Soiling forecasts for cleaning scheduling optimization
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' Motivation

* Soiling = Accumulation of particles + other objects (e.g. leaves, bird droppings) on solar collectors
 Soiling causes a loss of 3%—-4% of potential global solar energy production?!, therefore cleaning is important

Objectives

* Create solling loss forecasts to
* Predict solar energy yield accurately & to

* Optimize cleaning to reach the best trade-off between the soiling losses & cleaning costs 14 £ S £
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Soiling forecasting approaches
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* First 6 days:
« all weather parameters except for PM: ECMWF forecast (50 ensemble members)
* PM: 1st to 5th day: CAMS PM forecast, 6th day: PM from 5th day

* From day 7 to day 365: MERRAZ2 data

 Creation of 200 ensemble members as concatenations of 40 MERRA2 years & 5
members from ECMWEF (rain sum closest to avg, lowest, highest, 25- & 75-percentile)

Soiling forecast validation in Malanville

e Case study
* Apply & evaluate the forecasts for Malanville (Benin)
* There, soiling was measured for more than one year
 Forecasts for the case study were created with a horizon of one year

3.01 Evaluation of different soiling & cleaning models with MERRA2 data:
2.5 * Kimber & HSU models outperform persistence most of the time, except:

_20  with forecast lead time of ~1 year (persistence benefits from seasonal effect)
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Cleaning optimization 4 dontiication - Jaults 4 -
« Cleaning schedule optimizer based on a Markov Decision Chain (MDC) approach!!-12 for an exemplary b A N B
PV plant in Malanville, Benin. : |
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Conclusion & outlook

 Results highlight the potential of soiling forecasts and cleaning schedule optimization to improve yield predictions, and the actual economic & energetic yield of PV systems

 Calibration of soiling models to site or soiling type Is important for accuracy

* More complex models and further data sets may be useful depending on the data quality and season. However, this Is not guaranteed as the 40 year ensemble from MERRAZ2
already provides valuable information, and all data/model uncertainties are high

* |If a PV system Is meant to be cleaned less frequently than once per year the forecast horizon would have to be increased. Additionally, the soiling model would have to
Include the long-term build-up of soiling due to particles that cannot be easily removed by rain.
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