Soiling forecasts for cleaning scheduling optimization

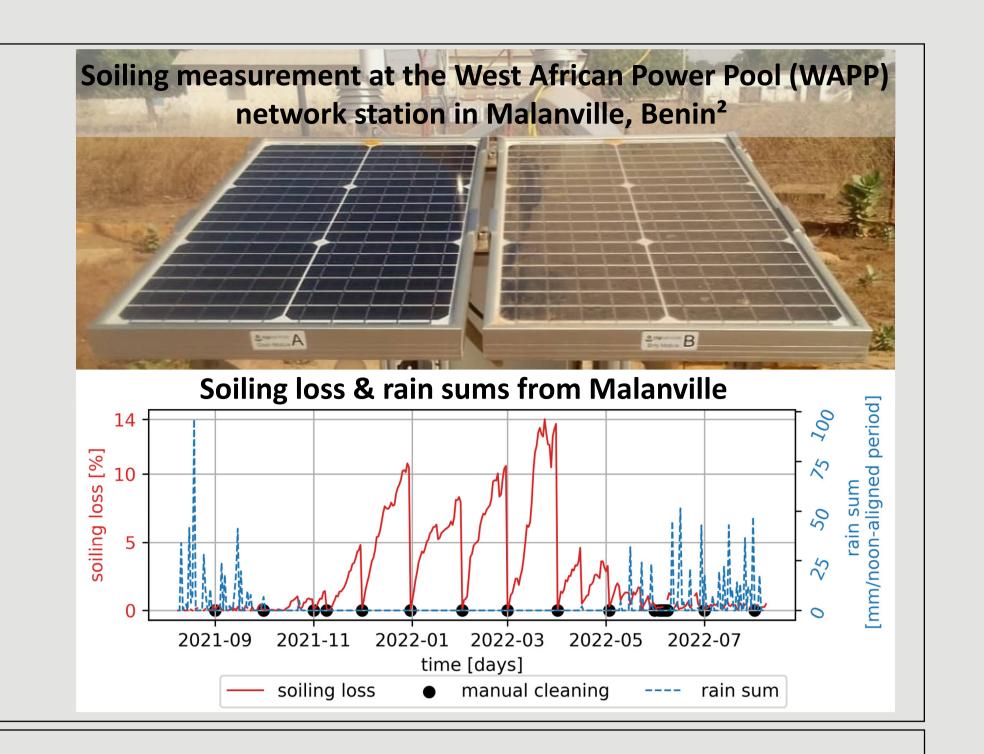
Fernanda Norde Santos¹, Stefan Wilbert^{1*}, Carl Becker¹, Elena Ruiz Donoso¹, Laura Campos Guzman¹, Álvaro Fernández Solas¹, Luis Zarzalejo², Anne Forstinger³, David Helten³, Veith Pietsch⁴, Robert Pitz-Paal⁵ ¹DLR Institute for Solar Research, Almería, Spain, ²CIEMAT Energy Department – Renewable Energy Division, Madrid, Spain, ³CSP Services GmbH, Cologne, Germany, ⁴Aquila Capital, Hamburg, Germany, ⁵DLR Institute of Solar Research, Cologne, Germany. *stefan.wilbert@dlr.de

Motivation

- Soiling = Accumulation of particles + other objects (e.g. leaves, bird droppings) on solar collectors
- Soiling causes a loss of 3%–4% of potential global solar energy production¹, therefore cleaning is important

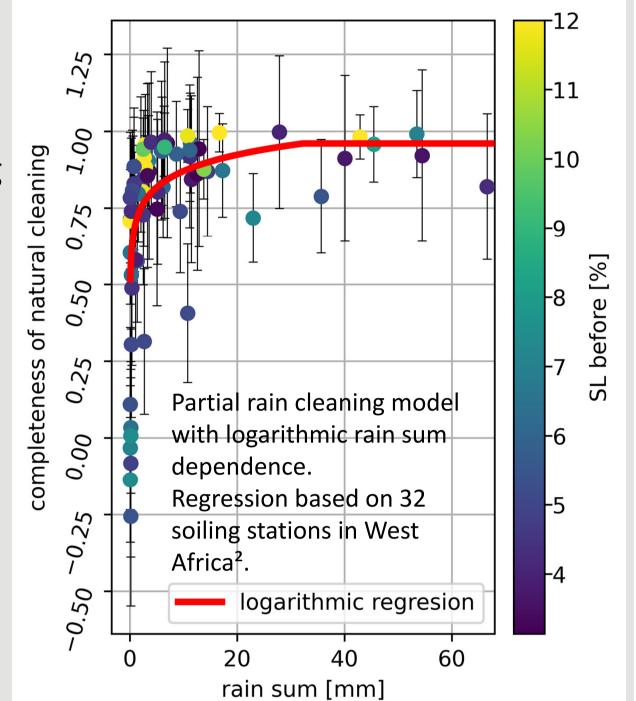
Objectives

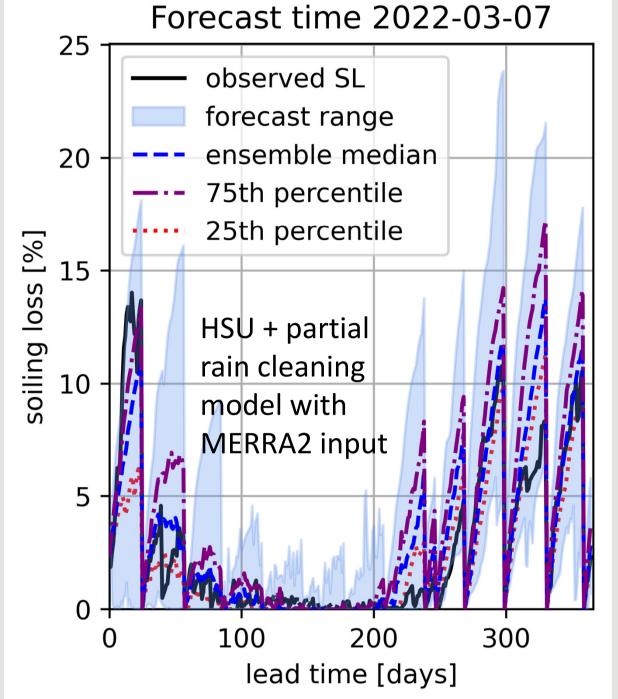
- Create soiling loss forecasts to
- Predict solar energy yield accurately & to
- Optimize cleaning to reach the best trade-off between the soiling losses & cleaning costs
 - Not only frequency of cleaning, but also the selection of the cleaning dates must be optimized
 - Avoid unnecessary cleanings just before strong rainfalls or strong soiling events
- Evaluate soiling forecasts based on the most recent soiling measurements & different weather forecasts & longterm meteorological data



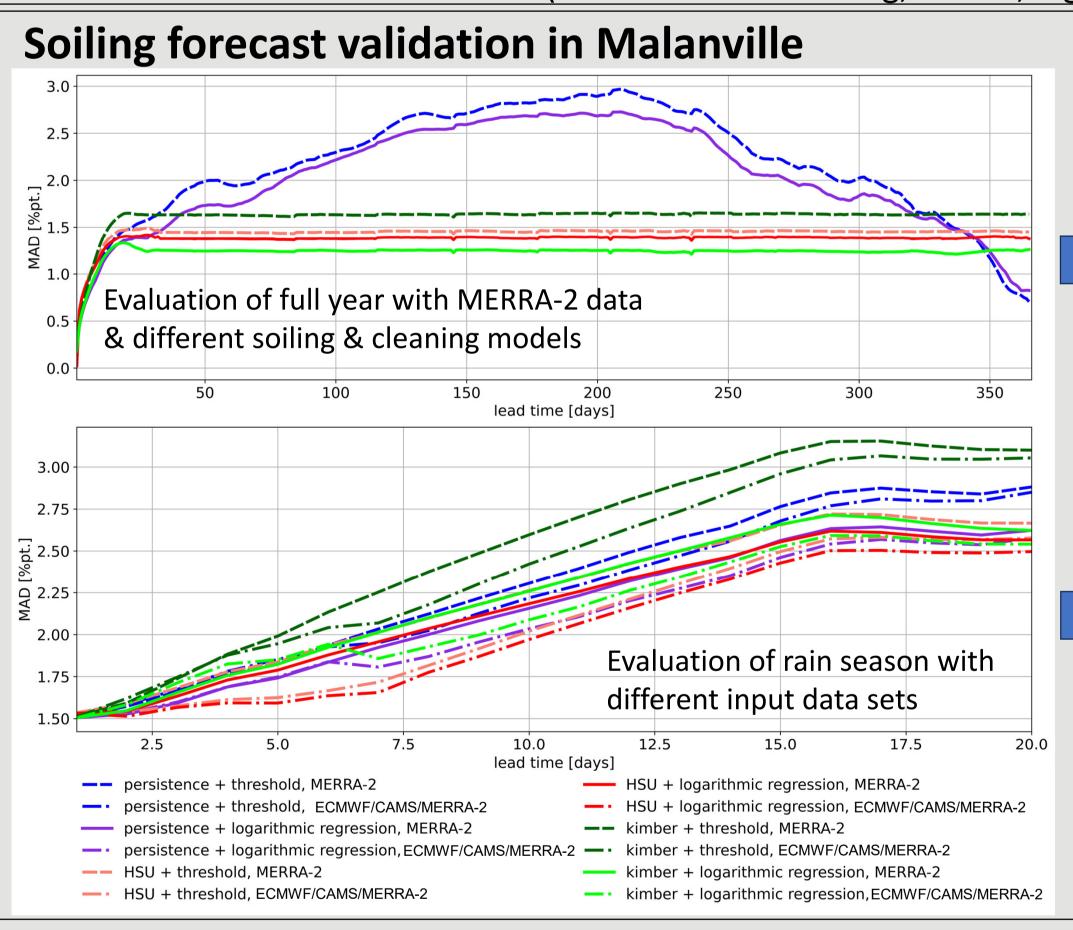
Soiling forecasting approaches

- Soiling & rain cleaning models
- Various options of semi-physical soiling models incl. deposition & natural cleaning tested
- Soiling rate models for days without rain cleaning:
 - a) Persistence³: soiling rate is predicted as the average of the last 20 days without cleaning
 - b) Kimber⁴: fixed soiling rate of 0.435%/d⁵
 - HSU⁶: soiling rate depending on PM & tilt with settling velocities of 0.0009 m/s for PM2.5 & 0.004 m/s for PM10
- Rain cleaning models
 - a) Full cleaning above threshold of 1 mm daily rain sum; no cleaning otherwise
 - b) Partial cleaning⁷ effect with logarithmic rain sum dependence
- Input data:
- Parameters: particulate matter, precipitation, collector orientation
- Two input data options:
 - MERRA2 data⁸ of 40 years used as ensemble prediction
 - II. combination of MERRA2, ECMWF⁹ and CAMS¹⁰ data
 - First 6 days:
 - all weather parameters except for PM: ECMWF forecast (50 ensemble members)
 - PM: 1st to 5th day: CAMS PM forecast, 6th day: PM from 5th day
 - From day 7 to day 365: MERRA2 data
 - Creation of 200 ensemble members as concatenations of 40 MERRA2 years & 5 members from ECMWF (rain sum closest to avg, lowest, highest, 25- & 75-percentile)





- Case study
 - Apply & evaluate the forecasts for Malanville (Benin)
 - There, soiling was measured for more than one year
 - Forecasts for the case study were created with a horizon of one year



Evaluation of different soiling & cleaning models with MERRA2 data:

- Kimber & HSU models outperform persistence most of the time, except:
 - with forecast lead time of ~1 year (persistence benefits from seasonal effect)
- during the first days (all forecasts benefit from application of latest measurement data)
- Kimber combined with logarithmic regression achieves the best performance for many lead times
- This can change if the Kimber model's fixed soiling rate is less adequate for the site of interest • In the first days, HSU + logarithmic rain cleaning model performs best
- Using the logarithmic rain cleaning model improves the soiling forecast compared to using the same models with a cleaning threshold

Evaluation of the effect of using additional CAMS PM & ECMWF precipitation data: • CAMS & ECMWF data can reduce the forecast errors in some cases, e.g. rainy period (April -September)

- Considering also the dry period, an overall increase of the errors was found using the additional data. The MERRA2 ensemble seems to describe the weather conditions quite well.
- Especially in the first 7 days, the HSU model using CAMS and ECMWF performs considerably better than the other combination of models and datasets.

Cleaning optimization

- Cleaning schedule optimizer based on a Markov Decision Chain (MDC) approach^{11,12} for an exemplary PV plant in Malanville, Benin.
- Optimizer is executed every day in the morning with most recent forecasts (MERRA2, partial cleaning)
- It derives the time plan of cleaning tasks for the next year resulting in the largest economical yield
- Only the suggested cleaning tasks that have to be ordered on the current day are actually considered
- The actually scheduled cleaning tasks form the cleaning timeseries that is used for the evaluation of the economic and energetic effect of the optimization
- Compared to a PV system that is not cleaned
 - 9.7 % net income increase
 - 12.1 % energy generation increase

faults/losse otimized cleaning identificatio Request cleaning forecast for n incl. soilin soiling mode that have to be incl. natura of last days Malanville soiling measurements, no cleaning Absolute best possible cleaning schedule MDC optimized schedule Cleaning dates in the different strategies Date 2021/2022

Conclusion & outlook

- Results highlight the potential of soiling forecasts and cleaning schedule optimization to improve yield predictions, and the actual economic & energetic yield of PV systems
- Calibration of soiling models to site or soiling type is important for accuracy
- More complex models and further data sets may be useful depending on the data quality and season. However, this is not guaranteed as the 40 year ensemble from MERRA2 already provides valuable information, and all data/model uncertainties are high
- If a PV system is meant to be cleaned less frequently than once per year the forecast horizon would have to be increased. Additionally, the soiling model would have to include the long-term build-up of soiling due to particles that cannot be easily removed by rain.

Federal Ministry for Economic Affairs and Energy

Owens and Hewson (2018). ECMWF Forecast Usér Guide. European Center for Médium-Range Weather Forecast, May 2018.

the PVOptDigital project (grant 03EE1107).

National Centre for Photovoltaic Research and Education. SERIIUS Soiling Rate of the World. IIT Bombay. https://www.ncpre.iitb.ac.in/ncpre/pages/seriius-soiling-rate-of-the-world.php Accessed July 2, 2025. M. Coello and L. Boyle (2019). Simple model for predicting time series soiling of photovoltaic panels. IEEE Journal of Photovoltaics, 9(5):1382–1387, 2019. ISSN 2156-3381. doi: 10.1109/JPHOTOV.2019.2919628 Norde Santos et al. (2024) Cleaning of photovoltaic modules through rain: Experimental study and modeling approaches. Solar RR, 8(24):2400551, 2024. ISSN 2367-198X. doi:10.1002/solr.202400551 Gelaro et al. "The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)." Journal of climate 30.14, 5419-5454 (2017).

Copernicus Atmosphere Monitoring Service (2021): CAMS global atmospheric composition forecasts. Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store, DOI: 10.24381/04a0b097 (Accessed on 16.06.2025)
H. Truong Ba et al. (2017). Optimal condition-based cleaning of solar power collectors. Solar Energy, 157:762–777, 2017. ISSN 0038092X. doi: 10.1016/j.solener.2017.08.076.
Becker et al. (2025) Improved PV Cleaning Schedule Optimization Using a Markov Decision Process Approach", PVPMC, Albuquerque, USA, 2025

Acknowledgement The authors would like to thank Yandalux Solar GmbH, the World Bank, the West African Power Pool and the WAPP station responsible for providing the measurement data used in this study. We also thank the European Centre for Medium-Range Weather Forecast (ECMWF), the Copernicus Atmosphere Monitoring Service (CAMS) and NASA's Global Modeling and Assimilation Office (GMAO) for providing the forecast and reanalysis data. The authors further thank the European Union for funding the CAMEO project (grant agreement 101082125) and the German Ministry of Economic Affairs and Energy for funding