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More Electric Aircraft
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All Electric Aircraft: Rlug
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POWER RATING ELECTRICAL SYSTEM

CONVENTIONAL g
Type A320
Maximum passenger capacity 180
Installed electrical power ~100 kW
MORE ELECTRIC AIRCRAFT + g
Type A350
Maximum passenger capacity 440

Installed electrical power ~1000-1400 kW

ALL ELECTRIC AIRCRAFT

Type
Maximum passenger capacity
Installed electrical power
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A321
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~150 kW

A321 under
research
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Research Questions ,_#7
DLR

1. What is the impact of the electrical system at the Overall Aircraft Design
(OAD)?

2. How can system architectures be designed to meet advanced requirements
for fail-safety, reliability and availability?

3. Which control strategies are most effective in ensuring control stability while
maximizing system availability?
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Method of Procedure

Analyze the state of the art
and map it to the selected
aircraft configuration

Focus on new aircraft
configuration and the
technical innovations and
associated advantages for the
system level

<

Conventional Approach

i DLR
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Disruptive Approach

Compare the advantages of
the conventional approach
with the disadvantages of
the disruptive approach
and derive a hybrid of both
approaches.

~

L

Andrea Reindl, Institute of System Architectures in Aeronautics, 10/16/2025

Hybrid Approach




Method of Procedure ,_#7
DLR

Analyze the state of the art
and map it to the selected
aircraft configuration

<

Conventional Approach

Andrea Reindl, Institute of System Architectures in Aeronautics, 10/16/2025



f‘.
|
|

All Electric Aircraft - Gon / tional Grid Architecture ,_#7
=4 DLR

|

Cockpit: “ I I .
q Avionic Server ... : ————

Anti-lce

T
it
e

L)
Andrea Reindl, Institute of System Architectures in Aeronautics, 10/16/2025




All Electric Aircraft — Conventional Grid Architecture
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All Electric Aircraft - Conventional Approach:
Connected Grid DLR

Failure of one engine: available battery capacity is used

to operate and overpower functional e-machines =2
availability

Failure of a single battery pack has little effect on the

SAE

Batteries are placed in the narcelles: the fire load is

separated from the remaining aircraft in case of a -
thermal runaway e ey covern

Battery
Weight: 11500 kg

Elevator
Horizontal Stabilizer
Vertical Stabilizer
Rudder 1 Lower + 1 Upper

High Voltage
Inner Flaps il Galley + Cabine Back s

Slat

Elevator
Horizontal Stabilizer
Vertical Stabilizer
Rudder 1 Lower + 1 Upper

Fault currents and line faults affect the entire system to
some extent: complex protective mechanisms, bulky
circuit breakers

Weight: 11500 kg

Galvanic isolation is required at several points = heavy

transformers, less efficiency

High voltage DC disconnection: risk of arcs is very high

Many components connected in parallel: high fault e
discharge currents
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Method of Procedure ,_#7
DLR

4 )
Focus on new aircraft
Analyze the state of the art configuration and the
and map it to the selected technical innovations and
aircraft configuration associated advantages for the
system level
o J
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Conventional Approach:

Connected Grid Disruptive Approach
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All Electric Aircraft — Islan Microgrids
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All Electric Aircraft — Islanded Microgrids
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All Electric Aircraft - Disruptive Approach:
Islanded Grid DLR

Batteries isolated from each other = improved ¢

fail-safety [ R

Fault current amplitude is lower = fewer N

components connected in parallel ' i-ﬂ |

Less galvanic isolation required

Shorter cable lengths, improved EMC - less oo
complex filters A e s T L el
Separation of safety-relevant and non-safety- | camaik R ,-,_—__; e

relevant grids wor o e
Decreased total weight: increased battery h |
weight, but decreased cable weight | -

Severity and impact of faults, e.g. single line e | |
faults is reduced = increases availability | Alaon

Outer Flaps

Batteries are distributed throughout the aircraft
Failure of one engine = battery capacity can
not be used = charging lines?

Grid 11
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Method of Procedure

Analyze the state of the art
and map it to the selected
aircraft configuration
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associated advantages for the
system level

<

Conventional Approach:
Connected Grid

<~

Disruptive Approach:
Islanded Microgrids

Andrea Reindl, Institute of System Architectures in Aeronautics, 10/16/2025

i DLR



Method of Procedure

Analyze the state of the art
and map it to the selected
aircraft configuration

Conventional Approach:
Connected Grid

Focus on new aircraft
configuration and the
technical innovations and
associated advantages for the
system level

Disruptive Approach:
Islanded Microgrids

Andrea Reindl, Institute of System Architectures in Aeronautics, 10/16/2025

i DLR

(

Compare the advantages of
the conventional approach
with the disadvantages of
the disruptive approach
and derive a hybrid of both
approaches.

~

L

Hybrid Approach




Features Hybrid Approach

The objective is a grid architecture that offers these advantages
additionally

Failure of one engine: available battery capacity is used to operate and
overpower functional e-machines - availability

Failure of a single battery pack has little effect on the system

Batteries are placed in the narcelles: the fire load is separated from the
remaining aircraft in case of a thermal runaway

while overcoming the following disadvantages

Batteries are distributed throughout the aircraft
Failure of one engine = battery capacity can not be used
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All Electric Aircraft - Segmented Grid #7
DLR

Gasturbine

Cockpit: -
‘ Avionic Server
Anti-lce

Andrea Reindl, Institute of System Architectures in Aeronautics, 10/16/2025



All Electric Aircraft - Segmented Grid
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All Electric Aircraft - Hybrid Approach:
Segmented Grid DLR

Failure of one engine: available battery capacity is used
to operate and overpower functional e-machines -2
availability

Failure of a single battery pack has little effect on the
system 4
Batteries are placed in the narcelles: the fire load is @
separated from the remaining aircraft in case of a !
thermal runaway
Batteries isolated from each other > improved fail-safety RS —'- = == | e e
Severity and impact of faults, e.g. single line faults is . B
reduced > increases availability s
High voltage DC connection = minor risk i

Less components connected in parallel: lower fault @
discharge currents

Two different energy sources
Fault currents and line faults only affect the sub-system @
Galvanic isolation is required at several points 2 heavy |
transformers, less efficiency

No separation of critical and non-critical grids
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Conclusion ‘#7
DLR
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: Compare the advantages of

FEEUS @ [IEHY Sl the conventional approach

Analyze the state of the art configuration and the ; : PP
; . 2 : with the disadvantages of
and map it to the selected technical innovations and : :
. . . : the disruptive approach
aircraft configuration associated advantages for the . ,
and derive a hybrid of both
system level
approaches.
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Conventional Approach:

Connected Grid Disruptive Approach: Hybrid Approach:
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Preliminary design: basic models for weight study
following electric simulation
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ELECTRICAL SYSTEM ARCHITECTURES

Conservative Approach: Connected Grid
The grid is subdivided into a left and a right sub-
grid corresponding to the feeding generators. In
some configurations, there is also a mandatory

grid that is connected to both, the left and the

right generators. The sub-grids are connected

to each other during normal operation and can
be separated in the event of a fault using

TVDC Teft T

y BE

TVDC right 2

DLR

corresponding circuit breakers. a Z B @
AN X

Hybrid Approach: Segemented Grids
The segmented grid is a mixture of the
conventional grid approach and the islanded
microgrids. In normal operation, the electrical
subgrids are divided depending on their
supplying battery pack. If a fault occurs, the
grids can be reconfigured and individual or all
loads of a grid can be connected to another
grid.
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Disruptive approach: Islanded Grids
The electrical system is divided into several
subgrids that are electrically isolated from each
other. These subgrids are never connected to
each other, neither in normal operation nor
during charging. Subgrids that contain safety-
critical components are designed redundantly.
Both the batteries and the electrical lines are
implemented multiple times. In the event of a
fault, individual subgrids can be connected to
each other via the charging lines.
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Conservative Approach: Four Separated
Grids

Four stacked generators with the same power

rating are used instead of the previous two
generators. The generator for the galley and
cabin can be used to supply the more safety- '
relevant grid if one of the other generators fails. Z Z
Additionally, the safety-relevant grid (cockpit 117 4 v v v v B A
and primary flight control) can also be supplied | 1 : [ou =« |
by the APU. L Galley & Cabine (2) 7 ECS - Secondary Flight Control (2) " Cockpit J

WIPS Primary Flight Control (2)

DLR

APU

Hybrid approach: Separation between
Safety-critical Systems and Propulsion
This approach completely separates the safety-
critical grid (primary flight control and cockpit
avionics) from the propulsion system, whereby
batteries are used to ensure the supply of these
grids. In order to improve the reliability, the APU
is connected to these systems and two RS e

separate battery-supplied DC busses are Landing Gear
available.

el

Cockpit

Disruptive approach: Islanded Grids
The on-board system is divided into
disconnected islanded grids, which in turn have
at least one DC bus with a supplying battery

AR &

pack. In safety-relevant grids, the DC gridswith
battery packs are designed redundantly. Only & B
the grid with the environmental control system is ] 7 74
fed by a comparatively small (lower power 2 |
rating) generator. The APU can also supply the ] (][] 2 [
safety-relevant grids in the event of a fault. (] [=]

v + Cabir WIPS, ECS Secondary
2 Landing Gear (2)




Key Take-Away-Messages

o In the context of aircraft electrification, reliability, fail-safety,
and availability of the electrical system represent essential
requirements on top of system weight and volume.

o System architecture influences not only weight and volume,
but also fault-behavior, reliability and availability.
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