils, due to the limitations
of available computational resources. Therefore it is necessary
to develop multi-fidelity optimization frameworks that make use
of only a few LES simulations but predominantly rely on RANS.
Ideally, LES would only be employed at critical stages of the op-
timization to validate candidate designs and for operating points
that suffer from an increased uncertainty of the RANS prediction
due to critical flow features such as separation or transition.

Various approaches with differing levels of complexity can
be envisioned to achieve this task. While a detailed exploration
of these methods is outside the scope of this paper, our focus
is to demonstrate the potential of such strategies by illustrating
how RANS-based optimization can lead to sub-optimal geome-
tries and how these shortcomings can be addressed by leveraging

LES or other high-fidelity data to identify critical flow predic-
tion inaccuracies and account for them during the optimization
process.

Possibilities to make use of LES as a high-fidelity solution
in an otherwise RANS-based optimization include:

• Multi-Fidelity meta modelling strategies, such as Co-
Kriging.

• LES augmented RANS models, such as data-driven turbu-
lence models.

• Identification of critical flow features and RANS prediction
inaccuracies.

While the ultimate goal is to combine the first two approaches
to create a highly automated optimization framework for standard
industrial design tasks, incorporating LES to achieve unparalleled
accuracy, this paper focuses on demonstrating the latter approach
in order to evaluate the potential. LES is used to identify critical
flow features and to adjust the optimization to account for these
effects.

From the LES of 1 to 4 and the reference geometry a shift
in outflow angle 𝛼2 can be observed (Fig. 8b) as already stated.
This shift has resulted in a convergence of the RANS optimization
towards geometries that are not meeting the constraints on outflow
angle.
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TABLE 4: Loss comparison according to Eq. (3) between LES and RANS expressed as relative delta. ∆1 between LES and RANS with
Main = 0.6, ∆2 between LES and RANS with Main adjusted to LES inflow conditions.

𝜔𝑂𝑃− 𝜔ADP = 𝑜1 𝜔𝑂𝑃+ 𝑜2

LES Δ1 [%] Δ2 [%] LES Δ1 [%] Δ2 [%] LES Δ1 [%] Δ2 [%] LES Δ1 [%] Δ2 [%]
1 0.0300 10.3 10.6 0.0219 16.5 17.1 0.0407 15.3 22.8 0.0353 13.2 17.7
2 0.0303 8.6 8.7 0.0221 16.3 16.9 0.0374 18.2 26.0 0.0338 13.9 18.3
3 0.0309 6.1 6.9 0.0224 17.2 17.3 0.0333 23.8 32.3 0.0321 15.3 20.0
4 0.0289 10.7 11.6 0.0238 12.8 13.7 0.0314 22.7 25.2 0.0301 16.9 18.7

TABLE 5: Adjusted constraints for RANS optimization, taking into
account an expected offset between RANS and LES.

Quantity min max.
𝛼2.ADP -1.58 0.02
𝛼2.OP+ -2.24 1.76
𝛼2.OP− -3.56 0.44

In the context of the airfoil optimization in this study, an
unintended increase in the outflow angle of a turbine outlet guide
vane would induce swirl in the outflow, leading to reduced thrust
and increased losses of the engine. With the knowledge of
the discrepancy in predicting the outflow angle with RANS, it is
possible to account for the shift in outflow angle 𝛼2 in a second
optimization with adjustments made for the constraints. The
adjustments made herein for the different operating points are
calculated as the mean deviation between RANS and LES results
of 𝛼2 for 1 to 4 , resulting in the adjusted constraints shown in
Tab. 5.

Fig. 5 shows the result of the second RANS optimization
compared to the first one. Interestingly most parts of the Pareto-
front reach the same values for 𝑜1 and 𝑜2. However, the outflow
angles of the airfoils differ such that the geometries of the second
optimization reach lower values of 𝛼2 (Fig. 12). A geometry,
termed 3∗ , with similar objective values as 3 is selected for
further evaluation, see Fig. 6.

3.5 Final optimized airfoil
Re-simulating 3∗ with LES confirms, that this airfoil ge-

ometry, contrary to 3 , satisfies the main constraints (Tab. 3),
while maintaining the significant improvements in loss compared

3

3*

o
1
 [­] 

α
2
 [
 ]

0.026 0.028 0.03

­1

­0.5

0

0.5

1

1.5

FIGURE 12: Pareto-optimal geometries and optimization data
bases. α2 at OPADP . RANS optimization: grey; second RANS op-
timization with adjusted constraints: cyan; circles: data base en-
tries; dots: Pareto-front geometries.

to the reference airfoil. This is also supported by Figs. 10 and 11,
which show that the main potential and viscous flow effects are
preserved in comparison to 3 . Only at OP+ the outflow angle
constraint is still missed by a slight margin of ≈ 0.2◦.

Fig. 6 compares the geometry of 3* with those of the pre-
vious optimization. It can be observed that the thickness distri-
bution and front part of 3* is almost identical to 3 and mainly
the aft part of the airfoil changes with a turning more towards the
TE and slightly (≈ 1◦) reduced.

Overall, the knowledge obtained from the few LES of the
first RANS optimization could be used to adjust the RANS-
optimization settings in a way that improved the optimization
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outcome, especially with regards to the outflow constraints. As a
result an airfoil has been found that improves the losses at design
point and off-design conditions with a satisfactory fullfilment of
the constraints.

4. CONCLUSION & OUTLOOK
A RANS-based optimization of a compressor airfoil was

performed with the objective of reducing losses at the design point
and off-design conditions, while maintaining an axial outflow.
The results demonstrate how constraints drive the optimization
towards specific regions of the design space. Simulating the
optimized profiles with LES reveals two key findings:

1. RANS tends to overpredict losses, with variations depending
on the inflow angle and location within the design space;

2. The constraints on axial outflow are not met, contradictory
to the predictions with RANS.

These findings highlight the limitations of relying solely on
RANS-based optimizations, which can lead to suboptimal or even
invalid designs. However, incorporating data and insights from
SRS, such as LES, to refine the optimization settings of RANS-
based frameworks can significantly enhance the results. For the
relatively simple case of a cascade optimization, adjusting the
constraints on the outflow angle based on LES evaluations of
selected profiles proved to be effective in improving the opti-
mization outcome.

This supports the general assumption that RANS-based opti-
mizations can be substantially improved by leveraging data from
a limited number of SRS. In the case presented only four Pareto-
optimal geometries have been simulated using LES. Nonethe-
less, the presented test case is a simplified 2D scenario, where
straightforward correlations between RANS and SRS data were
identified. For cases of increasing complexity, such as 3D com-
pressor stages, it becomes more unlikely that similarly simple,
almost linear correlations can be derived. Typical 3D industrial
optimization tasks must satisfy numerous constraints, including
aerodynamic, structural, and geometric requirements. If these
constraints are not met, the optimization outcome is often unus-
able for its intended application and requires modifications. Such
adjustments, if feasible at all, degrade the optimization objec-
tives, leading to suboptimal designs. For industry-relevant 3D
cases with numerous constraints and complex objectives, auto-
mated procedures must be employed. Multi-fidelity strategies
such as Co-Kriging are usually the first choice when it comes
to combining data of different fidelities, but have their limita-
tions for very sparse high-fidelity data. For 3D geometries with
a significantly higher number of free parameters, this challenge
becomes even more pronounced. To address this, future research
will focus on advanced methodologies that leverage complex data
of few SRS, such as data-driven turbulence modeling combined
with multi-fidelity surrogate modeling suited to handling sparse
high-fidelity data and various locally augmented RANS models.
The combination of these approaches offers a promising path
forward for efficiently integrating SRS data into RANS-based
optimization frameworks for industrial applications.
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