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INTRODUCTION



Solar activity dominates ionospheric processes
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11-Year solar cycle is one of the important time scales in solar activity
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27-day solar rotation period
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lonospheric reaction to 27-day solar rotation period A#y
DLR

Schematic ionospheric delay

2.5
5 « Absorption (ionization, dissociation, heating),
transport and recombination determine the
E lonospheric plasma
g 15
= - lonization (fast) vs. recombination (slow)
5 = Delay
Z
0.5 * lonospheric delay changes with different solar

and geomagnetic activity levels

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39
Day

—Solar EUV  ——Plasma density [1] Ren et al. 2018; doi: 10.1029/ 2018JA025835
[2] Schmolter et al.; 2020; doi: 10.5194/angeo-38-149-2020
[3] Vaishnav et al.; 2021; doi: 10.106/j.asr.2021.12.041
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Previous studies — initial delay estimations 4#7
DLR

» Global TEC and NmF2 generally show delay of 1-2 days to 27-day period

Features:
» Variations with latitude and season [1,2]
= Shorter delays in northern hemisphere [1,2]
= Altitude dependence of delay [3,4]

[1]Lee et al. 2012; doi: 10.1016/j.jastp.2012.01.010

[2] Schmolter et al.; 2020; doi: 10.5194/angeo-38-149-2020
[3] Schmolter et al.; 2022; doi: 10.1029/2021JA030118

[4] Ren et al.; 2018; doi: 10.1029/2018JA025835
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Delay of EUV (GOES E from 115 to 130 nm) and TEC (for grid point 50N, 10E). The blue dots represent
delays which are related to negative correlations. Summer and winter months are shaded in yellow and
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[1] Schmolter et al.; 2018; doi:10.5194/ars-16-149-2018
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4 )

What is the role of thermospheric (photo-) chemistry and
neutral dynamics on the global distribution of the delay?

\_ )

4 )

How can we use the knowledge on processes affecting the
lonospheric delay to improve both numerical and empirical models?

\_ )
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Latitudinal structure of the delay
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Latitudinal variations of the delayed ionospheric response and cross-correlations for observed (dots) and
modeled (asterisks) TEC with the EUV flux during 16 November—12 December 2020 at 80°W longitude.
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[1] Vaishnav et al.; 2023; doi: 10.1029/2022JA030887
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Latitudinal structure of the delay DLR
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[1] Schmolter et al.; 2024; doi:10.1029/2024JA032672

Hanna Duhnen, DLR - SO, 3 September 2025




15

What are the Key processes of the ionospheric delay~

How can we identify them using a 3D (+ time) analysis of the delay~
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Solar and geomagnetic forcing from 2000 to 2024 ‘#7

F10.7 (daily) and 81-day mean DLR
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TIE-GCM
T I
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» First-principles, 3D global general circulation model
= Solves continuity, momentum and energy eqguation

External forcing:
» Solar: via F10.7 index
» Geomagnetic: Heelis convection model

[1] Qian et al.; 2014; d0i:10.1002/9781118704417.ch7
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» Open Time-series of the The physics-based TIE-GCM OTHITACS
High-resolution lonos.-Thermos. e DEOTHITAS Hiegem
Aeronomic Climate Simulation =

General Information ¥ Quality & Contacts 99 References %" Data Hierarchy

aeronomic climate simulation thermosphere TIE-GCM upper atmosphere

Summary TIE-GCM (thermosphere-ionosphere-electrodynamics general circulation model) is a three-

dimensional, time-dependent, physics-based model of the thermosphere and ionosphere

F eat u r eS . (https://doi.org/10.1029/92GL00401 (3)). The website http://www.hao.ucar.edu/modeling/tgcm
. hosts the open-source TIE-GCM code. TIE-GCM assumes hydrostatic equilibrium, constant

gravity, steady-state ion and electron energy equations, and incompressibility on a constant

= L ong-term TIE-GCM simulation

In this experiment, we use TIE-GCM version 2.0 (released on 21 March 2016) with a horizontal
] 2 5 d e g resol uti O n resolution of 2.5 by 2.5 in geographic latitude and longitude, and a vertical resolution of 0.25

. . scale-height. We specify the solar irradiance input to the model via an empirical solar proxy
. model—the extreme ultraviolet flux model for aeronomic calculations (EUVAC; https://

doi.org/10.1029/94JA00518 (3); https://doi.org/10.1029/2005JA011160 (3)). This empirical

" 1 O M I n Ute Cad e n Ce formulation uses the average of the daily solar flux F10.7 and its 81-day centred mean. Here, we
use the value observed by the ground-based solar radio telescope, as it is more suitable for
] F ro m 2 OO O to 2 O 24 upper-atmospheric applications than the F10.7 adjusted for Earth-Sun distance. We use the Kp
index-based ion convection model of Heelis et al. (1982; https://doi.org/10.1028/
JA087iA08p06339 (3)) and the auroral particle precipitation scheme of Roble and Ridley (1987;

https://ui.adsabs.harvard.edu/abs/1987AnGeo...5..369R) with modifications of Emery et al. (2012;
httn-//dai ara/10 BOEE/DENATYZ M) tn snecify the mannstasnharic farcina which descrihes

[1] Kodikara; 2023; doi:10.26050/WDCC/OTHITACS_tiegcm
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Comparison TIE-GCM to other models and observations
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[1] Dihnen; 2024; doi:10.1016/j.asr.2024.12.004
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F10.7 (driver)

Delay estimation using
correlation coefficients
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Delay estimation using
correlation coefficients

1. Bandpass-filter

2. Pearson-Correlation

3. Time-shift

4. Delay at max. correlation
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Delay estimation using
correlation coefficients

2. Pearson-Correlation

3. Time-shift

4. Delay at max. correlation
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Delay estimation using
correlation coefficients

4. Delay at max. correlation
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Window lag-correlation (bp); best t =2 d (r = 1.00)

Delay estimation using
correlation coefficients
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Dependence of delay on solar activity

F10.7 (daily) and 81-day mean DLR
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Filtered times:
High solar activity = 81-day average F10.7 index > 150 sfu
Low solar activity = 81-day average F10.7 index < 90 sfu
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Filtered data
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= Correlation is strong (greater than 0.7) in 24-30 day window

» First positive lag favored
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Histogram of windowed delays

Delay histogram
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Delay vs. mean solar activity

15 'O (@] B «
Tme [ b] ®Cd» [ 4
{ (& - C ®
[ 1@t N § = { “e
DD » L
10 1 [ B >
e »
C e (@ ] ®
ey O L
o «
5 ] o
2K ) L ]
L ¢ C
( ) @
e
0
[} L C » e
» C E
[ ] [ ] E
ae [ ¢
—5 7 Iw
70 X ®
[ @
o8 [ e
o9 » (&
—-104 wita« ) ( (] .
oy > L] -
o« P » L) ]
o) 4 h | - ]
1)@ » ] m»
—15 1 *)e » «
60 80 100 120 140 160 180 200 220

Mean solar activity in window (f81) [sfu]

DLR

0.95

0.90

0.85

[rjmax in window

o
o8]
o

0.75



Histogram of windowed delays

= Complex relation with solar activity
* No straightforward interpretation

Open questions:
» What do negative delays imply?

» Clustered distribution at high sol. activity?

» “Random” distribution at low sol. activity?

=» Is there still information about

lonospheric processes?
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Altitude dependence based on species
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Altitude dependence based on species

O2* delay with |r| (Zp) DLR
T . A
5.14

—~ 3.43
T}
= m
< : ©
Q27 171 2

F v
o ©
N
= - 8
(]>) 0 T - OOO g
o - ' o
2 - S i . e 8
0 2 R N N Sse "7 -—1.71 >
e 3 i TJ
3 % )
-

~3.43
—4 -
: ~5.14
_6 4 ——- species peak reo.s
....... Zp=0 (~200 km) /_ T

—-80 —60 —-40 -20 0 20 40 60 80
Latitude [deg]




Log-pressure level Zp (A=0.25)
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» Solar 27-day variations drives upper atmosphere ionization
= “simple” delay

= T/l interactions (spatial, temporal, solar and geomag. levels, etc.)
=» complex delay

= O,* and lower ionosphere is governed by slow trends
* NE and O* react directly to variations in solar activity
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Altitude dependence based on species
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