
Evaluation of the effect of using additional CAMS PM & ECMWF precipitation data:
• CAMS & ECMWF data can reduce the forecast errors in some cases, e.g. rainy period (April -

September)
• Considering also the dry period, an overall increase of the errors was found using the 

additional data. The MERRA2 ensemble seems to describe the weather conditions quite well.
• Especially in the first 7 days, the HSU model using CAMS and ECMWF performs considerably 

better than the other combination of models and datasets.

Evaluation of different soiling & cleaning models with MERRA2 data:
• Kimber & HSU models outperform persistence most of the time, except:
• with forecast lead time of ~1 year (persistence benefits from seasonal effect)
• during the first days (all forecasts benefit from application of latest measurement data)

• Kimber combined with logarithmic regression achieves the best performance for many lead times
• This can change if the  Kimber model‘s fixed soiling rate is less adequate for the site of interest

• In the first days, HSU + logarithmic rain cleaning model performs best
• Using the logarithmic rain cleaning model improves the soiling forecast compared to using the 

same models with a cleaning threshold

Soiling forecasts for cleaning scheduling optimization
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• Results highlight the potential of soiling forecasts and cleaning schedule optimization to improve yield predictions, and the actual economic & energetic yield of PV systems
• Calibration of soiling models to site or soiling type is important for accuracy
• More complex models and further data sets may be useful depending on the data quality and season. However, this is not guaranteed as the 40 year ensemble from MERRA2 

already provides valuable information, and all data/model uncertainties are high
• If a PV system is meant to be cleaned less frequently than once per year the forecast horizon would have to be increased. Additionally, the soiling model would have to 

include the long-term build-up of soiling due to particles that cannot be easily removed by rain.

• Cleaning schedule optimizer based on a Markov Decision Chain (MDC) approach11,12 for an exemplary 
PV plant in Malanville, Benin. 

• Optimizer is executed every day in the morning with most recent forecasts (MERRA2, partial cleaning)
• It derives the time plan of cleaning tasks for the next year resulting in the largest economical yield
• Only the suggested cleaning tasks that have to be ordered on the current day are actually 

considered
• The actually scheduled cleaning tasks form the cleaning timeseries that is used for the evaluation of 

the economic and energetic effect of the optimization
• Compared to a PV system that is not cleaned
• 9.7 % net income increase
• 12.1 % energy generation increase

Motivation
• Soiling = Accumulation of particles + other objects (e.g. leaves, bird droppings) on solar collectors
• Soiling causes a loss of 3%–4% of potential global solar energy production1 , therefore cleaning is important

Objectives
• Create soiling loss forecasts to 
• Predict solar energy yield accurately & to
• Optimize cleaning to reach the best trade-off between the soiling losses & cleaning costs
• Not only frequency of cleaning, but also the selection of the cleaning dates must be optimized
• Avoid unnecessary cleanings just before strong rainfalls or strong soiling events

• Evaluate soiling forecasts based on the most recent soiling measurements & different weather forecasts & long-
term meteorological data

• Soiling & rain cleaning models
• Various options of semi-physical soiling models incl. deposition & natural cleaning tested
• Soiling rate models for days without rain cleaning:

a) Persistence³: soiling rate is predicted as the average of the last 20 days without cleaning
b) Kimber4: fixed soiling rate of 0.435%/d5

c) HSU6: soiling rate depending on PM & tilt with settling velocities of 0.0009 m/s for 
PM2.5 & 0.004 m/s for PM10

• Rain cleaning models
a) Full cleaning above threshold of 1 mm daily rain sum; no cleaning otherwise
b) Partial cleaning7 effect with logarithmic rain sum dependence

• Input data: 
• Parameters: particulate matter, precipitation, collector orientation
• Two input data options:

I. MERRA2 data8 of 40 years used as ensemble prediction
II. combination of MERRA2, ECMWF9 and CAMS10 data
• First 6 days:
• all weather parameters except for PM: ECMWF forecast (50 ensemble members)
• PM: 1st to 5th  day: CAMS PM forecast, 6th day: PM from 5th day

• From day 7 to day 365: MERRA2 data
• Creation of 200 ensemble members as concatenations of 40 MERRA2 years & 5 

members from ECMWF (rain sum closest to avg, lowest, highest, 25- & 75-percentile)

Soiling forecast validation in Malanville

Soiling forecasting approaches

Cleaning optimization

Conclusion & outlook

• Case study
• Apply & evaluate the forecasts for Malanville (Benin)
• There, soiling was measured for more than one year
• Forecasts for the case study were created with a horizon of one year

Soiling measurement at the West African Power Pool (WAPP) 
network station in Malanville, Benin²

HSU + partial 
rain cleaning 
model with 
MERRA2 input

Partial rain cleaning model 
with logarithmic rain sum 
dependence.
Regression based on 32 
soiling stations in West 
Africa².

Evaluation of full year with MERRA-2 data 
& different soiling & cleaning models

Evaluation of rain season with 
different input data sets

Soiling loss & rain sums from Malanville

ECMWF/CAMS/MERRA-2

ECMWF/CAMS/MERRA-2

ECMWF/CAMS/MERRA-2

ECMWF/CAMS/MERRA-2

ECMWF/CAMS/MERRA-2

ECMWF/CAMS/MERRA-2


