

Impact of Oxygen/Nitrogen Oxide Partial Gas Pressures on 310 N Stainless Steel Corrosion in Solar Salt at 600 °C Sumit Kumar¹*, Srinivasan Swaminathan², Thomas Bauer³

- ¹ German Aerospace Center (DLR), 70569 Stuttgart, Germany
- ² Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
- ³ German Aerospace Center (DLR), 51147 Cologne, Germany

*sumit.kumar@dlr.de

Motivation and State-of-the-art

Molten salt based thermal energy storage (TES) systems are a well suited energy storage option:

- Molten Solar Salt (60 wt% NaNO₃/40 wt% KNO₃) is a proven storage/heat transfer medium; operating >565 °C enhances storage density, but promotes salt decomposition to nitrite and oxide ions, causing faster corrosion [1].
- At 600 °C, oxide ion concentration >0.25 mol% is a critical threshold, beyond which stainless steel corrosion rises sharply [2].
- Recent advances show that gas management (high O₂ + ppmlevel NO) stabilizes salt by controlling oxide ion concentration, reducing steel corrosion up to ~620–650 °C and enabling highertemperature TES [3].

Fig.1: Top: Concentrated solar power (CSP) plant with a power tower configuration. Bottom: Molten salt storage tanks

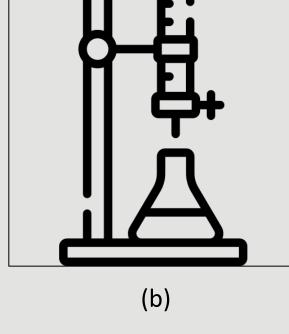
Steel sample dimensions (mm)

Alloy analysis

Objective

- 1. Salt Chemistry with gas atmosphere Test O₂ (5–80 vol%)
 - + NO (400–600 ppm) impact on nitrate/nitrite/oxide/chromate at 600 °C.
- **2.** Impact on corrosion Measure 310N SS weight change, rates, and layer structure under varied gas atmospheres.
- **Correlation** Identifying time dependent nitrate, nitrite ions impact on corrosion?

Fig.2: Schematics of objective


Materials & Methods

Material Used: Salt: 60 wt.% NaNO₃/ 40 wt% KNO₃ Alloy: 310N

Salt analysis

Fig.3 (a) Ion chromatography(IC)

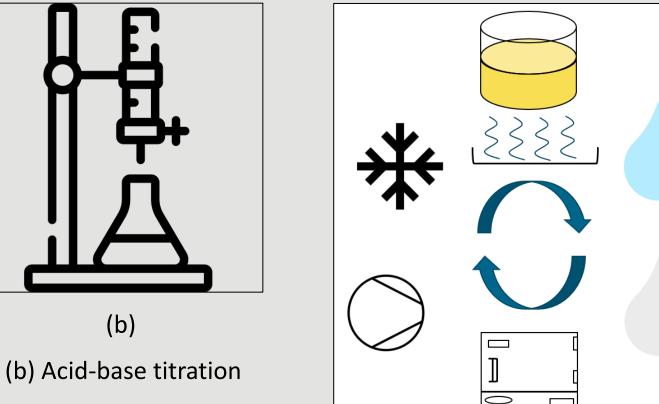


Fig.4: (a) Macrostructure analysis using acid wash descaling (b)

Experimental Setup

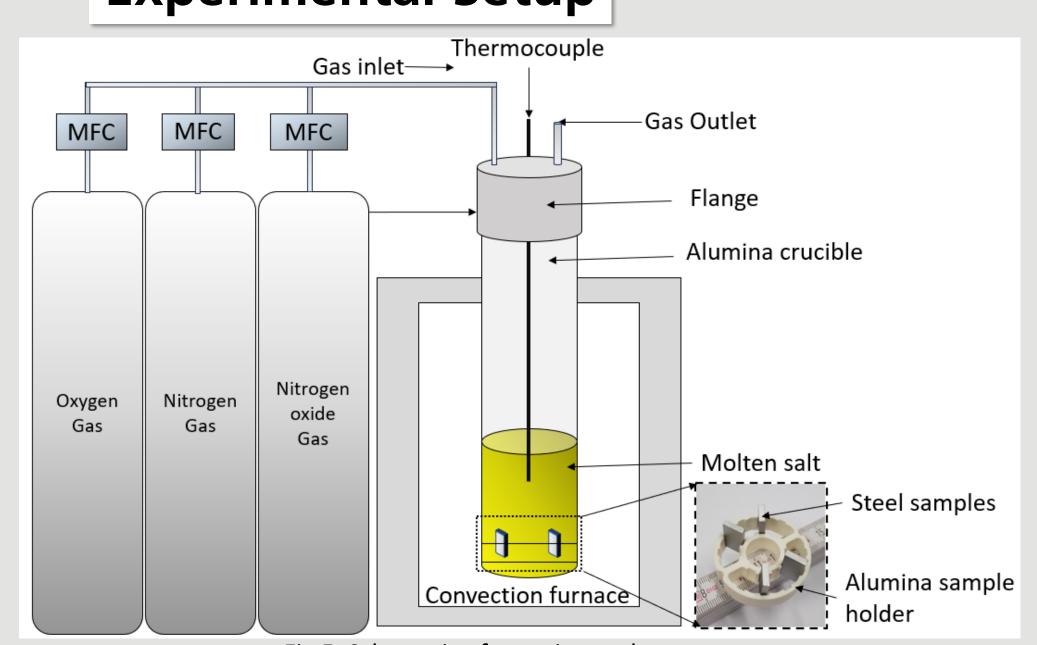


Fig.5: Schematic of experimental setup

Operating conditions, Fig 5:

- **Temperature**: Isothermal 600°C, static conditions
- Time: 600 and 1224 h
- Total gas flow: 100 mL/min (Mass Flow Controllers)
- **Atmosphere**: O₂ (5 to 80 vol%), N₂, NO (400 and 600 ppm)

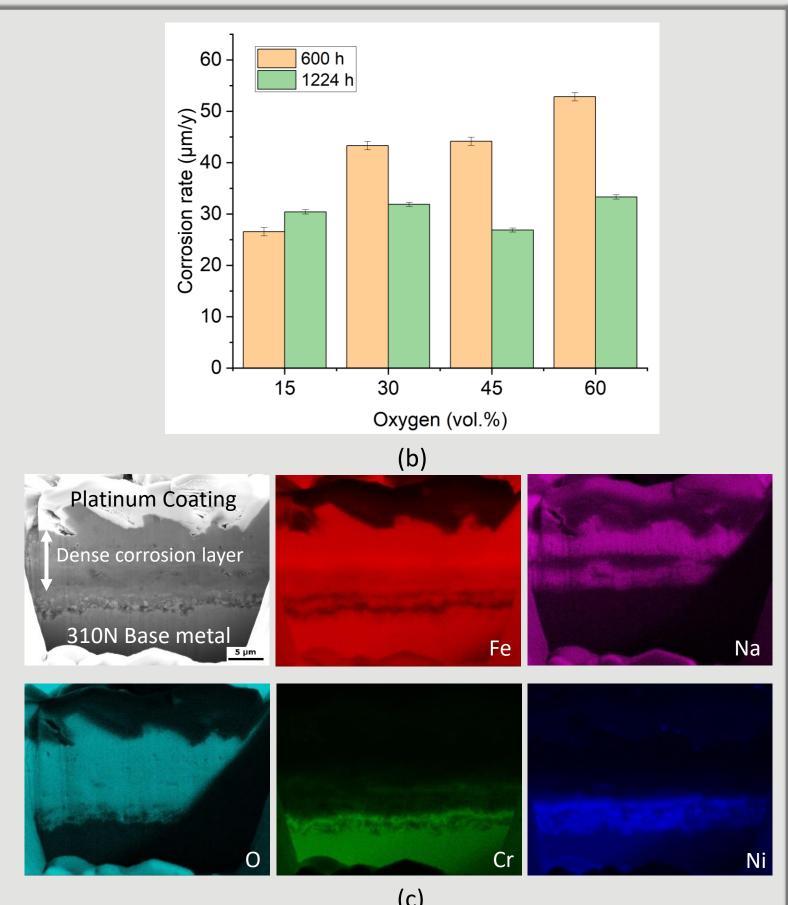

Fig.3 (a), **IC** for nitrate, nitrite, chromate analysis

Fig.3 (b), **Acid-base titration** used to detect corrosive oxide ions for post analysis

Microstructure analysis using Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS)

Results and Discussion $-0.5_{\Gamma}0.030$ ■ Nitrate [mol%] Oxide ions [mol%] Chromate [mol%] 0.025 92 -0.02091 - 0.015 90 - 0.010 89 - 0.005 88 0.000 50 Oxygen (vol%)

Fig 6: (a) Variation in nitrate, chromate, and oxide ion concentrations at 600 °C after 1224 h exposure with 600 ppm NO with varying oxygen vol% (b) Corrosion rate analysis results (c) Cross-section FIB-EDX mappings for SS 310N sample in Solar Salt at 600 °C and 15 vol% O₂, 600 ppm NO after 1224 h

- At 600 °C (400 & 600 ppm NO): Fig 6 (a), increasing nitrate, chromate ion stable, oxide < 0.20 mol% with increasing O₂ vol%.
- At 600 °C (400 and 600 ppm NO): Fig 6 (b), corrosion rate increases with O₂ vol% at 600 h, but stable at 1224 h.
- Dense and less porous corrosion layer formed at both 600 and 1224 h at 400 and 600 ppm NO above 5 vol% oxygen, Fig 6 (c).
- Corrosion layer thickness increase with increasing time, with low chromium depletion and dense sodium iron oxide, and iron oxide layer, Fig 6 (c).

Conclusion **Corrosion Outcome Solar Salt Chemistry Gas Atmosphere** Corrosion layer Density, O_2 : 5 to 80 vol% NO: 400, 600 ppm Gas (600 ppm, 60 vol% O₂) Gas (600 ppm, 60 vol% O₂) **Spallation** NaFeO₂ Fe₂O₃/Fe₃O₄ Cr Depletion/ Ni Cr Fe Ni Cr Fe Ni Segregation 310 N Steel 310 N Steel

Figure 7. Summary of gas—salt—corrosion interaction at 600 °C.(a) O₂ (5–80 vol%) + NO (400– 600 ppm) stabilizes salt chemistry by increase nitrate and suppressing nitrite/oxide ions. (b) Under optimal gas, 310N steel forms dense NaFeO₂/Fe-oxide/Cr₂O₃ scales with dense and low long-term corrosion layer growth(left 600 h and right 1224 h corroded steel).

- O₂ + NO Synergy Stabilizes Salt Chemistry —Fig 7 (a), ≥5 vol% O₂+≥400 ppm NO effectively suppress nitrite/oxide ion formation, with oxide <0.20 mol% at 600 °C.
- Long-Term Corrosion Independence from O₂ Fig 7 (b), after 1224 h, corrosion rates and layer thickness are stable across 5–80 vol% O₂ for both 400 and 600 ppm NO.
- **Dense, Protective Corrosion Layers Form** Fig 7 (b), ≥5 vol% O₂+ ≥400 ppm NO atmosphere produce compact Na-Fe–O / Fe–oxide / Cr₂O₃ scales, reducing dissolution and extending steel lifetime.

Reference: [1] Kumar et al. (2024) Heliyon — http://doi.org/10.1016/j.heliyon.2024.e25966 [2] Kumar et al. (2025) Corros. Sci. — http://doi.org/10.1016/j.corsci.2025.112849 [3] Bonk et al. (2024) Corros. Sci. — http://doi.org/10.1016/j.corsci.2023.111700

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) – the German Research Foundation – through funding (project number: 455432503) the joint-project 'Materials Degradation Phenomena of High-Temperature Alloys by Molten Salts (MaDMoS)'

